JP5105038B2 - Method for producing powder permanent magnet material and powder permanent magnet material - Google Patents

Method for producing powder permanent magnet material and powder permanent magnet material Download PDF

Info

Publication number
JP5105038B2
JP5105038B2 JP2005255016A JP2005255016A JP5105038B2 JP 5105038 B2 JP5105038 B2 JP 5105038B2 JP 2005255016 A JP2005255016 A JP 2005255016A JP 2005255016 A JP2005255016 A JP 2005255016A JP 5105038 B2 JP5105038 B2 JP 5105038B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
cobalt
reducing agent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005255016A
Other languages
Japanese (ja)
Other versions
JP2007063657A (en
Inventor
哲治 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Institute of Technology
Original Assignee
Chiba Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Institute of Technology filed Critical Chiba Institute of Technology
Priority to JP2005255016A priority Critical patent/JP5105038B2/en
Publication of JP2007063657A publication Critical patent/JP2007063657A/en
Application granted granted Critical
Publication of JP5105038B2 publication Critical patent/JP5105038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、新しい永久磁石材料として有用なコバルトと亜鉛をベースとした材料を提供する。   The present invention provides materials based on cobalt and zinc that are useful as new permanent magnet materials.

サマリウム・コバルト磁石やネオジウム・鉄・ボロン磁石などの希土類磁石は、高性能磁石としてコンピュータ周辺機器、民生用電子機器、計測・通信機器から自動車、医療機器まで幅広く使用されており、その生産量は年々増加している。また、フェライト磁石は、高性能なネオジウム・鉄・ボロン磁石に比べて磁気特性は劣るが、酸化物磁石であるため価格が安く、また化学的にも安定であり、画鋲磁石からモータ類まで最も幅広く大量に使用されている磁石である。また、アルニコ磁石がその温度特性の良さから計測器などに使用されている。上記の希土類磁石やフェライト磁石は固体の磁石(焼結磁石)としてだけではなく、磁石粉末をエポキシ樹脂などで結合したボンド磁石(プラスチック磁石)としても冷蔵庫のパッキンやモータ類に使用されており、軽量であり割れ欠けがないなどの特徴により、磁石全体に占めるボンド磁石の使用量の割合は年々増加している。
なお、永久磁石用の粉末の製造方法として、一般的には金属やセラミックの塊(バルク)を機械的に粉砕する物理的な方法がある。また、一部、希土類磁石では急冷凝固法により薄帯(リボン)を作製した後、粉砕するという方法もとられている(例えば特許文献1参照)。しかし、これらの機械的な粉砕方法では形状や粒度が揃った粉末を作製するのが難しく、特に球形の微粉末の製造は難しい。
また、ガスアトマイズ法などで球状の粉末を作製する(例えば特許文献2参照)ことが可能であるが、ガスアトマイズ法は金属を溶解した後ガスで急冷するため、工程が複雑で、また微粉末の製造には向かない。
特開平10−317110号公報 特開2005−064096号公報
Rare earth magnets such as samarium / cobalt magnets and neodymium / iron / boron magnets are widely used as high-performance magnets from computer peripherals, consumer electronics, measurement and communication equipment to automobiles and medical equipment. Increasing year by year. Ferrite magnets are inferior in magnetic properties to high-performance neodymium / iron / boron magnets, but they are oxide magnets and are cheaper and chemically stable. It is a magnet that is widely used in large quantities. Alnico magnets are used in measuring instruments because of their excellent temperature characteristics. The above rare earth magnets and ferrite magnets are used not only as solid magnets (sintered magnets) but also as bonded magnets (plastic magnets) in which magnet powder is bonded with epoxy resin, etc., for refrigerator packings and motors, Due to the features such as light weight and lack of cracks, the proportion of the bonded magnet used in the entire magnet is increasing year by year.
As a method for producing a permanent magnet powder, there is generally a physical method of mechanically pulverizing a metal or ceramic lump (bulk). Further, in some rare earth magnets, a ribbon (ribbon) is produced by a rapid solidification method and then pulverized (see, for example, Patent Document 1). However, it is difficult to produce powders having uniform shapes and particle sizes by these mechanical pulverization methods, and it is particularly difficult to produce spherical fine powders.
In addition, it is possible to produce a spherical powder by a gas atomizing method or the like (see, for example, Patent Document 2). Not suitable for.
JP-A-10-317110 Japanese Patent Laid-Open No. 2005-064096

