JP3340782B2 - Thin-film semiconductor device - Google Patents

Thin-film semiconductor device

Info

Publication number
JP3340782B2
JP3340782B2 JP05401993A JP5401993A JP3340782B2 JP 3340782 B2 JP3340782 B2 JP 3340782B2 JP 05401993 A JP05401993 A JP 05401993A JP 5401993 A JP5401993 A JP 5401993A JP 3340782 B2 JP3340782 B2 JP 3340782B2
Authority
JP
Japan
Prior art keywords
layer
tft
drain
channel
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05401993A
Other languages
Japanese (ja)
Other versions
JPH06268217A (en
Inventor
修一 内古閑
幸治 鈴木
卓也 島野
加一 福田
伸樹 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05401993A priority Critical patent/JP3340782B2/en
Priority to KR1019940005079A priority patent/KR0168700B1/en
Publication of JPH06268217A publication Critical patent/JPH06268217A/en
Priority to US08/514,124 priority patent/US5614731A/en
Application granted granted Critical
Publication of JP3340782B2 publication Critical patent/JP3340782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は薄膜半導体素子に関し、
とくにアクティブマトリックス型液晶表示装置等に用い
られる薄膜半導体素子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film semiconductor device,
In particular, the present invention relates to a structure of a thin film semiconductor element used for an active matrix type liquid crystal display device or the like.

【0002】[0002]

【従来の技術】近年、薄膜半導体素子(以下、TFTと
略称する。)はアクティブマトリックス型液晶表示装置
やイメージセンサー等の素子として多用されており、そ
れと共に、液晶表示装置等に使用する際の半導体特性の
向上が望まれている。
2. Description of the Related Art In recent years, thin-film semiconductor elements (hereinafter abbreviated as TFTs) have been widely used as elements of active matrix type liquid crystal display devices and image sensors. Improvement in semiconductor characteristics is desired.

【0003】従来のTFTの構成について逆スタッガ型
TFTを例にとり図2を参照して説明する。図2(a)
は平面図を、図2(b)は図2(a)のII−II断面図
を、図2(c)は図2(a)のIV−IV断面図を示す。ガ
ラスなどからなる絶縁基板7上にゲート電極層3を形成
して、さらにゲート絶縁層4、半導体層5、チャネル保
護層1を順に成膜する。所定のチャネル長が得られるよ
うにチャネル保護層1を成形した後、コンタクト層6、
ソース2、ドレイン2を形成する。このままではソース
とドレインはコンタクト層6により短絡している。そこ
で、チャネル保護層1上のコンタクト層6をソース2と
ドレイン2をマスクにして除去する。ここで、ソース2
およびドレイン2の幅はチャネル保護層の幅よりも広く
形成する。すなわち、ソースまたはドレインの幅を
1、チャネル保護層の幅をW0 とするとW0 >W1
ある。これはチャネル層の幅を広くすることにより、ソ
ースとドレインとの間の抵抗を下げる必要があるためで
ある。また、チャネル層の保護を確実にするためにもチ
ャネル保護層の幅を広くしてアライメントを容易にする
必要があった。
The configuration of a conventional TFT will be described with reference to FIG. 2 taking an inverted stagger type TFT as an example. FIG. 2 (a)
2A is a plan view, FIG. 2B is a sectional view taken along line II-II of FIG. 2A, and FIG. 2C is a sectional view taken along line IV-IV of FIG. A gate electrode layer 3 is formed on an insulating substrate 7 made of glass or the like, and a gate insulating layer 4, a semiconductor layer 5, and a channel protective layer 1 are sequentially formed. After forming the channel protective layer 1 so as to obtain a predetermined channel length, the contact layer 6,
A source 2 and a drain 2 are formed. In this state, the source and the drain are short-circuited by the contact layer 6. Therefore, the contact layer 6 on the channel protection layer 1 is removed using the source 2 and the drain 2 as a mask. Where source 2
And the width of the drain 2 is formed wider than the width of the channel protective layer. That is, if the width of the source or the drain is W 1 and the width of the channel protective layer is W 0 , W 0 > W 1 . This is because it is necessary to reduce the resistance between the source and the drain by increasing the width of the channel layer. In addition, in order to ensure protection of the channel layer, it is necessary to increase the width of the channel protection layer to facilitate alignment.

