JP2005023395A - Production method of nickel powder - Google Patents

Production method of nickel powder Download PDF

Info

Publication number
JP2005023395A
JP2005023395A JP2003192018A JP2003192018A JP2005023395A JP 2005023395 A JP2005023395 A JP 2005023395A JP 2003192018 A JP2003192018 A JP 2003192018A JP 2003192018 A JP2003192018 A JP 2003192018A JP 2005023395 A JP2005023395 A JP 2005023395A
Authority
JP
Japan
Prior art keywords
nickel powder
reducing agent
aqueous solution
nickel
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003192018A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshii
和弘 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003192018A priority Critical patent/JP2005023395A/en
Publication of JP2005023395A publication Critical patent/JP2005023395A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fine nickel powder which has few aggregate, shows a narrow particle size distribution and is excellent in dispersibility. <P>SOLUTION: In an aqueous metal salt solution preparation step 1, an aqueous metal salt solution is prepared by dissolving a nickel salt and a complexing agent in pure water having ≤10 mg/L of dissolved oxygen. In an aqueous reducing agent solution preparation step 2, an aqueous reducing agent solution is prepared by dissolving caustic alkali and a hydrazine reducing agent in pure water having ≤10 mg/L of dissolved oxygen. In a nickel powder precipitation step 3, the nickel powder is precipitated by mixing the aqueous metal salt solution with the aqueous reducing agent solution and inducing oxidation-reduction reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はニッケル粉末の製造方法に関し、より詳しくは積層セラミック電子部品の内部電極用導電性材料に使用されるニッケル粉末の製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型・軽量化、高機能化に伴い、電子部品の軽薄短小化が要求されてきている。特に、電子部品の中でも積層セラミックコンデンサの分野では、小型・大容量化が急速に進んでおり、それに伴いセラミック誘電体層の薄層化・多層化が進行してきている。
【0003】
また、この種の積層セラミックコンデンサでは、従来より、内部電極用導電性材料としてパラジウムや銀、白金、金などの貴金属材料が使用されていたが、近年における生産コストの低廉化の要請等から、これら貴金属材料に代えて、ニッケルに代表される比較的安価な卑金属材料の使用が増加してきている。
【0004】
ところで、ニッケル粉末の製造方法としては、物理的方法と化学的方法とがある。物理的方法の代表例としては、ニッケル塊を機械的に粉砕する方法があるが、このような物理的方法では、微細で粒径の揃った球形のニッケル粉末を得るのは困難である。
【0005】
すなわち、積層セラミックコンデンサの薄層化・多層化に伴い、内部電極用導電性材料には微細で分散性に優れていることが要求されるが、上述した物理的方法では、微細で粒径の揃った球形のニッケル粉末を得るのが困難であり、このため所望の微細で分散性に優れたニッケル粉末を得るのは困難である。
【0006】
そこで、内部電極用導電性材料に使用されるニッケル粉末は、従来より、一般に化学的方法で製造されている。
【0007】
化学的方法には気相法と液相法とがあり、気相法によりニッケル粉末を製造する方法としては、例えば、塩化ニッケルを加熱蒸発させ、水素還元雰囲気下で還元析出させる気相水素還元法が知られている(特許文献1)。
【0008】
一方、液相法によるニッケル粉末の製造方法としては、ニッケル塩化合物と錯化剤とを含有したニッケル水溶液を、ヒドラジン等の還元剤水溶液中に滴下することによって、ニッケルイオンを還元し、これによりニッケル粉末を得るようにした液相還元法(水系化学還元法)が知られている(特許文献2)。
【0009】
特許文献2では、難溶性ニッケル塩を経由せずにニッケルイオンを還元するため、単純なプロセスで短時間に大量のニッケル粉末を得ることが可能となる。
【0010】
【特許文献1】
特開平11−80817号公報
【特許文献2】
特開平11−302709号公報
【0011】
【発明が解決しようとする課題】
しかしながら、特許文献1のような気相水素還元法で得られるニッケル粉末は、粒径が不揃いであり、異常成長した粒子が内在し易く、このため、積層セラミックコンデンサの内部電極に使用した場合は、耐電圧特性等の電気的特性を著しく劣化させるおそれがあるという問題点があった。
【0012】
また、特許文献2は、単純なプロセスで短時間に大量のニッケル粉末を得ることができるものの、反応が不均一になりやすく、得られたニッケル粉末の粒径にバラツキが生じやすい。また、得られた粉末は、凝集している場合が多く、ペーストを作製して塗膜を形成した場合、塗膜の表面粗さが粗くなり、電極膜特性の劣化や電気特性の低下を招くおそれがあるという問題点があった。
