JPH0519831B2 - - Google Patents

Info

Publication number
JPH0519831B2
JPH0519831B2 JP10992883A JP10992883A JPH0519831B2 JP H0519831 B2 JPH0519831 B2 JP H0519831B2 JP 10992883 A JP10992883 A JP 10992883A JP 10992883 A JP10992883 A JP 10992883A JP H0519831 B2 JPH0519831 B2 JP H0519831B2
Authority
JP
Japan
Prior art keywords
thin film
region
insulating film
main electrode
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10992883A
Other languages
Japanese (ja)
Other versions
JPS601868A (en
Inventor
Masafumi Shinho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP10992883A priority Critical patent/JPS601868A/en
Publication of JPS601868A publication Critical patent/JPS601868A/en
Publication of JPH0519831B2 publication Critical patent/JPH0519831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、非晶質や多結晶またはそれらをビー
ムアニールして結晶化した半導体薄膜を用うた薄
膜トランジスタ(TFT)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thin film transistor (TFT) using a semiconductor thin film that is amorphous, polycrystalline, or crystallized by beam annealing.

<従来技術> 非晶質シリコン(a−Si)薄膜を例にとれば、
従来のTFTは、主に第1図aまたは第1図bに
示す断面構造を有していた。第1図aの例では、
絶縁体を表面に有する基板(例えばガラス、石
英、セラミツクス、SiO2でカバーされたSiや金
属)1の上にゲート金属4、ゲート絶縁膜6があ
り、その上に高抵抗a−Si領域5が形成されてい
る。a−Si領域5の両端にはソース電極3、ドレ
イン電極2などの主電極が配されている。表面保
護のため酸化膜等の絶縁膜7がa−Si領域5上に
設けられることもある。ゲート電極4、ドレイン
やソース主電極2,3は、Al、Mg、Pt、Mo等
の金属やそのシリサイドで形成されたり、不純物
を添加したa−Siで形成されることがある。第1
図bの例では、ゲート電極4が最上表面に設けら
れた例で、ゲート絶縁膜6を介して高抵抗a−Si
領域5の上にある。ドレイン・ソース配線12,
13は金属や半導体薄膜から成るドレイン・ソー
ス主電極領域2,3を介して行なわれている。ド
レイン・ソース電極領域2,3は、この場合a−
Si領域の下に設けられることが多い。
<Prior art> Taking an amorphous silicon (a-Si) thin film as an example,
Conventional TFTs mainly had the cross-sectional structure shown in FIG. 1a or 1b. In the example in Figure 1a,
A gate metal 4 and a gate insulating film 6 are disposed on a substrate 1 having an insulator on its surface (e.g. glass, quartz, ceramics, Si covered with SiO 2 or metal) 1, and a high resistance a-Si region 5 is disposed on the substrate 1. is formed. Main electrodes such as a source electrode 3 and a drain electrode 2 are arranged at both ends of the a-Si region 5. An insulating film 7 such as an oxide film may be provided on the a-Si region 5 for surface protection. The gate electrode 4 and the drain and source main electrodes 2 and 3 may be formed of a metal such as Al, Mg, Pt, or Mo or a silicide thereof, or may be formed of a-Si doped with impurities. 1st
In the example shown in FIG. b, the gate electrode 4 is provided on the uppermost surface, and a high-resistance a-Si
It is above area 5. drain/source wiring 12,
13 is carried out via drain/source main electrode regions 2 and 3 made of metal or semiconductor thin films. In this case, the drain/source electrode regions 2 and 3 are a-
It is often provided under the Si region.

上述の如く、従来のTFTは簡単な構造でしか
も基板1として安価なガラスを用いることができ
るので、安価な集積回路、大面積のTFTアレイ
(例えば液晶表示パネル)等に応用されつつある。
As mentioned above, conventional TFTs have a simple structure and can use inexpensive glass as the substrate 1, so they are being applied to inexpensive integrated circuits, large-area TFT arrays (for example, liquid crystal display panels), and the like.