発明者は、現在広く使用されている希土類磁石やフェライト磁石などの永久磁石材料に関して、以下の問題点があることを知見した。
現在生産量が著しく増加している高性能なサマリウム・コバルト磁石やネオジウム・鉄・ボロン磁石などの希土類磁石は、サマリウムやネオジウムなどの希土類金属を主成分の一つとするため価格が高く、耐食性が悪い。また、フェライト磁石は、酸化物からなるため、耐食性はよいが、酸化物であるため遷移金属の量が少なく、そのため飽和磁化が小さいという欠点がある。
本発明は、従来の永久磁石材料とは異なる組成で、形状や粒度が揃った粉末磁石材料を、従来と異なる方法により製造する。すなわち、本発明は、コバルトと亜鉛をベースとした新しい粉末磁石材料を製造する。
The inventor has found that there are the following problems with permanent magnet materials such as rare earth magnets and ferrite magnets that are currently widely used.
High-performance samarium / cobalt magnets and neodymium / iron / boron magnets such as samarium and iron / boron magnets, whose production volumes are currently increasing, are expensive and have high corrosion resistance because they are mainly composed of rare earth metals such as samarium and neodymium. bad. Further, since the ferrite magnet is made of an oxide, the corrosion resistance is good, but since it is an oxide, there is a drawback that the amount of transition metal is small and therefore the saturation magnetization is small.
In the present invention, a powder magnet material having a composition different from that of a conventional permanent magnet material and having a uniform shape and particle size is produced by a method different from the conventional method. That is, the present invention produces a new powdered magnet material based on cobalt and zinc.

発明者は、希土類金属を含まない新しい合金の永久磁石化について鋭意検討した結果、コバルト粉末が化学還元法で製造できることを見いだした。さらに、永久磁石として必須の保磁力が亜鉛を添加して同時に化学還元することにより生じることを見出した。
これらの合金粉末は金属であり、高い飽和磁化を有し、そのまま永久磁石として使用可能な磁気特性を示す。また、化学還元法により作製したコバルト亜鉛合金粉末は樹脂などで結合することによりボンド磁石としても使用できる。
As a result of intensive studies on the permanent magnetization of a new alloy containing no rare earth metal, the inventor has found that cobalt powder can be produced by a chemical reduction method. Furthermore, it has been found that the coercive force essential as a permanent magnet is generated by adding zinc and simultaneously performing chemical reduction.
These alloy powders are metals, have high saturation magnetization, and exhibit magnetic properties that can be used as permanent magnets as they are. Moreover, the cobalt zinc alloy powder produced by the chemical reduction method can be used as a bonded magnet by bonding with a resin or the like.

本発明の永久磁石材料は、化学還元法により作製したコバルト亜鉛合金粉末であり、形状や粒度が揃っており、形状の自由度が大きく、また比較的安価に得られる。   The permanent magnet material of the present invention is a cobalt zinc alloy powder produced by a chemical reduction method, has a uniform shape and particle size, has a large degree of freedom in shape, and can be obtained at a relatively low cost.

本発明を実施するための最良の形態を以下に説明する。   The best mode for carrying out the present invention will be described below.