【0013】
すなわち、特許文献1及び2では、ニッケル粉末の粒度分布の幅が大きく、粒径にバラツキが生じ、しかもその制御が困難であるため、積層セラミック電子部品の内部電極の形成に用いられる電極材料として要求される微細で凝集物が少なく、粒度分布の幅の狭い良好な分散性を有するニッケル粉末を安定的に製造するのは困難であるという問題点があった。
【0014】
本発明はこのような問題点に鑑みなされたものであって、微細で凝集物が少なく、かつ粒度分布が狭く分散性に優れたニッケル粉末の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明者は、溶存酸素量が異なる純水にニッケル塩及び錯化剤を溶解させた金属塩水溶液に対し、苛性アルカリ存在下のヒドラジン系還元剤を使用して還元処理を施し、ニッケル粉末を析出させたところ、純水中の溶存酸素量とニッケル粉末の粒径との間に相関関係があることを見出した。
【0016】
そこで、さらに鋭意研究を行ったところ、還元処理時における水中の溶存酸素量を10mg/L以下とすることにより、ヒドラジン系還元剤の電子の放出を安定化することができ、これにより溶存酸素に起因したヒドラジン系還元剤の劣化を極力回避することができ、微細で凝集物が少なく、狭粒度分布を有する分散性に優れたニッケル粉末を安定的に製造することが可能となるという知見を得た。
【0017】
本発明はこのような知見に基づきなされたものであって、本発明に係るニッケル粉末の製造方法は、ニッケルイオンを含有した金属塩水溶液に、ヒドラジン系還元剤を添加して還元処理し、ニッケル粉末を析出させるニッケル粉末の製造方法において、前記還元処理は、水中の溶存酸素量が10mg/L以下で行うことを特徴としている。
【0018】
また、本発明に係るニッケル粉末の製造方法は、溶存酸素量が10mg/L以下の純水にニッケル塩及び錯化剤を溶解させて金属塩水溶液を作製する金属塩水溶液作製工程と、溶存酸素量が10mg/L以下の純水にヒドラジン系還元剤及び苛性アルカリを溶解させて還元剤水溶液を作製する還元剤水溶液作製工程と、前記金属塩水溶液と前記還元剤水溶液とを混合して酸化還元反応を生じさせニッケル粉末を析出させるニッケル粉末析出工程とを含んでいることを特徴としている。
【0019】
これにより、微細で、凝集物が少なく、狭粒度分布を有する分散性に優れたニッケル粉末を安定して製造することが可能になる。
【0020】
【発明の実施の形態】
次に、本発明の実施の形態を詳説する。
【0021】
図1は本発明に係るニッケル粉末の製造方法の一実施の形態を示す製造工程図である。
【0022】
すなわち、金属塩水溶液作製工程1では、ニッケル塩と錯化剤とを溶存酸素量が10mg/L以下の純水に溶解させて金属塩水溶液を作製する。
【0023】
具体的には、まず、窒素ガスやアルゴンガス等の不活性ガスを使用して純水にバブリング処理を施し、溶存酸素量が10mg/L以下の純水を作製する。
【0024】
ここで、溶存酸素量を10mg/L以下としたのは、溶存酸素量が10mg/Lを超えると、後述するニッケル粉末析出工程でヒドラジン系還元剤の劣化を招いて酸化反応における電子の放出を不安定にし、その結果、ニッケル核の発生と粒成長のバランスが保持できなくなり、粗粒子や凝集物が生成し、狭粒度分布を有する分散性の優れたニッケル粉末を製造することができなくなるからである。
【0025】
尚、析出金属であるニッケル塩としては2価のニッケル塩であれば特に限定されるものではなく、例えば、塩化ニッケル、硫酸ニッケル、硝酸ニッケル、又は酢酸ニッケルの中から選択される少なくとも1種を使用することができる。
【0026】
また、錯化剤は、水溶液中で錯体を形成して難溶性ニッケル塩の析出を抑制し、反応を均一化すると共に、還元反応の反応時間を短縮してニッケル粉末の生産性を向上させるために添加される。そして、微細で凝集物が少なく、狭粒度分布を有する分散性の優れたニッケル粉末を安定的に得るためには、更に還元反応の進行によるpHの低下を抑制する緩衝剤としての作用を有するものを使用するのが好ましい。
【0027】
そして、このような作用を有する錯化剤として、ポリカルボン酸、オキシカルボン酸、又はこれらの塩を使用することができる。
【0028】
尚、錯化剤は、反応系全体のバランスを変化させ、ニッケルの還元速度に影響を及ぼす。したがって、錯化剤の使用量を変化させることにより、ニッケル核の発生速度や粒成長速度が変化し、ニッケル粉末の粒径を制御することができるため、錯化剤の使用量は生成されるニッケル粉末の粒径に応じて適宜選択される。
【0029】
次に、還元剤水溶液作製工程2では、まず、金属塩水溶液作製工程1と同様、窒素ガスやアルゴンガス等の不活性ガスを使用して純水にバブリング処理を施し、溶存酸素量が10mg/L以下の純水を作製する。
【0030】
そして、還元剤としてヒドラジンN等のヒドラジン系還元剤を用意し、該ヒドラジン系還元剤と水酸化ナトリウムや水酸化カリウム等の苛性アルカリとを前記純水中に溶解させ、還元剤水溶液を作製する。
【0031】
すなわち、液相還元法でニッケル粉末を製造するためには、ニッケルが還元剤の酸化反応に対して触媒活性でなければならず、また、ニッケル以外の不純物が生成されるのを極力回避して高純度のニッケル粉末を得る必要もあることから、還元剤としてヒドラジン系還元剤を使用し、該ヒドラジン系還元剤と苛性アルカリとを純水に溶解させてアルカリ性の還元剤水溶液を作製する。
【0032】
次いで、ニッケル粉末析出工程3では、前記金属塩水溶液と前記還元剤水溶液とを混合させて酸化還元反応を生じさせ、ニッケル粉末を析出させる。
【0033】
すなわち、ヒドラジン系還元剤は、その酸化反応に対し触媒活性なニッケルイオンを含有した金属塩水溶液と接触すると、化学反応式(1)に示すような酸化反応を生じて電子を放出する。
【0034】
+4OH→N+4HO+4e…(1)
一方、金属塩水溶液中のニッケルイオンは、上記放出された電子を受容して化学反応式(2)で示すような還元反応を生じ、これによりニッケル粉末が析出する。
【0035】
Ni2++2e→Ni…(2)
尚、上記酸化還元反応を生じさせる方法としては、金属塩水溶液を還元剤水溶液に滴下することにより金属塩水溶液と還元剤水溶液とを混合し、ニッケルイオンと還元剤とを接触させるのが望ましく、これにより、確実に、微細で、凝集物が少なく、狭粒度分布を有する分散性に優れたニッケル粉末を安定的に製造することができる。
【0036】
このように本実施の形態では、溶存酸素量が10mg/L以下に調製された純水を含有した金属塩水溶液及び還元剤水溶液を使用して還元処理を行っているので、還元処理時におけるヒドラジン系還元剤の電子の放出を安定化することができ、これにより溶存酸素によるヒドラジン系還元剤の劣化を極力回避することができる。その結果、製造されたニッケル粉末は、平均粒径が、例えば0.05〜3.0μmと微細であり、凝集物が少なく、粒度分布の幅も狭く、粉末形状も略球形状であり、分散性の優れたものとなる。