【0004】アクティブマトリックス型液晶表示装置に
利用した場合を例にとり、このようなTFTの問題点に
ついて説明する。TFTは、マトリックス状に形成され
た各画素に選択的に電荷を書き込むためのスイッチング
素子として機能している。このため、オン状態の時に電
荷を充分に書き込むことが可能で、オフ状態の時には必
要な時間だけ画素に書き込んだ電荷を保持する性能が要
求される。したがって、スイッチング機能を果たす上で
オン/オフ比が充分に確保されていることが重要にな
る。原理上透過光を使用する液晶表示装置に利用される
TFTは、光照射を受けることが避けられない。このた
め、非晶質シリコンや多結晶シリコンを用いているTF
Tは、光により励起されたキャリアが発生してとくにオ
フ状態時にリーク電流が生じやすくなる。このオフ状態
の時に発生するドレインリーク電流値を下げ、オン/オ
フ比を充分に確保することがTFTに必須の技術となっ
ている。オン/オフ比を大きく保てないと、たとえばノ
ーマリーホワイトの液晶材料を使用した場合、画素が白
くなり表示装置の欠陥として認識される。液晶表示装置
用のように構造上また使用環境上光が照射される状況下
で使用される場合、このようにTFTのオン/オフ比の
低下に基づく表示不良が発生しやすかった。
The problem of such a TFT will be described with reference to an example in which the TFT is used for an active matrix type liquid crystal display device. The TFT functions as a switching element for selectively writing electric charge to each pixel formed in a matrix. For this reason, it is necessary to be able to sufficiently write the electric charge in the ON state, and to have a performance of holding the electric charge written in the pixel for a necessary time in the OFF state. Therefore, it is important that the on / off ratio is sufficiently ensured to perform the switching function. In principle, a TFT used in a liquid crystal display device using transmitted light cannot avoid receiving light irradiation. Therefore, TF using amorphous silicon or polycrystalline silicon
In T, a carrier excited by light is generated, and a leak current is liable to occur particularly in an off state. It is an essential technology for a TFT to reduce the value of the drain leak current generated in the off state and sufficiently secure the on / off ratio. If the on / off ratio cannot be kept large, for example, when a normally white liquid crystal material is used, the pixel becomes white and is recognized as a defect of the display device. When the device is used under a condition where light is irradiated due to its structure or use environment, such as for a liquid crystal display device, a display defect based on a decrease in the on / off ratio of the TFT is likely to occur.

【0005】ドレインリーク電流値を下げ、オン/オフ
比を充分に確保するための対策として、TFTへの光照
射を避けるためにブラックマトリックスや遮蔽膜の配設
が考えられている。また、TFTのリーク電流が無視で
きるように画素電極の補助容量を大きくする方法も考え
られている。さらに、ソースおよびドレインを遮蔽層と
して半導体層への光照射を避ける方法も提案されている
(USP 5,051,800 )。
As a measure for lowering the drain leak current value and ensuring a sufficient ON / OFF ratio, provision of a black matrix or a shielding film has been considered in order to avoid light irradiation to the TFT. Further, a method of increasing the auxiliary capacitance of the pixel electrode so that the leakage current of the TFT can be ignored has been considered. Further, a method of using a source and a drain as a shielding layer to prevent light irradiation on a semiconductor layer has been proposed (US Pat. No. 5,051,800).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、対向電
極側に通常形成されているブラックマトリックスを配設
する場合は、ブラックマトリックスとTFTとの間が数
μm あり、その間に液晶組成物が挟持されているため、
バックライトおよび使用環境からの光は液晶装置内の乱
反射によりTFTに照射されてしまう。ブラックマトリ
ックスの面積を大きくする方法もあるが液晶表示装置の
開口率が低下し画質の劣化が生じてしまう。また、TF
T上に直接光の遮蔽膜を配設する方法は、遮蔽膜の電位
がTFTの動作に影響を与え電位決定を困難とすること
や、層間ショートの恐れなどの問題がある。また製造工
程数が増加し複雑化する。したがってTFTを使用する
装置の製造歩留まりが低下するなどの問題がある。
However, when a black matrix usually formed on the counter electrode side is provided, there is a gap of several μm between the black matrix and the TFT, and the liquid crystal composition is sandwiched between them. Because
Light from the backlight and the use environment is irradiated to the TFT due to irregular reflection in the liquid crystal device. Although there is a method of increasing the area of the black matrix, the aperture ratio of the liquid crystal display device is reduced, and the image quality is deteriorated. Also, TF
The method of disposing the light shielding film directly on T has problems that the potential of the shielding film affects the operation of the TFT, making it difficult to determine the potential, and the possibility of short-circuit between layers. In addition, the number of manufacturing steps increases, and the process becomes complicated. Therefore, there is a problem that the production yield of the device using the TFT is lowered.

【0007】画素電極の補助容量を大きくする方法は、
液晶表示装置の開口率を低下させてしまうことや、大き
な補助容量の分、電荷を画素に書き込むことが可能とな
る移動度の高いTFTが必要となるなどの問題がある。
A method for increasing the auxiliary capacitance of the pixel electrode is as follows.
There are problems such as a decrease in the aperture ratio of the liquid crystal display device and a need for a TFT having a high mobility capable of writing electric charge to a pixel due to the large auxiliary capacitance.