しかし、一般的にa−Siは光によつて導電率が
著しく変化するので例えば液晶表示パネルへの適
用に当つては、遮光膜の形成が必要であつた。ま
た、a−Siはキヤリア移動度が一般的に小さいの
で高速動作においては極めてチヤンネル長Lを短
かくする必要があるが、イオン注入等を利用する
セルフアライメント技術の適用が困難であつた。
第1図の例の如き構造のTFTでは微細加工技術
を必要とされ、逆に大面積化が困難となる。
However, since the conductivity of a-Si generally changes significantly depending on light, it is necessary to form a light-shielding film when applying it to, for example, a liquid crystal display panel. Further, since a-Si generally has a low carrier mobility, it is necessary to make the channel length L extremely short in high-speed operation, but it has been difficult to apply self-alignment technology using ion implantation or the like.
A TFT with a structure like the example shown in FIG. 1 requires microfabrication technology, and conversely, it is difficult to increase the area.

<発明の目的> 本発明は、叙上の従来のTFTの問題点に鑑み
てなされたものである。本発明の目的の主たるも
のは、チヤンネル長の短い構造の縦型TFTと同
時に作りやすく、かつ、チヤンネル長を容易に選
定できるTFTを提供することにある。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems of conventional TFTs. The main object of the present invention is to provide a TFT that can be easily manufactured at the same time as a vertical TFT with a short channel length structure and whose channel length can be easily selected.

併せて、基板に透明材料を用いても遮光が容易
に得られるTFT構造を提供することにある。本
発明におけるTFTはソース及びドレイン電極が
絶縁膜の上面及び底面にそれぞれ形成され、チヤ
ンネル領域が前記絶縁膜の表面及び側面に接し、
かつ両端が前記ソース及びドレイン電極に接して
設けられ、チヤンネル領域の表面にゲート絶縁膜
とゲート電極が形成された構造を有するものであ
る。
Another object of the present invention is to provide a TFT structure that can easily block light even if a transparent material is used for the substrate. In the TFT of the present invention, source and drain electrodes are formed on the top and bottom surfaces of the insulating film, respectively, a channel region is in contact with the top and side surfaces of the insulating film,
The device has a structure in which both ends are provided in contact with the source and drain electrodes, and a gate insulating film and a gate electrode are formed on the surface of the channel region.

以下に図面を用いて本発明について詳述する。 The present invention will be explained in detail below using the drawings.

<発明の構成> 第2図には、本発明によるTFTの一部拡大断
面図が示されている。少なくとも表面が絶縁物か
ら成る基板1(例えば、SiO2や窒化膜コートさ
れたSi基板やステンレス等の金属基板、ガラスや
石英基板、セラミツクス基板、プラスチツク基板
など)の表面に、第1主電極薄膜領域(例えばド
レイン)2、絶縁膜17、第2主電極領域(例え
ばソース)3が順次堆積され、第1主電極領域2
の端部と絶縁膜17のそれがほぼ一致している。
<Structure of the Invention> FIG. 2 shows a partially enlarged sectional view of a TFT according to the invention. A first main electrode thin film is formed on the surface of a substrate 1 whose at least the surface is made of an insulating material (for example, a Si substrate coated with SiO 2 or a nitride film, a metal substrate such as stainless steel, a glass or quartz substrate, a ceramic substrate, a plastic substrate, etc.). A region (e.g. drain) 2, an insulating film 17, and a second main electrode region (e.g. source) 3 are deposited in sequence, and the first main electrode region 2
The end of the insulating film 17 almost coincides with that of the insulating film 17.