【0037】
そして、ニッケル粉末が、略球形状で微細であることから、ニッケル粉末を導電成分とした導電性ペーストを使用した場合であっても、均一で、形状精度に優れた内部電極を有し、電気特性が良好で信頼性の優れた積層セラミック電子部品を得ることが可能になる。
【0038】
尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では純水は、予め、窒素ガスやアルゴンガス等の不活性ガスによりバブリング処理し、これにより溶存酸素量を10mg/L以下としているが、金属塩水溶液の作製時や還元剤水溶液の作製時に上記バブリング処理を施して前記溶存酸素量を所定量以下となるようにしてもよい。
【0039】
また、溶存酸素量を10mg/L以下とした以外は、上記金属塩水溶液作製工程1、還元剤水溶液作製工程2、及びニッケル粉末析出工程3における具体的な条件や操作方法に関しては、特に限定されるものではなく、適宜自由に設定することができる。
【0040】
【実施例】
次に、本発明の実施例を具体的に説明する。
【0041】
窒素ガスでバブリング処理を施した純水について、溶存酸素計で溶存酸素量を測定し、溶存酸素量の異なる10種類の純水を用意した。
【0042】
そして、これら10種類の純水を使用し、下記(1)〜(4)の手順で実施例1〜7及び比較例1〜3のニッケル粉末を作製した。
【0043】
(1)水酸化ナトリウム500gを純水1500mLに溶解させた後、ヒドラジン水和物1000gを加えて、還元剤水溶液を作製し、その後、該還元剤水溶液を水浴中で60℃に加温し保持した。
【0044】
(2)次いで、硫酸ニッケル1000gとクエン酸三ナトリウム350gとを2000mLの純水に溶解して金属塩水溶液を作製し、その後、該金属塩水溶液を水浴で60℃に加温し保持した。
【0045】
(3)この後、金属塩水溶液を還元剤水溶液中に700mL/分の速度で滴下し、撹拌しながら酸化還元反応を行わせた。尚、酸化還元反応は、金属塩水溶液を滴下後、20分後には終了していることを確認した。
【0046】
(4)次いで、ビフネルロートを使用し、析出した沈殿物と液体とを分離し、純水、更には有機溶剤を使用してデカンテーションを行い、熱風式乾燥機で乾燥処理を施し、ニッケル粉末を得た。
【0047】
そして、このようにして得られた各実施例及び比較例について、走査型電子顕微鏡(SEM)で撮影した画像を画像解析処理し、ニッケル粉末の積算分布における10%径(D10)、50%径(D50)、90%径(D90)を求め、さらに各実施例及び比較例の標準偏差を求めた。
【0048】
次に、実施例及び比較例の各ニッケル粉末をジェットミルで粉砕した後、エチルセルロース、テルピネオール、界面活性剤を加えて混練し、3本ロールミルで分散させ、導電性ペーストを作製した。次いで、該導電性ペーストを、チタン酸バリウム系セラミック原料を主成分とする誘電体生シートにスクリーン印刷して乾燥し、印刷塗膜を得た。
【0049】
次いで、接触式表面粗さ測定機を使用し、測定長5mm、走査速度0.3mm/秒で各印刷塗膜の十点平均粗さRzを5回測定し、平均値を算出し、分散度を求めた。
【0050】
また、この導電性ペーストを用いて、ガラス基板上に塗膜面積528mmでスクリーン印刷し、乾燥させて乾燥塗膜を得た。そして、該乾燥塗膜を光学顕微鏡(倍率50倍)で斜め側方から光源を照射して観察し、20μm以上の塊状物(凝集物又は突起状物)の個数を計測して凝集物数を求めた。
【0051】
表1は各実施例及び比較例におけるニッケル粉末の10%径(D10)、50%径(D50)、90%径(D90)、標準偏差、分散度、及び凝集物数を示している。
【0052】
【表1】

Figure 2005023395
この表1から明らかなように比較例1〜3は、純水中の溶存酸素量が16.2〜21.5mg/Lであり、10mg/Lを超えているため、標準偏差が0.146〜0.194μmと、粒度分布が広いことが分かる。また、分散度も1.98〜2.21μmと悪く、5〜14の凝集物が確認された。
【0053】
これに対し実施例1〜7は、純水中の溶存酸素量が0.2〜9.8mg/Lであり、10mg/L以下であるので、標準偏差が0.080〜0.118μmと、粒度分布が狭いことが分かった。また、分散度も1.16〜1.47μmと良好で、凝集物も生じないことが確認された。
【0054】
図2は、表1に示した溶存酸素量と分散度の関係を示す図であり、横軸は溶存酸素量(mg/L)、縦軸は分散度(μm)を示している。尚、図中、○印が本発明の各実施例であり、□印は各比較例である。
【0055】
この図2からも明らかなように、溶存酸素量が10mg/Lを境にして増加すると、表面平均粗さが悪化して分散度が大きくなることが分かる。
【0056】
図3は、表1に示した溶存酸素量と凝集物数の関係を示す図であり、横軸は溶存酸素量(mg/L)、縦軸は凝集物数(個)を示している。尚、図中、○印が本発明の各実施例であり、□印は各比較例である。
【0057】
この図3からも明らかなように、溶存酸素量が10mg/L以下の場合は、凝集物は生じていないが、溶存酸素量が15mg/L以上になると凝集物が生じることが分かる。
【0058】
【発明の効果】
以上詳述したように本発明に係るニッケル粉末の製造方法は、ニッケルイオンを含有した金属塩水溶液に、ヒドラジン系還元剤を添加して還元処理し、ニッケル粉末を析出させるニッケル粉末の製造方法において、前記還元処理は、水中の溶存酸素量が10mg/L以下で行うので、ヒドラジン系還元剤の電子の放出を安定化することができて該ヒドラジン系還元剤の劣化を極力回避することができ、これにより微細で、凝集物が少なく、粒度分布の狭い分散性に優れた略球形のニッケル粉末を製造することが可能になる。
【図面の簡単な説明】
【図1】本発明に係るニッケル粉末の製造方法の一実施の形態を示す製造工程図である。
【図2】溶存酸素量と分散度の関係を示した図である。
【図3】溶存酸素量と凝集物数の関係を示した図である。
【符号の説明】
1 金属塩水溶液作製工程
2 還元剤水溶液作製工程
3 ニッケル粉末析出工程[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing nickel powder, and more particularly to a method for producing nickel powder used for a conductive material for internal electrodes of a multilayer ceramic electronic component.
[0002]
[Prior art]