【0008】ソースおよびドレインを遮蔽層として半導
体層への光照射を避ける方法は、チャネル領域の遮蔽層
先端において半導体層とソースおよびドレインがコンタ
クト層を介して接触部分を有するため、ドレインリーク
電流を充分下げることができないという問題がある。
A method for avoiding light irradiation on the semiconductor layer by using the source and the drain as a shielding layer is that the semiconductor layer and the source and the drain have a contact portion via the contact layer at the tip of the shielding layer in the channel region. There is a problem that it cannot be lowered sufficiently.

【0009】以上のように、従来の技術ではTFTのリ
ーク電流を効率よく下げることは困難であるとの問題が
あった。
As described above, the conventional technique has a problem that it is difficult to efficiently reduce the leak current of the TFT.

【0010】本発明は、かかる課題に対処してなされた
もので、製造工程を複雑化させることなく、またTFT
を使用する装置の性能を劣化させることなく、光照射に
よるTFTのリーク電流を小さくすることのできるTF
Tを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made without complicating the manufacturing process, and is not limited to a TFT.
TF which can reduce the leakage current of the TFT due to light irradiation without deteriorating the performance of the device using
It is intended to provide T.

【0011】[0011]

【課題を解決するための手段】 本発明のTFTは、基
板と、この基板上に配設されたゲート電極層と、絶縁層
を介して前記ゲート電極層上に配設された半導体層から
なるチャネル領域と、前記チャネル領域上に配設された
チャネル保護層と、前記チャネル領域を介して電気的に
接続されたソースおよびドレインとからなるTFTであ
って、前記ソースおよびドレインがそれぞれ前記チャネ
ル保護層上に重なる領域を有し、前記ソースおよびドレ
インの幅方向の端面の少なくとも一方が前記重なる領域
よりも外側にあり、かつ前記半導体層の幅方向の両方の
端面が、前記チャネル保護層の幅方向の両方の端面とそ
れぞれ重なることを特徴とする。なお、幅方向は、半導
体層のチャネル幅に沿った方向であるチャネル幅方向を
意味する。
Means for Solving the Problems The TFT of the present invention comprises a substrate, a gate electrode layer provided on the substrate, and a semiconductor layer provided on the gate electrode layer via an insulating layer. A TFT comprising: a channel region; a channel protection layer provided on the channel region; and a source and a drain electrically connected through the channel region. Having an overlapping region on the layer, the source and the drain
Region where at least one of the end faces in the width direction of the inboard overlaps with each other
Outside and both in the width direction of the semiconductor layer.
The end faces are both end faces in the width direction of the channel protective layer.
It is characterized by overlapping each other. The width direction is semi-conductive.
The channel width direction, which is the direction along the channel width of the body layer,
means.

【0012】図1を用いて本発明のTFTを説明する。
図1(a)は平面図を、図1(b)は図1(a)の I−
I 断面図を、図1(c)は図1(a)のII−II断面図
を、図1(d)は図1(a)のIV−IV断面図をそれぞれ
示す。透明基板7の上にゲート電極層3、ゲート絶縁層
4、半導体層5、チャネル保護層1が配設されている。
さらにその上にコンタクト層6を介して半導体層5と電
気的に接続されたソースおよびドレイン2が配設されて
いる。ソースおよびドレイン2は、チャネル保護層1上
に重なる領域を有している。さらにチャネル保護層の
ャネル幅を規定する端面(以下、幅面と示す。)の少な
くとも一方よりもソースおよびドレインの幅面が外側に
あるように重なる。したがって、チャネル保護層の一方
の幅面だけを覆うように重なっても、また両方の幅面を
覆うように重なってもよい。ソースおよびドレイン2の
電極幅W1 はチャネル保護層1の幅W0 よりも大きく、
かつ両方の幅面を覆うように重なるときは、TFTのリ
ーク電流を小さくすることのできるのでより好ましい。
なお、一方の幅面だけを覆うように重なるときは、TF
Tの寄生容量を下げることができる。
The TFT of the present invention will be described with reference to FIG.
FIG. 1A is a plan view, and FIG.
1 (c) is a sectional view taken along line II-II of FIG. 1 (a), and FIG. 1 (d) is a sectional view taken along line IV-IV of FIG. 1 (a). On a transparent substrate 7, a gate electrode layer 3, a gate insulating layer 4, a semiconductor layer 5, and a channel protective layer 1 are provided.
Further, the source and the drain 2 electrically connected to the semiconductor layer 5 via the contact layer 6 are provided thereon. The source and the drain 2 have a region overlapping the channel protection layer 1. Ji further channel protective layer
There are few end faces that define the channel width (hereinafter, referred to as width faces).
At least, the source and the drain overlap so that the width faces of the source and the drain are outside. Therefore, they may overlap so as to cover only one width surface of the channel protection layer, or may overlap so as to cover both width surfaces. The electrode width W 1 of the source and the drain 2 is larger than the width W 0 of the channel protective layer 1,
In addition, it is more preferable that the TFTs overlap each other so as to cover both width faces, because the leak current of the TFT can be reduced.
When overlapping so as to cover only one width surface, TF
The parasitic capacitance of T can be reduced.