まず、化学還元法によるコバルト亜鉛合金粉末の製造例として、塩化コバルト6水和物と硫酸亜鉛7水和物を原料とし、ホスフィン酸塩として次亜リン酸ナトリウムを還元剤に用いた場合を示す。塩化コバルト6水和物に錯化剤としてのクエン酸3ナトリウム2水和物を加えた溶液を攪拌しながら、次亜リン酸ナトリウムを添加することにより、試料を作製した。なお、溶液のpHはホウ酸と水酸化ナトリウムで調整した。また、溶液の温度は90℃に加熱した。   First, as an example of the production of cobalt zinc alloy powder by the chemical reduction method, a case where cobalt chloride hexahydrate and zinc sulfate heptahydrate are used as raw materials and sodium hypophosphite as a phosphinate is used as a reducing agent is shown. . A sample was prepared by adding sodium hypophosphite while stirring a solution of trisodium citrate dihydrate as a complexing agent in cobalt chloride hexahydrate. The pH of the solution was adjusted with boric acid and sodium hydroxide. The temperature of the solution was heated to 90 ° C.

得られた試料の外観を走査型電子顕微鏡(SEM)で調べた。その結果を図1に示す。化学還元法で作製したコバルト亜鉛合金粉末の粒径はpH濃度を変化させても大きく変化せず約1μmであることが、またその形状は球状であることがわかった。また、コバルトは磁性材料であるが、亜鉛は非磁性であるため、亜鉛を多く含むコバルト亜鉛合金は高い磁化を示さない。そこで、コバルト亜鉛合金粉末の亜鉛量は25%以下の範囲で変化させたが、この範囲では亜鉛量によらず球状の粉末が得られることがわかった。なお、磁気特性は主にコバルト量に依存し、亜鉛量の増加とともに飽和磁化が減少することがわかった。実用的な磁気特性が得られる範囲としてコバルト亜鉛合金粉末の亜鉛量は25%以下とした。   The appearance of the obtained sample was examined with a scanning electron microscope (SEM). The results are shown in FIG. It was found that the particle diameter of the cobalt zinc alloy powder produced by the chemical reduction method did not change greatly even when the pH concentration was changed, and was about 1 μm, and the shape was spherical. Cobalt is a magnetic material, but zinc is non-magnetic, so a cobalt-zinc alloy containing a large amount of zinc does not exhibit high magnetization. Therefore, the zinc content of the cobalt zinc alloy powder was changed within a range of 25% or less, and it was found that a spherical powder could be obtained regardless of the zinc content. The magnetic characteristics mainly depend on the cobalt content, and it was found that the saturation magnetization decreases with increasing zinc content. As a range in which practical magnetic properties can be obtained, the zinc content of the cobalt zinc alloy powder is set to 25% or less.

次に、化学還元法で作製したコバルト亜鉛合金粉末(亜鉛量4wt%)の試料の磁気ヒステリシス曲線を図2に示す。横軸は合金に印加した磁界を、縦軸は合金に生じた磁化を表す。なお、飽和磁化は最大の磁化の値、保磁力は磁化がゼロになった時の磁界、すなわちヒステリシス曲線と横軸との交点の値である。図2に示すように、化学還元法で作製したコバルト亜鉛合金粉末の飽和磁化は125emu/gと大きく、有望な磁性材料であること、また永久磁石として重要な保磁力も1.6kOeとアルニコ磁石よりも高い保磁力を示すことがわかった。   Next, FIG. 2 shows a magnetic hysteresis curve of a sample of cobalt zinc alloy powder (zinc content 4 wt%) produced by the chemical reduction method. The horizontal axis represents the magnetic field applied to the alloy, and the vertical axis represents the magnetization generated in the alloy. The saturation magnetization is the maximum magnetization value, and the coercive force is the magnetic field when the magnetization becomes zero, that is, the value at the intersection of the hysteresis curve and the horizontal axis. As shown in Fig. 2, the cobalt-zinc alloy powder produced by chemical reduction has a large saturation magnetization of 125 emu / g and is a promising magnetic material. The coercive force important as a permanent magnet is 1.6 kOe, which is higher than that of alnico magnets. Also showed a high coercivity.