第2主電極領域3は、絶縁膜17の端部より内
側に位置している。高抵抗半導体薄膜領域5は、
第1、第2主電極領域2,3にその両側を接し、
その上にはゲート絶縁膜6、ゲート電極4が形成
されている。このTFTは、チヤンネル長Lとし
て第2主電極領域3の端部と絶縁膜17の端部間
の距離及び絶縁膜17の厚みとの和できめられ
る。
The second main electrode region 3 is located inside the end of the insulating film 17. The high resistance semiconductor thin film region 5 is
contacting the first and second main electrode regions 2 and 3 on both sides,
A gate insulating film 6 and a gate electrode 4 are formed thereon. The channel length L of this TFT is determined by the sum of the distance between the end of the second main electrode region 3 and the end of the insulating film 17 and the thickness of the insulating film 17.

本TFTは、高抵抗領域5が表面側をゲート電
極4で、裏面側を第1主電極領域2で覆われてい
るので、これらを遮光材で構成すれば、たとえ透
明基板1を用いても特別に遮光膜を設ける必要が
ない。
In this TFT, the high resistance region 5 is covered with the gate electrode 4 on the front side and the first main electrode region 2 on the back side, so if these are made of a light shielding material, even if the transparent substrate 1 is used. There is no need to provide a special light shielding film.

第3図a及び第3図bには本発明の他の実施例
によるTFTの断面構造例が示されている。第3
図bのB−B′断面は、第3図aのA−A′断面に
直交する図である。本例においては、例えばガラ
ス基板1上に第1主電極としてのソース電極薄膜
領域3が形成され、その上に絶縁膜17が堆積さ
れている。絶縁膜17の端部の一部は、ソース電
極領域3より内側に形成されている。また、絶縁
膜17上には第2主電極領域としてのドレイン電
極薄膜領域2が設けられ、その一部は絶縁膜17
の端部より内側になつている。ドレイン電極領域
2、絶縁膜17、ソース電極領域3が段階状にな
つた部分に高抵抗半導体薄膜領域5が設けられ、
さらにその上にゲート絶縁膜6、ゲート電極4が
形成され、トランジスタ動作部分TRを形造つて
いる。ドレイン及びソース電極領域2,3の一部
は、この例ではA−A′方向に延在し、それぞれ
ドレイン・ソース配線12,13に結合してい
る。トランジスタ動作部分TRは、前記階段状に
なつた部分に設けられるので、チヤンネル幅Wは
長くとれる特徴を有し、ソース電極領域3の端部
位置を変更することによりチヤンネル長を任意に
変えることができる。また、ドレイン電極領域お
よびソース電極領域の材質を遮光材とするだけで
容易にチヤンネル領域(高抵抗領域5)を完全に
遮光することができる。この場合、透明電極1を
用いても特別に遮光膜を設けることは必要がな
い。
FIGS. 3a and 3b show examples of cross-sectional structures of TFTs according to other embodiments of the present invention. Third
The BB' cross-section in FIG. 3b is perpendicular to the A-A' cross-section in FIG. 3a. In this example, a source electrode thin film region 3 as a first main electrode is formed on, for example, a glass substrate 1, and an insulating film 17 is deposited thereon. A part of the end portion of the insulating film 17 is formed inside the source electrode region 3. Further, a drain electrode thin film region 2 as a second main electrode region is provided on the insulating film 17, and a part of the drain electrode thin film region 2 is provided on the insulating film 17.
It is located inward from the edge. A high resistance semiconductor thin film region 5 is provided in a portion where the drain electrode region 2, the insulating film 17, and the source electrode region 3 are stepped.
Furthermore, a gate insulating film 6 and a gate electrode 4 are formed thereon to form a transistor operating portion TR. Parts of the drain and source electrode regions 2 and 3 extend in the AA' direction in this example and are coupled to the drain and source wirings 12 and 13, respectively. Since the transistor operating portion TR is provided in the stepped portion, the channel width W can be made long, and the channel length can be arbitrarily changed by changing the end position of the source electrode region 3. can. Further, the channel region (high resistance region 5) can be easily completely shielded from light by simply using a light shielding material for the drain electrode region and the source electrode region. In this case, even if the transparent electrode 1 is used, there is no need to provide a special light shielding film.