【0013】ソースおよびドレインとチャネル保護層と
の重なり交点において半導体層とも重なり交点を有する
とは、図1に示すようにソースおよびドレイン2とチャ
ネル保護層1の重なり交点 IIIにおいて、ソースおよび
ドレイン2が直接半導体層5と接触しており、コンタク
ト層6を介していないことをいう(図1(c)および図
1(d))。このような構造とすることによりリーク電
流を大幅に下げることができる。ここで、ソースおよび
ドレイン2は低抵抗半導体層あるいは金属からなっても
よいし、またこれらを重ねたものであってもよい。
As shown in FIG. 1, having an overlap intersection with the semiconductor layer at the overlap intersection between the source and drain and the channel protection layer means that the source and drain 2 have overlap at the overlap intersection III between the source and drain 2 and the channel protection layer 1. Are in direct contact with the semiconductor layer 5 and not through the contact layer 6 (FIGS. 1C and 1D). With such a structure, the leak current can be significantly reduced. Here, the source and the drain 2 may be made of a low-resistance semiconductor layer or a metal, or may be a stack of these.

【0014】[0014]

【作用】本発明の構造とすることによりリーク電流が大
幅に下がることを図3(a)、図3(b)、図3(c)
により説明する。図3(a)、図3(b)は従来のTF
Tの平面構造を、図3(c)は本発明のTFTの平面構
造を示す。なお、図3(b)は半導体層5がチャネル領
域以外はエッチングで除去されていることが図3(a)
と異なる。
FIG. 3 (a), FIG. 3 (b), FIG. 3 (c) show that the structure of the present invention greatly reduces the leakage current.
This will be described below. FIGS. 3A and 3B show conventional TFs.
FIG. 3C shows the planar structure of the TFT according to the present invention. FIG. 3B shows that the semiconductor layer 5 is removed by etching except for the channel region.
And different.

【0015】本発明は、光照射によって生じるリーク電
流経路の有無がリーク電流値に大きく影響することに注
目した結果なされたものである。したがって、本発明の
TFTは光照射によって生じるリーク電流経路を遮断す
る構造にする。
The present invention has been made as a result of paying attention to the fact that the presence or absence of a leakage current path caused by light irradiation greatly affects a leakage current value. Therefore, the TFT of the present invention has a structure in which a leakage current path generated by light irradiation is blocked.

【0016】液晶表示装置やイメージセンサー等では、
大面積に低コストで堆積可能な半導体層として非晶質シ
リコンが使用されることが多い。非晶質シリコンは、そ
の性質上光が照射されると電気伝導性を帯びる。このた
めにソースおよびドレイン間にリーク電流経路が存在す
ると本来ならばゲート電位によって制御されるべきチャ
ネル領域にリーク電流が流れる。たとえば、図3(a)
の構造のTFTの場合、光照射によって生じるリーク電
流経路はA→B、A´→B´およびC→D、C´→D´
である。また図3(b)の場合、リーク電流経路はA→
B、A´→B´である。リーク電流経路はA→B、A´
→B´において、点A(またはA´)および点B(また
はB´)は光照射によって高い電気伝導性になっている
領域(ハッチングされている領域)とコンタクト層6が
接している点であるためにソースおよびドレイン間に電
位差があるとリーク電流が流れてしまう。さらに図3
(a)の場合、リーク電流経路C→Dに見られるように
半導体層5がチャネル領域以外に残留していると半導体
層とコンタクト領域はACやBFのように線で接してい
るのでリーク電流は図3(b)の場合よりもさらに大き
くなる。 本発明のTFTの平面構造を示す図3(c)
においては、光照射によってハッチング部に示す領域は
高い電気伝導性になるが、この領域とコンタクト層とが
接している箇所は存在しない。したがって本発明の構造
とすることによってリーク電流経路を遮断することがで
きる。
In a liquid crystal display device, an image sensor, or the like,
Amorphous silicon is often used as a semiconductor layer that can be deposited over a large area at low cost. Amorphous silicon becomes electrically conductive when irradiated with light due to its properties. For this reason, if a leak current path exists between the source and the drain, the leak current flows to a channel region which should be controlled by the gate potential. For example, FIG.
In the case of the TFT having the structure described above, the leakage current paths generated by light irradiation are A → B, A ′ → B ′ and C → D, C ′ → D ′
It is. In the case of FIG. 3B, the leakage current path is A →
B, A ′ → B ′. Leak current paths are A → B, A ′
→ In B ′, points A (or A ′) and points B (or B ′) are points where the contact layer 6 is in contact with a region (hatched region) having high electrical conductivity by light irradiation. For this reason, if there is a potential difference between the source and the drain, a leak current flows. Further FIG.
In the case of (a), if the semiconductor layer 5 remains in a region other than the channel region as seen in the leakage current path C → D, the semiconductor layer and the contact region are in contact with each other by a line like AC or BF. Is even larger than in the case of FIG. FIG. 3C showing the planar structure of the TFT of the present invention.
In, the region indicated by the hatched portion becomes highly conductive by light irradiation, but there is no place where this region is in contact with the contact layer. Therefore, with the structure of the present invention, the leakage current path can be cut off.