In recent years, as electronic devices have become smaller, lighter, and more sophisticated, electronic components have been required to be lighter, thinner, and smaller. In particular, in the field of multilayer ceramic capacitors among electronic components, miniaturization and large capacity are rapidly progressing, and accordingly, ceramic dielectric layers are becoming thinner and multilayered.
[0003]
In addition, in this type of multilayer ceramic capacitor, noble metal materials such as palladium, silver, platinum, and gold have been conventionally used as the internal electrode conductive material, but due to the recent demand for lower production costs, Instead of these noble metal materials, the use of relatively inexpensive base metal materials typified by nickel has been increasing.
[0004]
By the way, as a manufacturing method of nickel powder, there are a physical method and a chemical method. As a typical example of the physical method, there is a method of mechanically pulverizing a nickel lump. With such a physical method, it is difficult to obtain a spherical nickel powder having a fine particle size.
[0005]
In other words, as the multilayer ceramic capacitor becomes thinner and multilayered, the internal electrode conductive material is required to be fine and excellent in dispersibility. It is difficult to obtain uniform spherical nickel powder. For this reason, it is difficult to obtain desired fine nickel powder excellent in dispersibility.
[0006]
Therefore, nickel powder used for the internal electrode conductive material is conventionally manufactured by a chemical method.
[0007]
Chemical methods include a vapor phase method and a liquid phase method. Examples of a method for producing nickel powder by the vapor phase method include vapor phase hydrogen reduction in which nickel chloride is heated and evaporated and reduced and precipitated in a hydrogen reducing atmosphere. The law is known (Patent Document 1).
[0008]
On the other hand, as a method for producing nickel powder by a liquid phase method, nickel ions are reduced by dropping a nickel aqueous solution containing a nickel salt compound and a complexing agent into a reducing agent aqueous solution such as hydrazine. A liquid phase reduction method (aqueous chemical reduction method) in which nickel powder is obtained is known (Patent Document 2).
[0009]
In Patent Document 2, since nickel ions are reduced without going through a sparingly soluble nickel salt, a large amount of nickel powder can be obtained in a short time by a simple process.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-80817 [Patent Document 2]
Japanese Patent Laid-Open No. 11-302709
[Problems to be solved by the invention]
However, the nickel powder obtained by the gas phase hydrogen reduction method as in Patent Document 1 has irregular particle sizes, and abnormally grown particles tend to be contained therein. For this reason, when used as an internal electrode of a multilayer ceramic capacitor, There is a problem that electrical characteristics such as withstand voltage characteristics may be remarkably deteriorated.