なお、化学還元法で作製したコバルト亜鉛合金粉末の組成を分析したところ、この試料はリンを5-8wt%含むことがわかった。これは還元剤として次亜リン酸ナトリウムを用いたためである。化学還元法で作製した粉末は用いた還元剤によりリンやボロンなどを数%含むのが一般的である。   When the composition of the cobalt zinc alloy powder produced by the chemical reduction method was analyzed, it was found that this sample contained 5-8 wt% phosphorus. This is because sodium hypophosphite was used as the reducing agent. The powder produced by the chemical reduction method generally contains several percent of phosphorus or boron depending on the reducing agent used.

次に、化学還元法によるコバルト亜鉛合金粉末の製造例として、硫酸コバルト7水和物と硫酸亜鉛7水和物を原料とし、次亜リン酸ナトリウムを還元剤に用いた場合を示す。硫酸コバルト7水和物に錯化剤としてはクエン酸3ナトリウム2水和物を加えた溶液を攪拌しながら、次亜リン酸ナトリウムを添加することにより、試料を作製した。なお、溶液のpHはホウ酸と水酸化ナトリウムで調整した。また、溶液の温度は90℃に加熱した。   Next, as an example of production of cobalt zinc alloy powder by the chemical reduction method, a case where cobalt sulfate heptahydrate and zinc sulfate heptahydrate are used as raw materials and sodium hypophosphite is used as a reducing agent is shown. A sample was prepared by adding sodium hypophosphite while stirring a solution of trisodium citrate dihydrate as a complexing agent in cobalt sulfate heptahydrate. The pH of the solution was adjusted with boric acid and sodium hydroxide. The temperature of the solution was heated to 90 ° C.

得られたコバルト亜鉛合金粉末の粒径や磁気特性は原料に塩化コバルト6水和物を用いた場合とほぼ同様に球状の粉末が得られることが、また得られたコバルト亜鉛合金粉末の磁気特性も高い保磁力を有することがわかった。   The obtained cobalt zinc alloy powder has a particle size and magnetic properties that can be obtained in the same manner as when cobalt chloride hexahydrate is used as a raw material, and that the magnetic properties of the obtained cobalt zinc alloy powder. Was found to have a high coercivity.

ホスフィン酸塩では原料に依らず球状で保磁力を有する粉末が化学還元法で得られることがわかったので、次にテトラヒドロホウ酸塩を用いた化学還元について例を示す。ここでは、硫酸コバルト7水和物と硫酸亜鉛7水和物を原料とし、テトラヒドロホウ酸塩として水素化ホウ素ナトリウムを還元剤に用いた場合を示す。化学還元は、硫酸コバルト7水和物に硫酸亜鉛7水和物を加えた溶液を攪拌しながら、還元剤である水素化ホウ素ナトリウムを添加することにより行い、試料を作製した。なお、反応液のpHは塩酸と水酸化ナトリウムで調整した。また、反応液の温度は室温とした。   Since it was found that phosphinates can be obtained by a chemical reduction method in a spherical shape and having a coercive force regardless of the raw materials, an example of chemical reduction using tetrahydroborate will be described below. Here, a case where cobalt sulfate heptahydrate and zinc sulfate heptahydrate are used as raw materials and sodium borohydride is used as a reducing agent as a tetrahydroborate is shown. The chemical reduction was performed by adding sodium borohydride as a reducing agent while stirring a solution of zinc sulfate heptahydrate added to zinc sulfate heptahydrate to prepare a sample. The pH of the reaction solution was adjusted with hydrochloric acid and sodium hydroxide. The temperature of the reaction solution was room temperature.

得られた試料の外観を走査型電子顕微鏡(SEM)で調べた。その結果を図3に示す。なお、比較のため図1と同じ倍率で撮影した写真を示す。テトラヒドロホウ酸塩を用いた化学還元法で作製したコバルト亜鉛合金粉末の粒径はホスフィン酸塩を用いた場合よりも、非常に微細であり、その粒径はその拡大写真より約0.1μmであることがわかった。   The appearance of the obtained sample was examined with a scanning electron microscope (SEM). The result is shown in FIG. For comparison, a photograph taken at the same magnification as in FIG. 1 is shown. The particle size of cobalt zinc alloy powder prepared by chemical reduction method using tetrahydroborate is much finer than that using phosphinate, and its particle size is about 0.1μm from the enlarged photograph. I understood it.