【0017】[0017]

【実施例】実施例1 以下、本発明のTFTを前述の図1を参照して具体的に
説明する。基板7上にゲート電極層3を形成する。たと
えばTFTを液晶表示装置に使用する場合は、ガラス、
石英などの透明基板を基板7の材料として使用する。ま
た、ゲート電極層3には、モリブデン(Mo)、タンタル
(Ta)、アルミニウム(Al)単独層またはこれらの金属
の積層膜が材料として使用され、プラズマエッチングや
ウエットエッチングを用いて所望の形状に形成される。
Embodiment 1 Hereinafter, a TFT according to the present invention will be specifically described with reference to FIG. The gate electrode layer 3 is formed on the substrate 7. For example, when a TFT is used for a liquid crystal display device, glass,
A transparent substrate such as quartz is used as the material of the substrate 7. For the gate electrode layer 3, a single layer of molybdenum (Mo), tantalum (Ta), aluminum (Al) or a laminated film of these metals is used as a material, and is formed into a desired shape by plasma etching or wet etching. It is formed.

【0018】つぎにゲート絶縁層4、半導体層5、チャ
ネル保護層1を順に堆積させる。具体的には以下の例を
挙げることができる。ゲート絶縁層4としてはシリコン
窒化膜( SiNx )、シリコン酸化膜( SiOx )またはシ
リコン窒化膜とシリコン酸化膜との積層膜等の材料を使
用して、堆積方法はプラズマCVD法などを使用する。
半導体層5としては非晶質シリコンなどを、チャネル保
護層1としてはシリコン窒化膜やシリコン酸化膜等の材
料を使用する。積層膜が堆積された後にチャネル保護層
1を所望のチャネル長さが得られるように形成する。つ
ぎにコンタクト層6として、たとえば燐( P)などの不
純物をドーピングしたn+コンタクト層を堆積させる。
その後、素子分離のために半導体層5とコンタクト層6
をパターニングする。このパターニングの際にTFTの
チャネル幅を決定する。したがって、パターニングの合
わせ精度を緩和することを考慮してチャネル保護層1を
形成する際、実際のチャネル幅よりも大きく形成してお
くのが好ましい。チャネル保護層1を所望のチャネル幅
よりも大きく形成しておくので、素子分離のエッチング
工程でチャネル保護層1のエッチングを同時に行う。こ
のようなエッチングはチャネル保護層1と半導体層5と
の間に選択性がないエッチング方法を用いれば容易に実
現できる。たとえばチャネル保護層1にシリコン窒化膜
を半導体層5に非晶質シリコンを用いた場合、エッチン
グ方法としてパーフルオロメタン(CF4 )と酸素(
O2 )系の混合ガスを用いた乾式エッチング法が好まし
い。
Next, a gate insulating layer 4, a semiconductor layer 5, and a channel protective layer 1 are sequentially deposited. Specifically, the following examples can be given. A material such as a silicon nitride film (SiN x ), a silicon oxide film (SiO x ) or a laminated film of a silicon nitride film and a silicon oxide film is used as the gate insulating layer 4, and a plasma CVD method or the like is used as a deposition method. I do.
The semiconductor layer 5 is made of amorphous silicon or the like, and the channel protective layer 1 is made of a material such as a silicon nitride film or a silicon oxide film. After the laminated film is deposited, the channel protection layer 1 is formed so as to obtain a desired channel length. Next, as the contact layer 6, an n + contact layer doped with an impurity such as phosphorus (P) is deposited.
Thereafter, the semiconductor layer 5 and the contact layer 6 are separated for element isolation.
Is patterned. At the time of this patterning, the channel width of the TFT is determined. Therefore, when forming the channel protection layer 1 in consideration of relaxing the patterning alignment accuracy, it is preferable to form the channel protection layer 1 larger than the actual channel width. Since the channel protection layer 1 is formed to be larger than a desired channel width, the channel protection layer 1 is simultaneously etched in an element isolation etching step. Such etching can be easily realized by using an etching method having no selectivity between the channel protective layer 1 and the semiconductor layer 5. For example, when a silicon nitride film is used for the channel protective layer 1 and amorphous silicon is used for the semiconductor layer 5, perfluoromethane (CF 4 ) and oxygen (
A dry etching method using an O 2 ) -based mixed gas is preferred.