[0012]
In Patent Document 2, although a large amount of nickel powder can be obtained in a short time by a simple process, the reaction tends to be non-uniform and the particle diameter of the obtained nickel powder tends to vary. In addition, the obtained powder is often agglomerated, and when a paste is produced to form a coating film, the surface roughness of the coating film becomes rough, leading to deterioration of electrode film characteristics and electrical characteristics. There was a problem of fear.
[0013]
That is, in Patent Documents 1 and 2, since the width of the particle size distribution of the nickel powder is large, the particle size varies, and the control thereof is difficult, as an electrode material used for forming the internal electrode of the multilayer ceramic electronic component There is a problem in that it is difficult to stably produce nickel powder having good dispersibility with a fine and small aggregate and a narrow particle size distribution.
[0014]
The present invention has been made in view of such problems, and an object of the present invention is to provide a method for producing a nickel powder that is fine and has few aggregates and has a narrow particle size distribution and excellent dispersibility.
[0015]
[Means for Solving the Problems]
The present inventor performed a reduction treatment using a hydrazine-based reducing agent in the presence of caustic alkali on a metal salt aqueous solution in which a nickel salt and a complexing agent are dissolved in pure water having different dissolved oxygen amounts, and nickel powder is obtained. As a result of precipitation, it was found that there was a correlation between the amount of dissolved oxygen in pure water and the particle size of the nickel powder.
[0016]
Therefore, further earnest research was conducted, and by reducing the amount of dissolved oxygen in water during the reduction treatment to 10 mg / L or less, the release of electrons from the hydrazine-based reducing agent can be stabilized, thereby reducing dissolved oxygen. Acquired knowledge that it is possible to avoid the deterioration of the hydrazine-based reducing agent as much as possible, and to stably produce nickel powder that is fine, has few aggregates, and has a narrow particle size distribution and excellent dispersibility. It was.
[0017]
The present invention has been made on the basis of such knowledge, and the method for producing nickel powder according to the present invention comprises adding a hydrazine-based reducing agent to a metal salt aqueous solution containing nickel ions, and reducing the nickel powder. In the method for producing nickel powder for precipitating powder, the reduction treatment is characterized in that the amount of dissolved oxygen in water is 10 mg / L or less.
[0018]
In addition, the method for producing nickel powder according to the present invention includes a metal salt aqueous solution preparation step for preparing a metal salt aqueous solution by dissolving a nickel salt and a complexing agent in pure water having a dissolved oxygen amount of 10 mg / L or less, and dissolved oxygen. A reducing agent aqueous solution preparation step of preparing a reducing agent aqueous solution by dissolving a hydrazine-based reducing agent and caustic alkali in pure water having an amount of 10 mg / L or less, and the oxidation reduction by mixing the metal salt aqueous solution and the reducing agent aqueous solution. A nickel powder deposition step of causing a reaction to deposit nickel powder.
[0019]
This makes it possible to stably produce a nickel powder that is fine, has few aggregates, and has a narrow particle size distribution and excellent dispersibility.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described in detail.
[0021]
FIG. 1 is a production process diagram showing an embodiment of a method for producing nickel powder according to the present invention.
[0022]
That is, in the metal salt aqueous solution preparation step 1, the metal salt aqueous solution is prepared by dissolving the nickel salt and the complexing agent in pure water having a dissolved oxygen amount of 10 mg / L or less.
[0023]
Specifically, first, pure water is subjected to a bubbling process using an inert gas such as nitrogen gas or argon gas to produce pure water having a dissolved oxygen amount of 10 mg / L or less.
[0024]
Here, the amount of dissolved oxygen is set to 10 mg / L or less because if the amount of dissolved oxygen exceeds 10 mg / L, the hydrazine reducing agent is deteriorated in the nickel powder precipitation step described later, and electrons are released in the oxidation reaction. As a result, the balance between the generation of nickel nuclei and the growth of grains cannot be maintained, and coarse particles and agglomerates are produced, making it impossible to produce nickel powder having a narrow particle size distribution and excellent dispersibility. It is.
[0025]
The nickel salt that is a deposited metal is not particularly limited as long as it is a divalent nickel salt. For example, at least one selected from nickel chloride, nickel sulfate, nickel nitrate, or nickel acetate is used. Can be used.
[0026]
In addition, the complexing agent forms a complex in an aqueous solution to suppress the precipitation of poorly soluble nickel salt, homogenize the reaction, and shorten the reaction time of the reduction reaction to improve the productivity of nickel powder. To be added. And, in order to stably obtain fine nickel powder with a small particle size distribution and excellent dispersibility, it has a function as a buffer that further suppresses a decrease in pH due to the progress of the reduction reaction. Is preferably used.
[0027]
And polycarboxylic acid, oxycarboxylic acid, or these salts can be used as a complexing agent which has such an effect | action.
[0028]
The complexing agent changes the balance of the entire reaction system and affects the nickel reduction rate. Therefore, by changing the amount of the complexing agent used, the nickel nucleus generation rate and grain growth rate are changed, and the particle size of the nickel powder can be controlled. It is suitably selected according to the particle size of the nickel powder.