第4図には、本発明の他の実施例が示されてい
る。この例においては、ドレイン電極領域2が基
板1に接して設けられているが、ドレイン電極領
域2とソース電極領域3の重畳が極力小さくさ
れ、両電極間の容量を小さくしている。本発明に
おけるように、この重畳部分がわずかでも存在す
れば、上記ドレイン電極領域2とソース電極領域
3を遮光材で構成することにより高抵抗領域5を
完全に遮光することができる。したがつて、この
場合、ガラス基板を用いても新たに遮光膜を設け
る必要はない。
Another embodiment of the invention is shown in FIG. In this example, the drain electrode region 2 is provided in contact with the substrate 1, but the overlap between the drain electrode region 2 and the source electrode region 3 is minimized to reduce the capacitance between the two electrodes. As in the present invention, if even a slight overlap exists, the high resistance region 5 can be completely shielded from light by forming the drain electrode region 2 and the source electrode region 3 with a light shielding material. Therefore, in this case, there is no need to newly provide a light shielding film even if a glass substrate is used.

第5図a〜eには、本発明によるTFTT1と
絶縁膜の厚みによつてチヤンネル長Lがきめられ
る短チヤンネル縦型TFTT2とを同時に形成す
るときの工程断面図が示されている。第5図aに
は、例えばガラス基板1上に、それぞれT1及び
T2のドレイン電極領域2,102を設け、さら
に絶縁膜17を堆積した断面を示す。ドレイン電
極領域2,102は、例えば不純物を添加したa
−Si、Cr、Pt、Al、Mo、W、Mg等の金属やそ
の硅化物等が用いられる。絶縁膜17は、酸化硅
素膜、窒化硅素膜、酸化アルミニウムなどの他
に、ポリイミド等の樹脂が用いられ、誘電率が小
さく、かつ破壊電圧が高い程望ましい。この例で
は、例えば酸化膜を約1μmの厚みでプラズマ
CVD(P.CVD)や光CVD等低温で形成する。
FIGS. 5a to 5e are cross-sectional views showing the process of simultaneously forming the TFTT 1 according to the present invention and a short channel vertical TFTT 2 whose channel length L is determined by the thickness of the insulating film. FIG. 5a shows a cross section in which, for example, drain electrode regions 2 and 102 of T1 and T2 are provided on a glass substrate 1, respectively, and an insulating film 17 is further deposited. The drain electrode region 2, 102 is made of, for example, a doped a
-Metals such as Si, Cr, Pt, Al, Mo, W, Mg, and their silicides are used. In addition to a silicon oxide film, a silicon nitride film, and an aluminum oxide film, the insulating film 17 is made of a resin such as polyimide, and it is desirable that the dielectric constant be low and the breakdown voltage be high. In this example, for example, an oxide film with a thickness of approximately 1 μm is coated with plasma.
Formed at low temperatures such as CVD (P.CVD) and photoCVD.

第5図bには、ドレイン電極領域2,102と
同様な材料から成るソース電極領域3,103を
T1,T2のそれぞれに形成した断面を示す。少
なくともトランジスタ動作領域が形成されるべき
部分のソース電極領域3,103は、ドレイン電
極領域2,102より内側に設けられている。第
5図cでは、レジスト8をマスクにして絶縁膜1
7を選択エツチした断面を示す。TFTT1では
レジスト8はソース電極領域3よりも幅広く残さ
れ、ソース電極領域3と絶縁膜17とが階段状断
面を有する。一方、TFTT2では、絶縁膜17
のエツチのマスクの一部としてソース電極領域1
03が用いられ、ソース電極領域103と同一端
部を有する絶縁膜117が残される。レジスト8
を除去した後、高抵抗半導体薄膜5,105を選
択的に堆積し、さらにゲート絶縁6,106を堆
積した断面を第5図dに示す。高抵抗半導体薄膜
5,105は例えばHやFを添加されたa−Si
で、PCVD、光CVD、分子線蒸着、イオンビー
ム堆積法等で形成され、ゲート絶縁膜6,106
と同様であり、時として連続して堆積される。
FIG. 5b shows a cross section in which source electrode regions 3 and 103 made of the same material as the drain electrode regions 2 and 102 are formed in T1 and T2, respectively. At least the portion of the source electrode region 3, 103 where the transistor operation region is to be formed is provided inside the drain electrode region 2, 102. In FIG. 5c, the insulating film 1 is shown using the resist 8 as a mask.
7 is selectively etched. In TFTT 1, resist 8 is left wider than source electrode region 3, and source electrode region 3 and insulating film 17 have a stepped cross section. On the other hand, in TFTT2, the insulating film 17
source electrode region 1 as part of the etching mask.
03 is used, and an insulating film 117 having the same end as the source electrode region 103 is left. resist 8
After removing, high resistance semiconductor thin films 5, 105 are selectively deposited, and a gate insulator 6, 106 is further deposited, and a cross section is shown in FIG. 5d. The high resistance semiconductor thin film 5, 105 is, for example, a-Si doped with H or F.
The gate insulating film 6,106 is formed by PCVD, photoCVD, molecular beam evaporation, ion beam deposition, etc.
similar to, and sometimes deposited in succession.

a−Si膜5,105には必要に応じ不純物が添
加される。また、半導体薄膜5,105として多
結晶やビームアニール等で結晶化された薄膜も用
いられる。第5図eには、コンタクト開孔後、
TFTT1及びT2のそれぞれのドレイン金属配
線12,112、ソース金属配線13,113
(図示せず)、ゲート電極4,104を形成した完
成断面図を示す。以上の製造方法によつて、チヤ
ンネル長Lが絶縁膜17,117の厚み程度の短
かいTFT T2と、チヤンネル長がさらに長く自
由に値を選択できる本発明によるTFT T1を同
時に製作できる。
Impurities are added to the a-Si films 5 and 105 as necessary. Further, as the semiconductor thin film 5, 105, a polycrystalline film or a thin film crystallized by beam annealing or the like may be used. Figure 5e shows that after contact hole opening,
Drain metal wiring 12, 112 and source metal wiring 13, 113 of TFTT1 and T2, respectively
(not shown) shows a completed cross-sectional view with gate electrodes 4 and 104 formed. By the above manufacturing method, it is possible to simultaneously manufacture the TFT T2 with a short channel length L of about the thickness of the insulating films 17, 117 and the TFT T1 according to the present invention with a longer channel length whose value can be freely selected.

<発明の効果> 以上のように、本発明によるTFTは、短チヤ
ンネル縦型TFTと混載可能であるので、例えば、
高速動作を必要とする回路部に短チヤンネル縦型
TFTを用い、低速動作でもよいが、低リーク電
流や高耐圧の必要な回路部には、本発明のTFT
を用いた構成の集積回路を容易に実現することが
できる。この際、本発明のTFTはチヤンネル長
を容易に選定できるので、設計が容易である。
<Effects of the Invention> As described above, since the TFT according to the present invention can be mounted together with a short channel vertical TFT, for example,
Short channel vertical type for circuit parts that require high-speed operation
TFTs can be used for low-speed operation, but the TFTs of the present invention can be used in circuit parts that require low leakage current and high withstand voltage.
It is possible to easily realize an integrated circuit having a configuration using the following. In this case, since the channel length of the TFT of the present invention can be easily selected, the design is easy.

また、本発明によるTFTは、第1の主電極薄
膜領域および第2の主電極薄膜領域は高抵抗領域
を介して重畳して配置されているので、これらを
不透明材料により構成することにより、たとえ、
基板に透明材料を用いても、新たに、遮光膜を設
置する必要がないなど顕著な効果を奏するもので
ある。本発明によるTFTは、従来のTFTと同一
基板上に混載できる層数、マスクを有するので、
さらに設計の幅を広げることができる。
Further, in the TFT according to the present invention, since the first main electrode thin film region and the second main electrode thin film region are arranged to overlap with each other with a high resistance region interposed therebetween, by constructing these from an opaque material, it is possible to ,
Even if a transparent material is used for the substrate, there are significant effects such as no need to newly install a light-shielding film. The TFT according to the present invention has the number of layers and masks that can be mounted on the same substrate as conventional TFTs, so
Furthermore, the range of designs can be expanded.

主にa−Siを用いる例を述べてきたが、同時に
多結晶Siにも適用されるし、レーザやランプ等に
よるビームアニール技術を用いて高抵抗半導体領
域5,105として結晶層ひいては単結晶層を用
いることができ、特性の向上が図れる。材料とし
ても、Siに限らずGaAs等他の半導体薄膜に適用
されることはいうまでもない。本発明による
TFTの他の利点を述べれば、占有面積あたりの
チヤンネル幅Wを大きくできるので、液晶表示パ
ネル等に使用した場合に開口率を大きくでき、例
えば周辺回路を縦型TFTT2で形成した場合に
も容易に製造できる。叙上の様に、本発明は
TFTの応用範囲を広げ、工業的に極めて重要で
ある。
Although we have mainly described an example using a-Si, it can also be applied to polycrystalline Si, and a crystal layer or even a single crystal layer can be formed as a high-resistance semiconductor region 5, 105 using beam annealing technology using a laser or a lamp. can be used, and the characteristics can be improved. Needless to say, the material is not limited to Si, but can be applied to other semiconductor thin films such as GaAs. According to the present invention
Another advantage of TFT is that the channel width W per occupied area can be increased, so the aperture ratio can be increased when used in liquid crystal display panels, etc., and it can also be easily used when peripheral circuits are formed using vertical TFTT2, for example. can be manufactured. As mentioned above, the present invention
It expands the range of applications of TFT and is extremely important industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及び第1図bは従来のTFTの構造断
面図、第2図は本発明によるTFTの一部拡大構
造断面図、第3図a及び第3図bは本発明による
TFTの構造断面図で互いに直角方向の断面図、
第4図は本発明によるTFTの他の実施例を示す
断面図、第5図a乃至eは本発明によるTFTの
製造工程を説明するための断面図である。 1……基板、2,102……ドレイン主電極薄
膜領域、3,103……ソース主電極薄膜領域、
4,104……ゲート電極、5,105……高抵
抗半導体薄膜、6,106……ゲート絶縁膜、
7,17,117……絶縁膜。
1a and 1b are structural cross-sectional views of a conventional TFT, FIG. 2 is a partially enlarged structural cross-sectional view of a TFT according to the present invention, and FIGS. 3a and 3b are structural cross-sectional views according to the present invention.
Structural cross-sectional view of TFT, cross-sectional view at right angles to each other,
FIG. 4 is a cross-sectional view showing another embodiment of the TFT according to the present invention, and FIGS. 5 a to 5 e are cross-sectional views for explaining the manufacturing process of the TFT according to the present invention. 1...Substrate, 2,102...Drain main electrode thin film region, 3,103...Source main electrode thin film region,
4,104... Gate electrode, 5,105... High resistance semiconductor thin film, 6,106... Gate insulating film,
7, 17, 117...Insulating film.

Claims (1)

【特許請求の範囲】 1 少なくとも表面が絶縁物からなる基板と、上
記基板上に設けられた第1主電極薄膜領域と、 上記第1主電極薄膜領域の上部に、少なくとも
一端が載置された絶縁膜と、 上記絶縁膜の内側上部に、少なくとも一端が載
置された第2主電極薄膜領域と、 上記第1および第2主電極薄膜領域に接し、か
つ、上記絶縁膜の上面および一端側面に設けられ
た高抵抗半導体薄膜領域と、 上記高抵抗半導体薄膜領域にゲート絶縁膜およ
びゲート電極とを設けてなる薄膜トランジスタ。 2 第1主電極薄膜領域と第2主電極薄膜領域と
は、少なくともその一部が絶縁膜を介して重なつ
ていることを特徴とする特許請求の範囲第1項記
載の薄膜トランジスタ。 3 ゲート電極、第1主電極薄膜領域および第2
主電極薄膜領域とは、遮光性材料により構成され
ていることを特徴とする特許請求の範囲第2項記
載の薄膜トランジスタ。
[Scope of Claims] 1. A substrate having at least a surface made of an insulating material, a first main electrode thin film region provided on the substrate, and at least one end placed on top of the first main electrode thin film region. an insulating film; a second main electrode thin film region having at least one end placed on the inner upper part of the insulating film; and a top surface and one end side surface of the insulating film that is in contact with the first and second main electrode thin film regions; A thin film transistor comprising: a high resistance semiconductor thin film region provided in the high resistance semiconductor thin film region; and a gate insulating film and a gate electrode provided in the high resistance semiconductor thin film region. 2. The thin film transistor according to claim 1, wherein the first main electrode thin film region and the second main electrode thin film region at least partially overlap with each other with an insulating film interposed therebetween. 3 Gate electrode, first main electrode thin film region and second
3. The thin film transistor according to claim 2, wherein the main electrode thin film region is made of a light-shielding material.
JP10992883A 1983-06-17 1983-06-17 Thin film transistor Granted JPS601868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10992883A JPS601868A (en) 1983-06-17 1983-06-17 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10992883A JPS601868A (en) 1983-06-17 1983-06-17 Thin film transistor

Publications (2)

Publication Number Publication Date
JPS601868A JPS601868A (en) 1985-01-08
JPH0519831B2 true JPH0519831B2 (en) 1993-03-17

Family

ID=14522661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10992883A Granted JPS601868A (en) 1983-06-17 1983-06-17 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS601868A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089958A (en) * 1983-10-24 1985-05-20 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH07120803B2 (en) * 1985-08-12 1995-12-20 日本電信電話株式会社 Insulated gate type thin film transistor and manufacturing method thereof
KR950001159B1 (en) * 1991-12-27 1995-02-11 삼성전자 주식회사 Tft and its manufacturing method for memory device
KR102551998B1 (en) * 2018-11-20 2023-07-06 엘지디스플레이 주식회사 Vertical structure transistor and electronic device

Also Published As

Publication number Publication date
JPS601868A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
KR100260063B1 (en) Manufacturing method of an insulated gate thin film transistor
JPH0519830B2 (en)
US4601097A (en) Method of producing thin-film transistor array
US4958205A (en) Thin film transistor array and method of manufacturing the same
US6858867B2 (en) Channel-etch thin film transistor
KR100223158B1 (en) Active matrix substrate and its manufacturing method
JPH02275672A (en) Thin film transistor
JPH1126768A (en) Thin film transistor for liquid, crystal display
JP3005918B2 (en) Active matrix panel
JP2546982B2 (en) Thin film transistor
JPH0519831B2 (en)
KR100345361B1 (en) Thin film transistor and liquid crystal display device having the same, and method of manufacturing tft array substrate
JPS61191072A (en) Thin film transistor and manufacture thereof
JP2001044442A (en) Thin-film transistor panel
JP3340782B2 (en) Thin-film semiconductor device
JPH0384963A (en) Thin film transistor
JPH04326769A (en) Thin film transistor and manufacture thereof
KR100205867B1 (en) Active matrix substrate and its fabrication method
JP2934717B2 (en) Matrix circuit driving device and method of manufacturing the same
JPH05183165A (en) Thin film transistor
JPH09129890A (en) Polycrystalline semiconductor tft, its manufacture, and tft substrate
JPS60161672A (en) Thin film transistor and manufacture thereof
JP2000029068A (en) Liquid crystal display device
KR100193650B1 (en) Method of manufacturing thin film transistor of liquid crystal display device
JPH01227127A (en) Thin-film transistor array