【0019】ついでソース2およびドレイン2を形成す
る。電極材料としては、たとえばモリブデン(Mo)、ク
ロム(Cr)、アルミニウム(Al)またはこれらの積層膜
が使用できる。この電極層を形成する際、チャネル保護
層1のチャネル幅方向に対してソース2およびドレイン
2の幅を図1(a)に示すようにW0 <W1 となるよう
に形成する。その後、コンタクト層6をソース2および
ドレイン2をマスクにしてエッチングする。
Next, a source 2 and a drain 2 are formed. As the electrode material, for example, molybdenum (Mo), chromium (Cr), aluminum (Al), or a laminated film of these can be used. When this electrode layer is formed, the width of the source 2 and the drain 2 in the channel width direction of the channel protective layer 1 is formed such that W 0 <W 1 as shown in FIG. Thereafter, the contact layer 6 is etched using the source 2 and the drain 2 as a mask.

【0020】このようにして形成された本実施例のTF
T構造は、図2に示す従来例のTFT構造と比較して、
ソース2およびドレイン2がチャネル幅方向に関してチ
ャネル保護層1、半導体層5およびコンタクト層6より
も幅広いことが特徴である。すなわち、従来例はW0
1 であるのに対して、本実施例はW0 <W1 である。
したがって、TFTの製造工程を増加させたり、複雑化
させることがない。
The TF of the present embodiment thus formed
The T structure is different from the conventional TFT structure shown in FIG.
The feature is that the source 2 and the drain 2 are wider than the channel protective layer 1, the semiconductor layer 5, and the contact layer 6 in the channel width direction. That is, in the conventional example, W 0 >
Whereas a W 1, this embodiment is W 0 <W 1.
Therefore, there is no need to increase or complicate the TFT manufacturing process.

【0021】本実施例のTFTの特性を従来例と比較し
て図4に示す。図4は、TFTの Id − Vg 特性を示し
たもので、図4(a)は本実施例を、図4(b)は従来
例をそれぞれ示す。なお、 Id − Vg 特性は、TFTの
ソースおよびドレイン側から光をそれぞれ 70 lx、250
lx、750 lx照射した場合と光照射なしの場合とを示した
ものである。たとえば、ゲート電圧 0[V] での電流値を
比較すれば、それぞれの光照射量に対して本実施例のT
FTはリーク電流値が明らかに小さくなっている。この
ようなTFTを用いると表示品位に優れた液晶表示装置
が得られる。
FIG. 4 shows the characteristics of the TFT of this embodiment in comparison with the conventional example. 4, I d the TFT - shows the V g characteristic, FIG. 4 (a) of this embodiment, FIG. 4 (b) shows a conventional example, respectively. Incidentally, I d - V g characteristic, respectively 70 lx light from the source and the drain side of the TFT, 250
1x, 750 lx irradiation and no light irradiation. For example, comparing current values at a gate voltage of 0 [V], it is found that the T
The FT has a clearly smaller leak current value. When such a TFT is used, a liquid crystal display device having excellent display quality can be obtained.

【0022】なお、本実施例のTFT構造の特別な例と
して、図5を考えることができる。図5(a)は平面図
を、図5(b)は図5(a)の I−I 断面図をそれぞれ
示す。 図5においては、W0 =W1 である。したがっ
て、コンタクト層6および半導体層5は断面にて露出し
ている。このため、ソース2およびドレイン2間のコン
タクト層エッチングの際にコンタクト層6および半導体
層5が端部よりエッチングされTFTのソース・ドレイ
ンコンタクト部を劣化させ、良好なTFT特性が得られ
なくなる。以上より、W0 =W1 は望ましくなく、W0
<W1 であることが重要となる。
FIG. 5 can be considered as a special example of the TFT structure of this embodiment. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along the line II of FIG. 5A. In FIG. 5, W 0 = W 1 . Therefore, the contact layer 6 and the semiconductor layer 5 are exposed in the cross section. For this reason, when the contact layer between the source 2 and the drain 2 is etched, the contact layer 6 and the semiconductor layer 5 are etched from the ends, thereby deteriorating the source / drain contact portions of the TFT, and failing to obtain good TFT characteristics. From the above, W 0 = W 1 is not desirable, and W 0
<It is important that the W 1.