[0029]
Next, in the reducing agent aqueous solution preparation step 2, first, similarly to the metal salt aqueous solution preparation step 1, pure water is subjected to bubbling treatment using an inert gas such as nitrogen gas or argon gas, and the dissolved oxygen amount is 10 mg / L or less pure water is prepared.
[0030]
Then, a hydrazine-based reducing agent such as hydrazine N 2 H 4 is prepared as a reducing agent, and the hydrazine-based reducing agent and a caustic alkali such as sodium hydroxide or potassium hydroxide are dissolved in the pure water. Is made.
[0031]
That is, in order to produce nickel powder by the liquid phase reduction method, nickel must be catalytically active for the oxidizing reaction of the reducing agent, and avoid generation of impurities other than nickel as much as possible. Since it is necessary to obtain high-purity nickel powder, a hydrazine-based reducing agent is used as a reducing agent, and the hydrazine-based reducing agent and caustic alkali are dissolved in pure water to produce an alkaline reducing agent aqueous solution.
[0032]
Next, in the nickel powder precipitation step 3, the metal salt aqueous solution and the reducing agent aqueous solution are mixed to cause an oxidation-reduction reaction to deposit nickel powder.
[0033]
That is, when the hydrazine-based reducing agent comes into contact with an aqueous metal salt solution containing nickel ions that are catalytically active for the oxidation reaction, the hydrazine-based reducing agent generates an oxidation reaction as shown in chemical reaction formula (1) and releases electrons.
[0034]
N 2 H 4 + 4OH → N 2 + 4H 2 O + 4e (1)
On the other hand, the nickel ions in the aqueous metal salt solution accept the emitted electrons and cause a reduction reaction as shown in the chemical reaction formula (2), thereby depositing nickel powder.
[0035]
Ni 2+ + 2e → Ni (2)
In addition, as a method for causing the oxidation-reduction reaction, it is desirable to mix the metal salt aqueous solution and the reducing agent aqueous solution by dropping the metal salt aqueous solution into the reducing agent aqueous solution, thereby bringing the nickel ions and the reducing agent into contact with each other. As a result, it is possible to reliably produce a nickel powder that is fine, has few aggregates, and has a narrow particle size distribution and excellent dispersibility.
[0036]
As described above, in this embodiment, since the reduction treatment is performed using the metal salt aqueous solution and the reducing agent aqueous solution containing pure water prepared so that the dissolved oxygen amount is 10 mg / L or less, the hydrazine during the reduction treatment is used. The electron emission of the system reducing agent can be stabilized, and thereby the deterioration of the hydrazine reducing agent due to dissolved oxygen can be avoided as much as possible. As a result, the produced nickel powder has a fine average particle diameter of, for example, 0.05 to 3.0 μm, a small amount of aggregates, a narrow particle size distribution, a substantially spherical shape, and a dispersed shape. It will be excellent.
[0037]
Since the nickel powder is substantially spherical and fine, even when a conductive paste using nickel powder as a conductive component is used, it has a uniform internal electrode with excellent shape accuracy, It becomes possible to obtain a monolithic ceramic electronic component having good characteristics and excellent reliability.
[0038]
The present invention is not limited to the above embodiment. In the above embodiment, pure water is previously bubbled with an inert gas such as nitrogen gas or argon gas, so that the amount of dissolved oxygen is 10 mg / L or less. The bubbling process may be performed at the time of manufacturing so that the dissolved oxygen amount becomes a predetermined amount or less.
[0039]
In addition, the specific conditions and operation methods in the metal salt aqueous solution preparation step 1, the reducing agent aqueous solution preparation step 2 and the nickel powder precipitation step 3 are not particularly limited except that the amount of dissolved oxygen is 10 mg / L or less. It is not a thing and can be set freely as appropriate.
[0040]
【Example】
Next, examples of the present invention will be specifically described.
[0041]
About the pure water which carried out the bubbling process by nitrogen gas, the amount of dissolved oxygen was measured with the dissolved oxygen meter, and 10 types of pure water from which the amount of dissolved oxygen differs was prepared.
[0042]
And using these 10 types of pure water, the nickel powder of Examples 1-7 and Comparative Examples 1-3 was produced in the procedure of following (1)-(4).
[0043]
(1) After dissolving 500 g of sodium hydroxide in 1500 mL of pure water, 1000 g of hydrazine hydrate was added to prepare a reducing agent aqueous solution, and then the reducing agent aqueous solution was heated and maintained at 60 ° C. in a water bath. did.
[0044]
(2) Next, 1000 g of nickel sulfate and 350 g of trisodium citrate were dissolved in 2000 mL of pure water to prepare an aqueous metal salt solution, and then the aqueous metal salt solution was heated to 60 ° C. and held in a water bath.
[0045]
(3) Thereafter, an aqueous metal salt solution was dropped into the reducing agent aqueous solution at a rate of 700 mL / min, and an oxidation-reduction reaction was performed while stirring. In addition, it confirmed that the oxidation reduction reaction was complete | finished 20 minutes after dripping the metal salt aqueous solution.
[0046]
(4) Next, using a bifunnel funnel, the deposited precipitate and liquid are separated, decanted using pure water and further an organic solvent, dried by a hot air dryer, and nickel powder is obtained. Obtained.