しかし、テトラヒドロホウ酸塩を用いた化学還元法で作製したコバルト亜鉛合金粉末の飽和磁化は120emu/gと大きく、また永久磁石として重要な保磁力も1.5kOeとほぼホスフィン酸塩を用いた場合と同様であることがわかった。   However, the saturation magnetization of cobalt zinc alloy powder prepared by chemical reduction using tetrahydroborate is as large as 120 emu / g, and the coercive force important as a permanent magnet is 1.5 kOe, which is almost the same as when phosphinate is used. It turns out that it is the same.

なお、化学還元法で作製したコバルト亜鉛合金粉末の組成を分析したところ,この試料はボロンを5-8wt%含むことがわかった。これは還元剤としてテトラヒドロホウ酸塩を用いたためである。このように化学還元法で作製した粉末は用いた還元剤によりリンやボロンなどを数%含むことがわかった。   The composition of cobalt zinc alloy powder prepared by chemical reduction was analyzed, and it was found that this sample contained 5-8 wt% boron. This is because tetrahydroborate was used as the reducing agent. Thus, it was found that the powder produced by the chemical reduction method contained several percent of phosphorus, boron and the like depending on the reducing agent used.

この発明の永久磁石材料は、コンピュータ周辺機器、民生用電子機器、計測・通信機器から自動車、医療機器まで幅広く利用可能である。   The permanent magnet material of the present invention can be widely used from computer peripheral devices, consumer electronic devices, measuring / communication devices to automobiles and medical devices.

還元剤としてホスフィン酸塩を用いた化学還元法で作製したコバルト亜鉛合金粉末の走査型電子顕微鏡による外観写真である。It is an external appearance photograph by the scanning electron microscope of the cobalt zinc alloy powder produced by the chemical reduction method using the phosphinate as a reducing agent. 化学還元法で作製したコバルト亜鉛合金粉末のヒステリシス曲線である。It is a hysteresis curve of the cobalt zinc alloy powder produced by the chemical reduction method. 還元剤としてテトラヒドロホウ酸塩を用いた化学還元法で作製したコバルト亜鉛合金粉末の走査型電子顕微鏡による外観写真である。It is an external appearance photograph by the scanning electron microscope of the cobalt zinc alloy powder produced by the chemical reduction method using tetrahydroborate as a reducing agent.

Claims (5)

コバルト塩水溶液と亜鉛塩水溶液の混合液に還元剤水溶液を混合して、コバルトイオンと亜鉛イオンを同時に還元することにより、形状が球形で、平均粒径が0.1-2.0μmのコバルト亜鉛合金粉末からなる永久磁石材料を得ることを特徴とする粉末永久磁石材料の製造方法。   By mixing a reducing agent aqueous solution with a mixed solution of cobalt salt aqueous solution and zinc salt aqueous solution and simultaneously reducing cobalt ions and zinc ions, the cobalt zinc alloy powder having a spherical shape and an average particle size of 0.1-2.0 μm can be obtained. A method for producing a powder permanent magnet material, comprising: 前記還元剤水溶液に含まれる還元剤が、ホスフィン酸塩であることを特徴とする請求項1に記載の粉末永久磁石材料の製造方法。   The method for producing a powder permanent magnet material according to claim 1, wherein the reducing agent contained in the reducing agent aqueous solution is a phosphinate. 前記還元剤水溶液に含まれる還元剤が、テトラヒドロホウ酸塩であることを特徴とする請求項1に記載の粉末永久磁石材料の製造方法。   The method for producing a powder permanent magnet material according to claim 1, wherein the reducing agent contained in the reducing agent aqueous solution is tetrahydroborate. 請求項1ないし3のいずれかに記載の方法により製造された粉末永久磁石材料であって、形状が球形であり、平均粒径が0.1-2.0μmであることを特徴とする粉末永久磁石材料。 A powdered permanent magnet material produced by the method according to any one of claims 1 to 3, the shape is spherical, powdered permanent magnet material, wherein the average particle size of 0.1-2.0Myuemu. 組成が、Co1-mZnmX で表現される請求項4に記載の粉末永久磁石材料(ただし、Xは還元剤から来るPまたはB、組成比率は0m≦25原子%である。)。 The powder permanent magnet material according to claim 4, wherein the composition is expressed by Co 1-m Zn m X (where X is P or B coming from a reducing agent, and the composition ratio is 0 < m ≦ 25 atomic%. ).
JP2005255016A 2005-09-02 2005-09-02 Method for producing powder permanent magnet material and powder permanent magnet material Expired - Fee Related JP5105038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255016A JP5105038B2 (en) 2005-09-02 2005-09-02 Method for producing powder permanent magnet material and powder permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255016A JP5105038B2 (en) 2005-09-02 2005-09-02 Method for producing powder permanent magnet material and powder permanent magnet material