【0023】実施例2 製造工程を簡略化することのできる実施例について説明
する。透明絶縁基板上にゲート電極層を形成し、ゲート
絶縁層、半導体層、チャネル保護層を順に堆積させる。
チャネル保護層のパターニング工程において、レジスト
を塗布した後、ゲート電極層をマスクにして基板側から
露光する裏面露光法で自己整合的にチャネル保護層を形
成する。この方法を用いることにより、ゲート電極層パ
ターンとソース・ドレインパターンとの重なり領域を精
度よく制御することができる。また、チャネル保護層を
パターニングするためのレチクルが不要となり製造コス
トを下げることができる。チャネル幅に関しては、実施
例1に示したように素子分離を図るためのマスクを用い
所望のチャネル幅を決定できるので、実施例1と工程の
変更は不要である。その後の製造工程は実施例1と同じ
である。
Embodiment 2 An embodiment capable of simplifying the manufacturing process will be described. A gate electrode layer is formed on a transparent insulating substrate, and a gate insulating layer, a semiconductor layer, and a channel protective layer are sequentially deposited.
In the step of patterning the channel protective layer, after applying a resist, the channel protective layer is formed in a self-aligned manner by a backside exposure method in which exposure is performed from the substrate side using the gate electrode layer as a mask. By using this method, the overlapping region between the gate electrode layer pattern and the source / drain pattern can be accurately controlled. Further, a reticle for patterning the channel protective layer is not required, and the manufacturing cost can be reduced. As for the channel width, a desired channel width can be determined using a mask for element isolation as shown in the first embodiment, so that there is no need to change the process as in the first embodiment. Subsequent manufacturing steps are the same as in the first embodiment.

【0024】実施例2によれば、自己整合的な製造工程
を取り入れることによって、製造工程を簡略化させ、ま
た、製造コストを下げることができる。
According to the second embodiment, by adopting a self-aligned manufacturing process, the manufacturing process can be simplified and the manufacturing cost can be reduced.

【0025】[0025]

【発明の効果】本発明のTFTは、チャネル保護層上に
チャネル保護層、半導体層およびコンタクト層の幅より
も広いソースおよびドレインを形成するので、光照射に
よるリーク電流を下げることができる。
According to the TFT of the present invention, since the source and the drain are formed on the channel protective layer, the source and the drain are wider than the widths of the channel protective layer, the semiconductor layer and the contact layer.

【0026】また、このような構造とすることにより、
従来の製造工程数を増やしたり、製造工程を複雑にした
りしないでTFTを製造できる。
Also, by adopting such a structure,
A TFT can be manufactured without increasing the number of conventional manufacturing steps or complicating the manufacturing steps.

【0027】さらに、本発明のTFTを液晶表示装置に
使用すると、表示品位に優れた液晶表示装置が得られ
る。
Further, when the TFT of the present invention is used in a liquid crystal display device, a liquid crystal display device having excellent display quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のTFTを示す図である。なお、図1
(a)は平面図を、図1(b)は図1(a)の I−I 断
面図を、図1(c)は図1(a)のII−II断面図を、図
1(d)は図1(a)のIV−IV断面図をそれぞれ示す。
FIG. 1 is a diagram showing a TFT of the present invention. FIG.
1 (a) is a plan view, FIG. 1 (b) is a sectional view taken along the line II of FIG. 1 (a), FIG. 1 (c) is a sectional view taken along the line II-II of FIG. ) Shows a cross-sectional view taken along line IV-IV of FIG.

【図2】従来のTFTを示す図である。なお、図2
(a)は平面図を、図2(b)は図2(a)のII−II断
面図を、図2(c)は図2(a)のIV−IV断面図をそれ
ぞれ示す。
FIG. 2 is a diagram showing a conventional TFT. Note that FIG.
2A is a plan view, FIG. 2B is a II-II cross-sectional view of FIG. 2A, and FIG. 2C is a IV-IV cross-sectional view of FIG. 2A.

【図3】リーク電流経路を説明する図である。なお、図
3(a)、図3(b)は従来のTFTの平面構造を、図
3(c)は本発明のTFTの平面構造をそれぞれ示す。
FIG. 3 is a diagram illustrating a leakage current path. 3A and 3B show the planar structure of a conventional TFT, and FIG. 3C shows the planar structure of the TFT of the present invention.

【図4】TFTの Id − Vg 特性を示す図である。な
お、図4(a)は実施例1を、図4(b)は従来例をそ
れぞれ示す。
It is a diagram showing a V g characteristic - [4] I d of the TFT. FIG. 4A shows the first embodiment, and FIG. 4B shows a conventional example.

【図5】実施例1のTFT構造の特別な例を示す図であ
る。なお、図5(a)は平面図を、図5(b)は図5
(a)の I−I 断面図をそれぞれ示す。
FIG. 5 is a diagram showing a special example of a TFT structure according to the first embodiment. FIG. 5A is a plan view, and FIG.
(A) is a sectional view taken along line II.

【符号の説明】[Explanation of symbols]

1………チャネル保護層、2………ソースおよびドレイ
ン、3………ゲート電極層、4………ゲート絶縁層、5
………半導体層、6………コンタクト層、7………基
板。
1 channel protection layer, 2 source and drain, 3 gate electrode layer, 4 gate insulating layer, 5
... Semiconductor layer, 6 Contact layer, 7 Substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 加一 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 茨木 伸樹 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/336 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kaichi Fukuda 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Inventor Nobuki Ibaraki 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Co., Ltd. Toshiba Yokohama Office (58) Field surveyed (Int. Cl. 7 , DB name) H01L 29/786 H01L 21/336

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板と、この基板上に配設されたゲート
電極層と、絶縁層を介して前記ゲート電極層上に配設さ
れた半導体層からなるチャネル領域と、前記チャネル領
域上に配設されたチャネル保護層と、前記チャネル領域
を介して電気的に接続されたソースおよびドレインとか
らなる薄膜半導体素子であって、 前記ソースおよびドレインがそれぞれ前記チャネル保護
層上に重なる領域を有し、前記ソースおよびドレインの
幅方向の端面の少なくとも一方が前記重なる領域よりも
外側にあり、かつ前記半導体層の幅方向の両方の端面
が、前記チャネル保護層の幅方向の両方の端面とそれぞ
れ重なることを特徴とする薄膜半導体素子。
A channel region comprising a substrate, a gate electrode layer disposed on the substrate, a semiconductor layer disposed on the gate electrode layer via an insulating layer, and a channel region disposed on the channel region. A thin film semiconductor element comprising: a provided channel protection layer; and a source and a drain electrically connected through the channel region, wherein the source and the drain each have a region overlapping the channel protection layer. , Of said source and drain
At least one of the end faces in the width direction is larger than the overlapping area.
Both end faces on the outside and in the width direction of the semiconductor layer
Are both end faces in the width direction of the channel protective layer.
A thin film semiconductor device characterized by overlapping .
JP05401993A 1993-03-15 1993-03-15 Thin-film semiconductor device Expired - Lifetime JP3340782B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05401993A JP3340782B2 (en) 1993-03-15 1993-03-15 Thin-film semiconductor device
KR1019940005079A KR0168700B1 (en) 1993-03-15 1994-03-15 Thin film semiconductor element
US08/514,124 US5614731A (en) 1993-03-15 1995-08-11 Thin-film transistor element having a structure promoting reduction of light-induced leakage current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05401993A JP3340782B2 (en) 1993-03-15 1993-03-15 Thin-film semiconductor device

Publications (2)

Publication Number Publication Date
JPH06268217A JPH06268217A (en) 1994-09-22
JP3340782B2 true JP3340782B2 (en) 2002-11-05

Family

ID=12958881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05401993A Expired - Lifetime JP3340782B2 (en) 1993-03-15 1993-03-15 Thin-film semiconductor device

Country Status (2)

Country Link
JP (1) JP3340782B2 (en)
KR (1) KR0168700B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914753B2 (en) * 2000-11-30 2007-05-16 Nec液晶テクノロジー株式会社 Active matrix liquid crystal display device and switching element
CN101032027B (en) * 2004-09-02 2010-10-13 卡西欧计算机株式会社 Thin film transistor and its manufacturing method
JP2010113253A (en) * 2008-11-07 2010-05-20 Hitachi Displays Ltd Display device and method of manufacturing the same
WO2011027649A1 (en) * 2009-09-02 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH06268217A (en) 1994-09-22
KR940022922A (en) 1994-10-22
KR0168700B1 (en) 1999-01-15

Similar Documents

Publication Publication Date Title
US4700458A (en) Method of manufacture thin film transistor
JP5302275B2 (en) Contact portion of semiconductor element and manufacturing method thereof, thin film transistor array panel for display device, and manufacturing method thereof
US20050221546A1 (en) Thin film transistor array panel and manufacturing method thereof
KR100348647B1 (en) Thin film transistor and fabrication method of the same
JPH09292632A (en) Matrix array of active matrix liquid crystal display device and liquid crystal display device as well as their production
US5614731A (en) Thin-film transistor element having a structure promoting reduction of light-induced leakage current
JPH02275672A (en) Thin film transistor
JPH11133455A (en) Production of liquid crystal display device
JP3425851B2 (en) Thin film transistor for liquid crystal display
JPH0682826A (en) Active matrix substrate and its production
KR100272266B1 (en) Thin film transistor and method of manufacturing same
JP3484168B2 (en) Method for forming a thin film transistor
JP3340782B2 (en) Thin-film semiconductor device
US6323034B1 (en) Amorphous TFT process
JPH1079514A (en) Method for manufacturing active matrix board
JP3093314B2 (en) Thin film transistor and method of manufacturing the same
JPH06101478B2 (en) Thin film transistor and manufacturing method thereof
JPH0618921A (en) Matrix type display device
US20020145141A1 (en) Gate-overlapped lightly doped drain polysilicon thin film transistor
JP4138357B2 (en) Thin film transistor array substrate and liquid crystal display device using the same
JP3536518B2 (en) Polycrystalline semiconductor TFT, manufacturing method thereof, and TFT substrate
JP3801687B2 (en) Thin film transistor and method for manufacturing the same
JPH0519831B2 (en)
JP4693219B2 (en) TFT array substrate for liquid crystal display device and manufacturing method thereof
US5889290A (en) Thin film transistor and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11