[0047]
Then, thus for each example and comparative examples thus obtained, an image taken by a scanning electron microscope (SEM) and image analysis, 10% diameter in cumulative distribution of nickel powder (D 10), 50% The diameter (D 50 ) and 90% diameter (D 90 ) were determined, and the standard deviations of the examples and comparative examples were further determined.
[0048]
Next, after pulverizing each nickel powder of Examples and Comparative Examples with a jet mill, ethyl cellulose, terpineol, and a surfactant were added and kneaded and dispersed with a three-roll mill to prepare a conductive paste. Next, the conductive paste was screen-printed on a dielectric raw sheet mainly composed of a barium titanate-based ceramic raw material and dried to obtain a printed coating film.
[0049]
Next, using a contact-type surface roughness measuring machine, the ten-point average roughness Rz of each printed coating film was measured 5 times at a measurement length of 5 mm and a scanning speed of 0.3 mm / second, and the average value was calculated. Asked.
[0050]
Also, using this conductive paste, a screen was printed on a glass substrate with a coating area of 528 mm 2 and dried to obtain a dried coating film. Then, the dried coating film is observed by irradiating a light source from an oblique side with an optical microscope (50 times magnification), and the number of aggregates (aggregates or protrusions) of 20 μm or more is measured to determine the aggregate number. Asked.
[0051]
Table 1 shows the 10% diameter (D 10 ), 50% diameter (D 50 ), 90% diameter (D 90 ), standard deviation, degree of dispersion, and number of aggregates of the nickel powder in each example and comparative example. Yes.
[0052]
[Table 1]
Figure 2005023395
As apparent from Table 1, in Comparative Examples 1 to 3, the amount of dissolved oxygen in pure water is 16.2 to 21.5 mg / L, which exceeds 10 mg / L. Therefore, the standard deviation is 0.146. It can be seen that the particle size distribution is wide, ˜0.194 μm. Moreover, dispersity was also bad with 1.98-2.21 micrometers, and the aggregate of 5-14 was confirmed.
[0053]
On the other hand, in Examples 1 to 7, the dissolved oxygen amount in pure water is 0.2 to 9.8 mg / L and is 10 mg / L or less, so the standard deviation is 0.080 to 0.118 μm. It was found that the particle size distribution was narrow. Further, it was confirmed that the dispersity was as good as 1.16 to 1.47 μm and no aggregates were formed.
[0054]
FIG. 2 is a diagram showing the relationship between the dissolved oxygen amount and the dispersity shown in Table 1, where the horizontal axis represents the dissolved oxygen amount (mg / L) and the vertical axis represents the dispersity (μm). In the figure, ◯ marks are examples of the present invention, and □ marks are comparative examples.
[0055]
As is clear from FIG. 2, it can be seen that when the amount of dissolved oxygen increases from 10 mg / L as a boundary, the surface average roughness deteriorates and the degree of dispersion increases.
[0056]
FIG. 3 is a diagram showing the relationship between the dissolved oxygen amount and the number of aggregates shown in Table 1. The horizontal axis represents the dissolved oxygen amount (mg / L), and the vertical axis represents the number of aggregates (pieces). In the figure, ◯ marks are examples of the present invention, and □ marks are comparative examples.
[0057]
As is apparent from FIG. 3, when the dissolved oxygen amount is 10 mg / L or less, no aggregate is generated, but when the dissolved oxygen amount is 15 mg / L or more, it is understood that the aggregate is generated.
[0058]
【The invention's effect】
As described above in detail, the nickel powder manufacturing method according to the present invention is a nickel powder manufacturing method in which a nickel salt-containing metal salt aqueous solution is added with a hydrazine reducing agent to perform reduction treatment to precipitate nickel powder. The reduction treatment is carried out at a dissolved oxygen content of 10 mg / L or less in water, so that the emission of electrons from the hydrazine-based reducing agent can be stabilized and deterioration of the hydrazine-based reducing agent can be avoided as much as possible. As a result, it is possible to produce a substantially spherical nickel powder that is fine, has few aggregates, and is excellent in dispersibility with a narrow particle size distribution.
[Brief description of the drawings]
FIG. 1 is a production process diagram showing an embodiment of a method for producing nickel powder according to the present invention.
FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen and the degree of dispersion.
FIG. 3 is a diagram showing the relationship between the amount of dissolved oxygen and the number of aggregates.
[Explanation of symbols]
1 Metal salt aqueous solution preparation process 2 Reducing agent aqueous solution preparation process 3 Nickel powder precipitation process

Claims (2)

ニッケルイオンを含有した金属塩水溶液に、ヒドラジン系還元剤を添加して還元処理し、ニッケル粉末を析出させるニッケル粉末の製造方法において、
前記還元処理は、水中の溶存酸素量が10mg/L以下で行うことを特徴とするニッケル粉末の製造方法。
In the method for producing nickel powder in which a hydrazine-based reducing agent is added to a metal salt aqueous solution containing nickel ions and subjected to reduction treatment to deposit nickel powder.
The said reduction process is performed with the amount of dissolved oxygen in water being 10 mg / L or less, The manufacturing method of the nickel powder characterized by the above-mentioned.
溶存酸素量が10mg/L以下の純水にニッケル塩及び錯化剤を溶解させて金属塩水溶液を作製する金属塩水溶液作製工程と、溶存酸素量が10mg/L以下の純水にヒドラジン系還元剤及び苛性アルカリを溶解させて還元剤水溶液を作製する還元剤水溶液作製工程と、前記金属塩水溶液と前記還元剤水溶液とを混合して酸化還元反応を生じさせニッケル粉末を析出させるニッケル粉末析出工程とを含んでいることを特徴とするニッケル粉末の製造方法。A metal salt aqueous solution preparation step for preparing a metal salt aqueous solution by dissolving a nickel salt and a complexing agent in pure water having a dissolved oxygen content of 10 mg / L or less, and a hydrazine reduction to pure water having a dissolved oxygen content of 10 mg / L or less. A reducing agent aqueous solution preparation step of dissolving a reducing agent and caustic alkali to prepare a reducing agent aqueous solution step, and a nickel powder precipitation step of mixing the metal salt aqueous solution and the reducing agent aqueous solution to cause a redox reaction to precipitate nickel powder The nickel powder manufacturing method characterized by including these.
JP2003192018A 2003-07-04 2003-07-04 Production method of nickel powder Pending JP2005023395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192018A JP2005023395A (en) 2003-07-04 2003-07-04 Production method of nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192018A JP2005023395A (en) 2003-07-04 2003-07-04 Production method of nickel powder

Publications (1)

Publication Number Publication Date
JP2005023395A true JP2005023395A (en) 2005-01-27

Family

ID=34189429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192018A Pending JP2005023395A (en) 2003-07-04 2003-07-04 Production method of nickel powder

Country Status (1)

Country Link
JP (1) JP2005023395A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031518A (en) * 2006-07-28 2008-02-14 Furukawa Electric Co Ltd:The Nanorod, and method for producing nanorod
CN100431750C (en) * 2005-12-30 2008-11-12 中山大学 Liquid phase preparation process of nano nickle powder
CN100450676C (en) * 2006-03-09 2009-01-14 兰州大学 Method for preparing nano nickel powder in emulsion system
JP2010077472A (en) * 2008-09-25 2010-04-08 Japan Science & Technology Agency Method for producing metal nanoparticles
CN102240816A (en) * 2011-06-17 2011-11-16 华东理工大学 Method for preparing nano nickel by taking nano spherical polyelectrolyte brush as reactor and application of nano nickel
JP2011252194A (en) * 2010-06-01 2011-12-15 Murata Mfg Co Ltd Metal powder and method for producing the same, electrically conductive paste using metal powder, and laminated ceramic electronic component using the same
WO2012043267A1 (en) * 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
CN103737018A (en) * 2014-01-17 2014-04-23 昆明理工大学 Method for continuous and rapid preparation of nano nickel by microfluidics technology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431750C (en) * 2005-12-30 2008-11-12 中山大学 Liquid phase preparation process of nano nickle powder
CN100450676C (en) * 2006-03-09 2009-01-14 兰州大学 Method for preparing nano nickel powder in emulsion system
JP2008031518A (en) * 2006-07-28 2008-02-14 Furukawa Electric Co Ltd:The Nanorod, and method for producing nanorod
JP2010077472A (en) * 2008-09-25 2010-04-08 Japan Science & Technology Agency Method for producing metal nanoparticles
JP2011252194A (en) * 2010-06-01 2011-12-15 Murata Mfg Co Ltd Metal powder and method for producing the same, electrically conductive paste using metal powder, and laminated ceramic electronic component using the same
WO2012043267A1 (en) * 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same
CN102240816A (en) * 2011-06-17 2011-11-16 华东理工大学 Method for preparing nano nickel by taking nano spherical polyelectrolyte brush as reactor and application of nano nickel
CN103737018A (en) * 2014-01-17 2014-04-23 昆明理工大学 Method for continuous and rapid preparation of nano nickel by microfluidics technology

Similar Documents

Publication Publication Date Title
EP2614904B1 (en) Method of manufacturing copper powder for conductive paste
KR101407197B1 (en) Nickel powder and its production method
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP5519938B2 (en) Method for producing copper powder for conductive paste
JP4821014B2 (en) Copper powder manufacturing method
EP1552896A1 (en) Method for producing fine metal powder
JP2001214201A (en) Nickel powder, producing method therefor and paste for forming electrode for electronic part
JP2004330247A (en) Nickel powder, conductive paste, laminate ceramic electronic component
JP2005023395A (en) Production method of nickel powder
JP4490305B2 (en) Copper powder
JP4100244B2 (en) Nickel powder and method for producing the same
JP5141983B2 (en) Nickel fine powder and method for producing the same
JP2007115497A (en) Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film
EP3351324A1 (en) Precious metal powder production method
JP2006161128A (en) Nickel slurry, production method therefor, and nickel paste or nickel ink using the nickel slurry
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP5206246B2 (en) Nickel powder and method for producing the same
JP2009013490A (en) Nickel powder, and method for producing the same
JP2018150607A (en) Nickel powder water slurry and method for producing same
WO2022209558A1 (en) Copper particles and method for producing same
JP7406047B2 (en) Method for producing nickel powder and nickel particles
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
KR20200061193A (en) Method for producing monodispersed Ag powder
JP7340728B1 (en) Nickel particles and method for producing nickel particles