Publications (2)

Publication Number Publication Date
JP2007063657A JP2007063657A (en) 2007-03-15
JP5105038B2 true JP5105038B2 (en) 2012-12-19

Family

ID=37926185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255016A Expired - Fee Related JP5105038B2 (en) 2005-09-02 2005-09-02 Method for producing powder permanent magnet material and powder permanent magnet material

Country Status (1)

Country Link
JP (1) JP5105038B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439339B2 (en) * 1972-01-27 1979-11-27
JPH04289107A (en) * 1991-03-15 1992-10-14 Nisshin Steel Co Ltd Production of fine alloy particles
JP3343283B2 (en) * 1993-11-22 2002-11-11 株式会社ノリタケカンパニーリミテド Silver-palladium coprecipitated powder and method for producing the same
JP2000087120A (en) * 1996-11-08 2000-03-28 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko SPHERICAL AMORPHOUS Co-P ALLOY POWDER AND ITS PRODUCTION

Also Published As

Publication number Publication date
JP2007063657A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5769223B2 (en) Ferromagnetic particle powder and production method thereof, anisotropic magnet and bonded magnet
KR101778164B1 (en) Core-Shell Structured Nanoparticle having Hard-soft Magnetic Heterostructure, Magnet Prepared with Said Nanoparticle, and Preparing Method thereof
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
JP5822188B2 (en) Ferromagnetic particle powder and production method thereof, anisotropic magnet and bonded magnet
TW201327589A (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
JP2010024478A (en) Iron fine particle and production method therefor
Lee et al. Near theoretical ultra-high magnetic performance of rare-earth nanomagnets via the synergetic combination of calcium-reduction and chemoselective dissolution
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP4860386B2 (en) Method for producing nickel-iron alloy nanoparticles
KR101649653B1 (en) Method of Preparing Nanocomposite Magnet Using Electroless or Electro Deposition Method
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
Jenuš et al. Magnetic performance of SrFe12O19–Zn0. 2Fe2. 8O4 hybrid magnets prepared by spark plasma sintering
US9427805B2 (en) Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
Haider et al. Determination of Dy substitution site in Nd2− xDyxFe14B by HAADF-STEM and illustration of magnetic anisotropy of “g” and “f” sites, before and after substitution
CN103060657B (en) Method for preparing sintered neodymium iron boron permanent magnet material with high coercive force and high corrosion resistance
JP6485066B2 (en) Iron nitride magnet
JP5105038B2 (en) Method for producing powder permanent magnet material and powder permanent magnet material
JP2008179841A (en) Method for producing nickel-iron-molybdenum alloy nanoparticle, and nickel-iron-molybdenum alloy nanoparticle
Streckova et al. A novel composite material designed from FeSi powder and Mn0. 8Zn0. 2Fe2O4 Ferrite
JP4662061B2 (en) Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
WO2020137741A1 (en) Magnet and magnet production method
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2018078161A (en) Method for manufacturing composite magnetic powder material, composite magnetic powder material and permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5105038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees