JPH04326769A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPH04326769A
JPH04326769A JP9758491A JP9758491A JPH04326769A JP H04326769 A JPH04326769 A JP H04326769A JP 9758491 A JP9758491 A JP 9758491A JP 9758491 A JP9758491 A JP 9758491A JP H04326769 A JPH04326769 A JP H04326769A
Authority
JP
Japan
Prior art keywords
film
gate electrode
layer
substrate
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9758491A
Other languages
Japanese (ja)
Other versions
JP3093314B2 (en
Inventor
Masahiko Akiyama
政彦 秋山
Shiyuuichi Uchikoga
修一 内古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14196290&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04326769(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03097584A priority Critical patent/JP3093314B2/en
Publication of JPH04326769A publication Critical patent/JPH04326769A/en
Application granted granted Critical
Publication of JP3093314B2 publication Critical patent/JP3093314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a TFT having a channel protective film having excellent element characteristics such as mobility, etc. CONSTITUTION:In a thin film transistor having an active layer 45 formed on a light transmission insulating board 21, source and drain electrodes 49 arranged oppositely through a channel protective film 41 in contact with the layer 45 through a contact layer 47, and a gate electrode 25 arranged on a lower part of the layer 45 through gate insulating films 27, 29, an end of the electrode 25 is tapered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄膜トランジスタに係
り、特にチャネル保護膜を有する逆スタッガ型薄膜トラ
ンジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thin film transistors, and more particularly to an inverted staggered thin film transistor having a channel protection film.

【0002】0002

【従来の技術】近年、薄膜トランジスタ(TFT)をス
イッチング素子として用いたアクティブマトリックス型
液晶表示装置が注目されている。これは、安価なガラス
基板を用いることで大画面,高精細,高画質なパネルデ
ィスプレイを低コストで実現する可能性があるからであ
る。図11には従来の逆スタガ−型TFTの断面図が示
されている。
2. Description of the Related Art In recent years, active matrix liquid crystal display devices using thin film transistors (TFTs) as switching elements have attracted attention. This is because by using an inexpensive glass substrate, it is possible to realize a panel display with a large screen, high definition, and high image quality at low cost. FIG. 11 shows a cross-sectional view of a conventional inverted staggered TFT.

【0003】これを製造工程に従い説明すると、最初、
透光性絶縁基板1上に不透明金属薄膜を堆積し、この不
透明金属薄膜をフォトマスクを用いたフォトリソグラフ
ィによりパタ−ニングし、ゲ−ト電極3を形成する。
[0003] To explain this according to the manufacturing process, first,
An opaque metal thin film is deposited on a transparent insulating substrate 1, and this opaque metal thin film is patterned by photolithography using a photomask to form a gate electrode 3.

【0004】次にゲ−ト電極3が形成された透光性絶縁
基板1上にゲ−ト絶縁膜5となる第1の絶縁膜,活性層
7となるアモルファスシリコン(a‐Si)膜,チャネ
ル保護膜9となる第2の絶縁膜を順次成膜した後、全面
にポジ型のフォトレジストを塗布する。
Next, on the transparent insulating substrate 1 on which the gate electrode 3 is formed, a first insulating film which becomes the gate insulating film 5, an amorphous silicon (a-Si) film which becomes the active layer 7, After sequentially forming a second insulating film that will become the channel protective film 9, a positive photoresist is applied to the entire surface.

【0005】次にゲ−ト電極3をマスクにして裏面露光
を行なってフォトレジストパタ−ンを形成した後、この
フォトレジストパタ−ンをマスクに用いて第2の絶縁膜
をパタ−ニングしてチャネル保護膜9を形成する。次に
全面にコンタクト層11となるn+ a‐Si膜,ソ−
ス・ドレイン電極13となる金属膜を順次堆積する。最
後に、これらの膜をパタ−ンニングしてコンタクト層1
1,ソ−ス・ドレイン電極13を形成してTFTの基本
構成が完成する。
Next, a photoresist pattern is formed by backside exposure using the gate electrode 3 as a mask, and then a second insulating film is patterned using this photoresist pattern as a mask. Then, a channel protective film 9 is formed. Next, an n+ a-Si film, which will become the contact layer 11, and a so-
A metal film that will become the drain electrode 13 is sequentially deposited. Finally, these films are patterned to form contact layer 1.
1. The source/drain electrodes 13 are formed to complete the basic structure of the TFT.

【0006】以上述べた方法で得られたTFTでは、チ
ャネル保護膜9がゲ−ト電極3に自己整合的に形成され
るため、マスク合わせのずれに起因する素子特性の変動
が抑制される。
In the TFT obtained by the method described above, since the channel protection film 9 is formed in a self-aligned manner with the gate electrode 3, variations in device characteristics caused by misalignment of masks are suppressed.

【0007】しかしながら、チャネル保護膜9がゲ−ト
電極3に自己整合的に形成されることが幸いし、チャネ
ル保護膜9のチャネル長方向の寸法を、ゲ−ト電極3の
チャネル長方向の寸法より短くするのが困難になるため
、素子特性に大きな影響を与えるゲ−ト電極上の活性層
7とコンタクト層11との接合部分を広くできず、大き
なオン電流や移動度を得るのが困難であった。
However, fortunately, the channel protective film 9 is formed in a self-aligned manner with the gate electrode 3, and the dimension of the channel protective film 9 in the channel length direction is set to be the same as that of the gate electrode 3 in the channel length direction. Since it is difficult to make the contact layer shorter than the dimensions, it is difficult to widen the junction between the active layer 7 and the contact layer 11 on the gate electrode, which has a large effect on device characteristics, and it is difficult to obtain large on-current and mobility. It was difficult.

【0008】[0008]

【発明が解決しようとする課題】上述の如く従来のチャ
ネル保護膜を設けたTFTでは、ゲ−ト電極上の活性層
とコンタクト層との接合面が狭く、オン電流や移動度等
の素子特性の点に問題があった。
[Problems to be Solved by the Invention] As mentioned above, in a TFT provided with a conventional channel protective film, the junction surface between the active layer on the gate electrode and the contact layer is narrow, and device characteristics such as on-current and mobility are affected. There was a problem with that.

【0009】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、電気特性が良好なチャ
ネル保護膜を有するTFT及びその製造方法を提供する
ことにある。
The present invention has been made in consideration of the above circumstances, and its object is to provide a TFT having a channel protective film with good electrical characteristics and a method for manufacturing the same.

【0010】0010

【課題を解決するための手段】本発明の薄膜トランジス
タの骨子は、ゲ−ト電極の端部をテ−パ状にしてゲ−ト
電極上の活性層とコンタクト層との接合面が広いTFT
の製造を容易にしたことにある。
[Means for Solving the Problems] The gist of the thin film transistor of the present invention is that the end of the gate electrode is tapered to provide a wide bonding surface between the active layer on the gate electrode and the contact layer.
The reason is that it has made manufacturing easier.

【0011】即ち、上記の目的を達成するために、本発
明の薄膜トランジスタは、基板上に形成された活性層と
、この活性層にコンタクト層を介してコンタクトすると
共にチャネル保護膜を介して対向して配設されたソ−ス
及びドレイン電極と、前記活性層の下部にゲ−ト絶縁膜
を介して配設されたゲ−ト電極とを有する薄膜トランジ
スタにおいて、端部がテ−パ状のゲ−ト電極を備えたこ
とを特徴とする。
That is, in order to achieve the above object, the thin film transistor of the present invention has an active layer formed on a substrate, which is in contact with the active layer via a contact layer, and is opposed to the active layer via a channel protective film. In a thin film transistor having a source and a drain electrode disposed in the same manner as the active layer, and a gate electrode disposed under the active layer with a gate insulating film interposed therebetween, the gate electrode has a tapered end. - It is characterized by being equipped with a top electrode.

【0012】また、本発明の薄膜トランジスタの製造方
法の骨子は、ゲ−ト電極の端部をテ−パ状にしてより多
くの光がゲ−ト電極上のレジストに回り込むようにした
ことにある即ち、上記の目的を達成するために、本発明
の薄膜トランジスタの製造方法は、
The gist of the method for manufacturing a thin film transistor of the present invention is that the end of the gate electrode is tapered to allow more light to pass through the resist on the gate electrode. That is, in order to achieve the above object, the method for manufacturing a thin film transistor of the present invention includes the following steps:

【0013】透光性の基板上に端部がテ−パ状のゲ−ト
電極を形成する工程と、前記基板上にゲ−ト絶縁膜、活
性層及びチャネル保護膜を順次堆積する工程と、前記チ
ャネル保護膜上にレジストを塗布した後、前記基板の裏
面から光を前記レジストに照射してレジストパタ−ンを
形成する工程と、前記レジストパタ−ンをマスクに用い
て前記チャネル保護膜をパタ−ニングする工程と、前記
基板上にコンタクト層を堆積した後、このコンタクト層
と前記活性層とをパタ−ニングする工程と、前記基板上
に導電膜を堆積した後、この導電膜と前記コンタクト層
とをパタ−ニングしてソ−ス・ドレイン電極を形成する
工程とを備えたことを特徴とする。
A step of forming a gate electrode with a tapered end on a transparent substrate; and a step of sequentially depositing a gate insulating film, an active layer, and a channel protective film on the substrate. , after applying a resist on the channel protective film, forming a resist pattern by irradiating the resist with light from the back side of the substrate; and patterning the channel protective film using the resist pattern as a mask. - a step of depositing a contact layer on the substrate and patterning the contact layer and the active layer; depositing a conductive film on the substrate and then patterning the conductive film and the contact layer; The method is characterized by comprising a step of patterning the layer and forming source/drain electrodes.

【0014】[0014]

【作用】本発明の薄膜トランジスタでは、ゲ−ト電極の
端部がテ−パ状であるため、下地依存性により、ゲ−ト
電極の端部上に堆積された活性層とコンタクト層との接
合面が傾斜を持つため、ゲ−ト電極の端部上の活性層と
コンタクト層との接合面が垂直であるときに比べて、ソ
−ス・ドレイン電極の電界の影響を大きく受ける活性層
の領域が広くなり、より多くのキャリアが生成される。 したがって、オン電流や移動度等の素子特性が改善され
る。
[Operation] In the thin film transistor of the present invention, since the end of the gate electrode is tapered, the contact layer and the active layer deposited on the end of the gate electrode are bonded to each other due to the dependence on the base. Because the plane is inclined, the active layer is more affected by the electric field of the source and drain electrodes than when the junction plane between the active layer and the contact layer on the edge of the gate electrode is perpendicular. The area becomes wider and more carriers are generated. Therefore, device characteristics such as on-current and mobility are improved.

【0015】また、本発明の薄膜トランジスタの製造方
法では、端部がテ−パ状のゲ−ト電極をマスクに用いて
いるため、基板の裏面から出射した光は、ゲ−ト電極の
端部で回折を起こしてゲ−ト電極上のレジストに照射さ
れると共に、チャネル保護膜となる絶縁膜とゲ−ト電極
との間で反射を繰り返してゲ−ト電極上のレジストに照
射される。
Furthermore, in the method for manufacturing a thin film transistor of the present invention, since the gate electrode with tapered ends is used as a mask, the light emitted from the back surface of the substrate is transmitted through the ends of the gate electrode. The light is diffracted and irradiated onto the resist on the gate electrode, and is repeatedly reflected between the insulating film serving as a channel protection film and the gate electrode, and is irradiated onto the resist on the gate electrode.

【0016】その結果、ゲ−ト電極の端部が基板に平行
であるときに比べて、露光領域がよりレジストの内側に
まで広がるため、ソ−ス・ドレイン電極の電界の影響を
大きく受ける領域が広い活性層が形成され、より多くの
キャリアが生成される。したがって、オン電流や移動度
等の素子特性が改善される。
As a result, compared to when the end of the gate electrode is parallel to the substrate, the exposed region extends further into the resist, and therefore the region is greatly affected by the electric field of the source/drain electrode. A wide active layer is formed, and more carriers are generated. Therefore, device characteristics such as on-current and mobility are improved.

【0017】[0017]

【実施例】以下、図面を参照しながら実施例を説明する
。図1〜図7には本発明の一実施例に係るTFTの製造
工程断面図が示されている。最初、図1に示すように、
ガラス基板等の透光性絶縁基板21上に厚さ約300n
mのMoTa合金膜23を堆積する。
Embodiments Hereinafter, embodiments will be described with reference to the drawings. 1 to 7 show cross-sectional views of the manufacturing process of a TFT according to an embodiment of the present invention. Initially, as shown in Figure 1,
Approximately 300 nm thick on a transparent insulating substrate 21 such as a glass substrate.
A MoTa alloy film 23 of m thickness is deposited.

【0018】次に図2に示すように、等方性エッチング
、例えば、CF4 ガス,O2 ガスを用い、マイクロ
波放電により発生した活性分子でMoTa合金膜23を
パタ−ニングし、テ−パ形状のゲ−ト電極25を形成す
る。なお、このエッチングによるテ−パ角度、即ち、透
光性絶縁基板21に対するゲ−ト電極3の端面の角度θ
は約30°であった。
Next, as shown in FIG. 2, the MoTa alloy film 23 is patterned with active molecules generated by microwave discharge using isotropic etching, for example, CF4 gas or O2 gas, to form a tapered shape. A gate electrode 25 is formed. Note that the taper angle due to this etching, that is, the angle θ of the end surface of the gate electrode 3 with respect to the transparent insulating substrate 21
was approximately 30°.

【0019】次に図3に示すように、CVD法を用いて
透光性絶縁基板1上に厚さ約350nmのシリコン酸化
膜からなる第1のゲ−ト絶縁膜27,厚さ約50nmの
シリコン窒化膜からなる第2のゲ−ト絶縁膜29,活性
層となる厚さ約50nmのa‐Si膜31,チャネル保
護膜となる厚さ約200nmのシリコン窒化膜33を順
次堆積する。
Next, as shown in FIG. 3, a first gate insulating film 27 made of a silicon oxide film with a thickness of about 350 nm and a first gate insulating film 27 with a thickness of about 50 nm are formed on the transparent insulating substrate 1 using the CVD method. A second gate insulating film 29 made of a silicon nitride film, an a-Si film 31 with a thickness of about 50 nm to serve as an active layer, and a silicon nitride film 33 with a thickness of about 200 nm to serve as a channel protection film are sequentially deposited.

【0020】次に図4に示すように、シリコン窒化膜3
3上にスピンコ−ト等を用いてポジ型のフォトレジスト
35を塗布した後、3kW超高圧水銀灯を用いて紫外線
37を透光性基板1の裏面から1分間照射してフォトレ
ジスト35を露光する。
Next, as shown in FIG. 4, silicon nitride film 3 is
After applying a positive type photoresist 35 on the substrate 3 using spin coating or the like, the photoresist 35 is exposed by irradiating ultraviolet rays 37 from the back side of the transparent substrate 1 for 1 minute using a 3kW ultra-high pressure mercury lamp. .

【0021】次に図5に示すように、フォトレジスト3
5を現像してフォトレジストパタ−ン39を形成した後
、このフォトレジストパタ−ン39をマスクに用いてシ
リコン窒化膜33をパタ−ニングしてチャネル保護膜4
1を形成する。この後、フォトレジストパタ−ン39を
除去する。なお、裏面露光の後にマスク合わせで通常の
露光をする(2重露光する)ことでチャネル幅方向の寸
法を規定するとよい。
Next, as shown in FIG.
5 to form a photoresist pattern 39, the silicon nitride film 33 is patterned using this photoresist pattern 39 as a mask to form a channel protective film 4.
form 1. After this, the photoresist pattern 39 is removed. Note that it is preferable to define the dimension in the channel width direction by performing normal exposure (double exposure) by mask alignment after backside exposure.

【0022】次に図6に示すように、基板全面にコンタ
クト層となる厚さ約50nm以上のn+ a‐Si膜4
3を堆積した後、第2のゲ−ト絶縁膜29,a‐Si膜
31及びn+ a‐Si膜43を一度にパタ−ニングし
て活性層45を形成する。
Next, as shown in FIG. 6, an n+ a-Si film 4 with a thickness of approximately 50 nm or more is formed to serve as a contact layer over the entire surface of the substrate.
After depositing the active layer 45, the second gate insulating film 29, the a-Si film 31, and the n+ a-Si film 43 are patterned at once.

【0023】最後に、ゲ−ト電極を取り出すコンタクト
ホ−ルを形成後、図7に示すように、基板全面にMoと
Alとの積層膜を堆積した後、マスク合わせを行ない積
層膜及びa‐Si膜43をパタ−ニングしてコンタクト
層47,ソ−ス・ドレイン電極49を形成してTFTの
基本構成が完成する。なお、必要に応じて画素電極やシ
リコン窒化膜等を用いてパッシベ−ション膜を形成する
Finally, after forming a contact hole for taking out the gate electrode, a laminated film of Mo and Al is deposited on the entire surface of the substrate as shown in FIG. - The basic structure of the TFT is completed by patterning the Si film 43 to form a contact layer 47 and source/drain electrodes 49. Note that a passivation film is formed using a pixel electrode, a silicon nitride film, or the like, if necessary.

【0024】また、コンタクト層47はn+ a‐Si
膜を堆積して形成する代わりに、プラズマド−ピングや
イオン注入等を用いて活性層45となるa‐Si膜にn
型不純物原子を添加して形成しても良い。このとき、a
‐Si膜は傾斜しているので容易に側壁部にn型不純物
原子を添加することができるという利点がある。更にま
た、マスク合わせでソ−スドレイン電極49を形成する
代わりに、自己整合的にソ−ス・ドレイン電極49を形
成してもよい。
Further, the contact layer 47 is made of n+ a-Si
Instead of forming a film by depositing it, plasma doping, ion implantation, etc. are used to add n to the a-Si film that will become the active layer 45.
It may also be formed by adding type impurity atoms. At this time, a
-Since the Si film is sloped, it has the advantage that n-type impurity atoms can be easily added to the sidewall portion. Furthermore, instead of forming the source/drain electrodes 49 by mask alignment, the source/drain electrodes 49 may be formed by self-alignment.

【0025】以上述べた製造方法で得られたTFTでは
、チャネル保護膜41のチャネル長方向の寸法が従来の
TFTのそれより短くなるため、ソ−ス・ドレイン電極
49の電界の影響を大きく受けるチャネル保護膜41の
部分が広くなり、オン電流や移動度等の素子特性が改善
される。このことを図8を用いて更に詳しく説明する。 図8は図4のゲ−ト電極25の端部における紫外線37
の光路を示す図である。
In the TFT obtained by the manufacturing method described above, the dimension of the channel protective film 41 in the channel length direction is shorter than that of a conventional TFT, so that it is greatly affected by the electric field of the source/drain electrode 49. The channel protective film 41 becomes wider, and device characteristics such as on-current and mobility are improved. This will be explained in more detail using FIG. 8. FIG. 8 shows the ultraviolet rays 37 at the end of the gate electrode 25 in FIG.
FIG.

【0026】透光性絶縁基板21の裏面から出射した紫
外線37は、基本的にはゲ−ト電極25上のフォトレジ
スト35には照射されないが、ゲ−ト電極25の端部が
テ−パ状であるため、その端部で回折を起こしてゲ−ト
電極25の内側に回り込む。その結果、紫外線37は、
ゲ−ト電極25の端部上のフォトレジスト35にも照射
される。
The ultraviolet rays 37 emitted from the back surface of the transparent insulating substrate 21 basically do not irradiate the photoresist 35 on the gate electrode 25, but if the end of the gate electrode 25 is tapered. Because of its shape, it causes diffraction at its ends and wraps around inside the gate electrode 25. As a result, ultraviolet rays 37 are
The photoresist 35 on the edge of the gate electrode 25 is also irradiated.

【0027】更に、回折を起こした紫外線37の一部は
、第1のゲ−ト絶縁膜27と第2のゲ−ト絶縁膜29と
の界面,第2のゲ−ト絶縁膜29とa‐Si膜31との
界面,a‐Si膜31とシリコン窒化膜33との界面又
はシリコン窒化膜33とフォトレジスト35との界面で
反射された後、再びゲ−ト電極25で反射されてゲ−ト
電極25の端部上のフォトレジスト35に照射されたり
、又はこのような反射を繰り返してゲ−ト電極25の端
部上のフォトレジスト35に照射される。
Further, a part of the diffracted ultraviolet rays 37 is transmitted to the interface between the first gate insulating film 27 and the second gate insulating film 29, and the second gate insulating film 29 and a - After being reflected at the interface with the Si film 31, the interface between the a-Si film 31 and the silicon nitride film 33, or the interface between the silicon nitride film 33 and the photoresist 35, it is reflected again at the gate electrode 25 and the gate - The photoresist 35 on the end of the gate electrode 25 is irradiated, or the photoresist 35 on the end of the gate electrode 25 is irradiated by repeating such reflection.

【0028】したがって、フォトレジスト35の露光部
分Aは、従来に比べてよりゲ−ト電極25の内側まで広
がり、チャネル長方向の寸法が短いフォトレジストパタ
−ン39を形成することでき、コンタクト長ΔL、即ち
、ゲ−ト電極25の端部上の活性層45とコンタクト層
47とのチャネル長方向に沿った接合面の寸法をより長
くすることができる。
Therefore, the exposed portion A of the photoresist 35 extends further inside the gate electrode 25 than in the conventional case, making it possible to form a photoresist pattern 39 with a shorter dimension in the channel length direction, thereby reducing the contact length. ΔL, that is, the dimension of the junction surface between the active layer 45 and the contact layer 47 on the end of the gate electrode 25 along the channel length direction can be made longer.

【0029】その結果、ソ−ス・ドレイン電極49の電
界の影響を大きく受ける活性層45の部分が広くなりよ
り多くのキャリアが生成されるため、オン電流や移動度
等の素子特性が改善される。特にコンタクト層47のn
+ a‐Si層,活性層45のa‐Si層,電界で誘起
されたn+ a‐Si層によるn+ a‐Si/a‐S
i/n+a‐Si接合のコンタクト抵抗が低減される効
果が大きい。
As a result, the portion of the active layer 45 that is greatly affected by the electric field of the source/drain electrode 49 becomes wider and more carriers are generated, so that device characteristics such as on-current and mobility are improved. Ru. In particular, the n of the contact layer 47
+ a-Si layer, a-Si layer of active layer 45, n+ a-Si/a-S due to n+ a-Si layer induced by electric field
The effect of reducing the contact resistance of the i/n+a-Si junction is significant.

【0030】しかも、本実施例のTFTでは、a‐Si
膜31と第1のゲ−ト絶縁膜27との間に設けられた薄
い第2のゲ−ト絶縁膜29が、光学的な緩衝層として働
くので紫外光37の反射が適度に抑制され、オ−バ−露
光を防ぐことができる。
Moreover, in the TFT of this example, a-Si
Since the thin second gate insulating film 29 provided between the film 31 and the first gate insulating film 27 acts as an optical buffer layer, reflection of the ultraviolet light 37 is moderately suppressed. Overexposure can be prevented.

【0031】更に、本実施例のTFTの製造方法では、
再現性良くコンタクト長ΔLを0.5μm程度にするこ
とができ、またフォトレジスト35の露光時間を調整す
ることで、コンタクト長ΔLを1μmの範囲で制御でき
た。
Furthermore, in the TFT manufacturing method of this embodiment,
The contact length ΔL could be set to about 0.5 μm with good reproducibility, and by adjusting the exposure time of the photoresist 35, the contact length ΔL could be controlled within a range of 1 μm.

【0032】また、このように構成されたTFTでは、
ゲ−ト電極25の端部がテ−パ状であるため、下地依存
性により活性層45とコンタクト層47との接合面も一
部テ−パ状になる。
[0032] Furthermore, in the TFT configured in this way,
Since the end of the gate electrode 25 is tapered, the bonding surface between the active layer 45 and the contact layer 47 also partially becomes tapered due to the dependence on the underlying layer.

【0033】その結果、活性層45とコンタクト層47
との接合面が一様な平面であるときに比べ、活性層45
とコンタクト層47との実効的な接合面が広くなり素子
特性が改善される。
As a result, the active layer 45 and the contact layer 47
Compared to when the bonding surface with the active layer 45 is a uniform plane,
The effective bonding surface between the contact layer 47 and the contact layer 47 is widened, and device characteristics are improved.

【0034】図9はコンタクト長ΔLと移動度との関係
を示す特性図である。図中、σ1 ,σ2 は、それぞ
れ本実施例の製造方法,従来の製造方法で得られたTF
Tのコンタクト長ΔLのばらつきの範囲を示している。 この図から分かるように、移動度はコンタクト長ΔLが
一定以下ΔL0 になると急激に小さくなる。したがっ
て、従来の製造方法ではコンタクト長ΔLがΔL0 以
下になることがあるため、不良なTFTが製造され、歩
留まりが低下する。更に、従来の製造方法ではコンタク
ト長ΔLのばらつきが大きいため、このようなTFTを
液晶表示装置に用いると画質が低下するという問題が生
じる。一方、本実施例の製造方法ではコンタクト長ΔL
を確実にΔL0 より大きくすることができると共にば
らつきを小さくすることができる。
FIG. 9 is a characteristic diagram showing the relationship between contact length ΔL and mobility. In the figure, σ1 and σ2 are the TF obtained by the manufacturing method of this example and the conventional manufacturing method, respectively.
The range of variation in the contact length ΔL of T is shown. As can be seen from this figure, the mobility decreases rapidly when the contact length ΔL becomes less than a certain value ΔL0. Accordingly, in the conventional manufacturing method, the contact length ΔL may be less than ΔL0, resulting in defective TFTs being manufactured and a decrease in yield. Furthermore, in the conventional manufacturing method, there is a large variation in the contact length ΔL, so when such a TFT is used in a liquid crystal display device, a problem arises in that the image quality deteriorates. On the other hand, in the manufacturing method of this embodiment, the contact length ΔL
can be reliably made larger than ΔL0, and variations can be reduced.

【0035】したがって、移動度が十分に大きなTFT
が確実に製造され、歩留まりが向上する。また、このよ
うなTFTを用いることで高画質な液晶表示装置を得る
ことができる。
[0035] Therefore, a TFT with sufficiently large mobility
is manufactured reliably and yields are improved. Further, by using such a TFT, a high-quality liquid crystal display device can be obtained.

【0036】なお、本発明は上述した実施例に限定され
るものではない。例えば、上記実施例では、ゲ−ト電極
25のテ−パ角度θを30°程度にしたが、45°以下
であれば同様な効果が得られる。また、上記実施例では
、ゲ−ト電極25を曲率がゼロのテ−パ状に形成したが
、図10に示すようにゲ−ト電極25を曲率がゼロでな
いテ−パ状に形成してもよい。この場合、ゲ−ト電極2
5の端部で回折する光が先に説明した実施例に比べて減
るが同様な効果が得られる。
Note that the present invention is not limited to the embodiments described above. For example, in the above embodiment, the taper angle θ of the gate electrode 25 was set to about 30°, but a similar effect can be obtained if it is 45° or less. Further, in the above embodiment, the gate electrode 25 was formed into a tapered shape with a curvature of zero, but as shown in FIG. Good too. In this case, the gate electrode 2
Although the amount of light diffracted at the ends of the second embodiment is reduced compared to the previously described embodiment, the same effect can be obtained.

【0037】また、上記実施例ではゲ−ト絶縁膜を2層
構造としたが、単層構造或いは3層以上の多層構造にし
ても良い。なお、多層構造の場合に、上記実施例とは逆
に、基板側のゲ−ト絶縁膜に誘電率が大きい絶縁膜、例
えば、金属酸化膜やゲ−ト電極の酸化(陽極酸化等)膜
を用いても良い。
Further, in the above embodiment, the gate insulating film has a two-layer structure, but it may have a single-layer structure or a multi-layer structure of three or more layers. In the case of a multilayer structure, contrary to the above embodiment, the gate insulating film on the substrate side is an insulating film with a high dielectric constant, such as a metal oxide film or an oxidized (anodized, etc.) film for the gate electrode. You may also use

【0038】更にまた、透光性絶縁基板21とゲ−ト電
極25との間にアンダ−コ−ト層を設けても良い。この
とき、第1のゲ−ト絶縁膜27とアンダコ−ト層との間
の屈折率を同程度にすると、ゲ−ト絶縁膜27とアンダ
コ−ト層との界面における紫外線37の反射を抑制でき
る。例えば、アンダコ−ト層として第1のゲ−ト絶縁膜
27と同様にシリコン酸化膜を用いることで紫外線37
の反射を低減できる。その他、本発明の要旨を逸脱しな
い範囲で、種々変形して実施できる。
Furthermore, an undercoat layer may be provided between the transparent insulating substrate 21 and the gate electrode 25. At this time, if the refractive index between the first gate insulating film 27 and the undercoat layer is made to be approximately the same, reflection of ultraviolet rays 37 at the interface between the gate insulating film 27 and the undercoat layer can be suppressed. can. For example, by using a silicon oxide film as the undercoat layer in the same way as the first gate insulating film 27, ultraviolet rays 37
can reduce reflections. In addition, various modifications can be made without departing from the gist of the present invention.

【0039】[0039]

【発明の効果】以上詳述したように本発明によれば、ソ
−ス・ドレイン電極の電界の影響を大きく受ける活性層
の部分が広くなるため、オン電流や移動度等が優れたチ
ャネル保護膜を有するTFTを得ることができる。
Effects of the Invention As described in detail above, according to the present invention, the active layer portion that is greatly affected by the electric field of the source/drain electrodes is widened, so channel protection with excellent on-current, mobility, etc. A TFT with a film can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係るTFTの第1の製造工
程断面図。
FIG. 1 is a cross-sectional view of a first manufacturing process of a TFT according to an embodiment of the present invention.

【図2】本発明の一実施例に係るTFTの第2の製造工
程断面図。
FIG. 2 is a sectional view of a second manufacturing process of a TFT according to an embodiment of the present invention.

【図3】本発明の一実施例に係るTFTの第3の製造工
程断面図。
FIG. 3 is a sectional view of a third manufacturing process of a TFT according to an embodiment of the present invention.

【図4】本発明の一実施例に係るTFTの第4の製造工
程断面図。
FIG. 4 is a sectional view of a fourth manufacturing process of a TFT according to an embodiment of the present invention.

【図5】本発明の一実施例に係るTFTの第5の製造工
程断面図。
FIG. 5 is a sectional view of a fifth manufacturing process of a TFT according to an embodiment of the present invention.

【図6】本発明の一実施例に係るTFTの第6の製造工
程断面図。
FIG. 6 is a sectional view of a sixth manufacturing process of a TFT according to an embodiment of the present invention.

【図7】本発明の一実施例に係るTFTの第7の製造工
程断面図。
FIG. 7 is a sectional view of a seventh manufacturing process of a TFT according to an embodiment of the present invention.

【図8】図4のゲ−ト電極の端部における紫外線の光路
を示す図。
FIG. 8 is a diagram showing the optical path of ultraviolet light at the end of the gate electrode in FIG. 4;

【図9】移動度とソ−スコンタクト長との関係を示す図
FIG. 9 is a diagram showing the relationship between mobility and source contact length.

【図10】曲率を有するテ−パ状のゲ−ト電極を示す図
FIG. 10 is a diagram showing a tapered gate electrode with curvature.

【図11】従来のチャネル保護膜を有するTFTの断面
図。
FIG. 11 is a cross-sectional view of a TFT with a conventional channel protective film.

【符号の説明】[Explanation of symbols]

21…透光性絶縁基板、23…MoTa合金膜、25…
ゲ−ト電極、27…第1のゲ−ト絶縁膜、29…第2の
ゲ−ト絶縁膜、31…a‐Si膜、33…シリコン窒化
膜、35…フォトレジスト、37…紫外線、39…フォ
トレジストパタ−ン、41…チャネル保護膜、43…n
+ a‐Si膜、45…活性層、47…コンタクト層、
49…ソ−ス・ドレイン電極。
21... Transparent insulating substrate, 23... MoTa alloy film, 25...
Gate electrode, 27... First gate insulating film, 29... Second gate insulating film, 31... a-Si film, 33... Silicon nitride film, 35... Photoresist, 37... Ultraviolet light, 39 ...Photoresist pattern, 41...Channel protective film, 43...n
+ a-Si film, 45... active layer, 47... contact layer,
49...Source/drain electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された活性層と、この活性層
にコンタクト層を介してコンタクトすると共にチャネル
保護膜を介して対向して配設されたソ−ス及びドレイン
電極と、前記活性層の下部にゲ−ト絶縁膜を介して配設
されたゲ−ト電極とを有する薄膜トランジスタにおいて
、前記ゲ−ト電極は端部がテ−パ状であることを特徴と
する薄膜トランジスタ。
1. An active layer formed on a substrate; source and drain electrodes contacting the active layer via a contact layer and facing each other via a channel protective film; 1. A thin film transistor having a gate electrode disposed below a layer with a gate insulating film interposed therebetween, wherein the gate electrode has a tapered end.
【請求項2】透光性の基板上に端部がテ−パ状のゲ−ト
電極を形成する工程と、前記基板上にゲ−ト絶縁膜、活
性層及びチャネル保護膜を順次堆積する工程と、前記チ
ャネル保護膜上にレジストを塗布した後、前記基板の裏
面から光を前記レジストに照射してレジストパタ−ンを
形成する工程と、前記レジストパタ−ンをマスクに用い
て前記チャネル保護膜をパタ−ニングする工程と、前記
基板上にコンタクト層を堆積した後、このコンタクト層
と前記活性層とをパタ−ニングする工程と、前記基板上
に導電膜を堆積した後、この導電膜と前記コンタクト層
とをパタ−ニングしてソ−ス・ドレイン電極を形成する
工程とを有することを特徴とする薄膜トランジスタの製
造方法。
2. A step of forming a gate electrode with a tapered end on a transparent substrate, and sequentially depositing a gate insulating film, an active layer, and a channel protective film on the substrate. a step of applying a resist on the channel protective film and then irradiating the resist with light from the back side of the substrate to form a resist pattern; and applying the resist pattern to the channel protective film using the resist pattern as a mask. After depositing a contact layer on the substrate, patterning the contact layer and the active layer; After depositing a conductive film on the substrate, patterning the conductive film. A method for manufacturing a thin film transistor, comprising the step of patterning the contact layer to form source/drain electrodes.
JP03097584A 1991-04-26 1991-04-26 Thin film transistor and method of manufacturing the same Expired - Lifetime JP3093314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03097584A JP3093314B2 (en) 1991-04-26 1991-04-26 Thin film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03097584A JP3093314B2 (en) 1991-04-26 1991-04-26 Thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04326769A true JPH04326769A (en) 1992-11-16
JP3093314B2 JP3093314B2 (en) 2000-10-03

Family

ID=14196290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03097584A Expired - Lifetime JP3093314B2 (en) 1991-04-26 1991-04-26 Thin film transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3093314B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977192B2 (en) 1996-03-10 2005-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film semiconductor device
KR100631458B1 (en) * 1997-02-17 2007-03-02 산요덴키가부시키가이샤 Thin film transistor and method for manufacturing the same
JP2011023740A (en) * 1995-12-22 2011-02-03 Thomson Licensing Method for forming amorphous silicon thin film transistor on surface of substrate
JP2011228689A (en) * 2010-04-02 2011-11-10 Semiconductor Energy Lab Co Ltd Semiconductor device
US8297991B2 (en) 1998-11-11 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Exposure device, exposure method and method of manufacturing semiconductor device
JP2018011072A (en) * 2011-01-28 2018-01-18 株式会社半導体エネルギー研究所 Display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023740A (en) * 1995-12-22 2011-02-03 Thomson Licensing Method for forming amorphous silicon thin film transistor on surface of substrate
US6977192B2 (en) 1996-03-10 2005-12-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film semiconductor device
US7763503B2 (en) 1996-03-10 2010-07-27 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and method of manufacturing the same
KR100631458B1 (en) * 1997-02-17 2007-03-02 산요덴키가부시키가이샤 Thin film transistor and method for manufacturing the same
US8476665B2 (en) 1998-11-11 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Display device
US8297991B2 (en) 1998-11-11 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Exposure device, exposure method and method of manufacturing semiconductor device
US8859947B2 (en) 1998-11-11 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Display device comprising at least dual transistor electrically connected to dual parallel wiring
US9366971B2 (en) 1998-11-11 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device comprising dual transistor with LDD regions overlapping the gate electrodes and one of a source electrode and a drain electrode of first transistor is electrically connected to the second gate electrode
JP2011228689A (en) * 2010-04-02 2011-11-10 Semiconductor Energy Lab Co Ltd Semiconductor device
US9842937B2 (en) 2010-04-02 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor film and a metal oxide film
US10714626B2 (en) 2010-04-02 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11380800B2 (en) 2010-04-02 2022-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2018011072A (en) * 2011-01-28 2018-01-18 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JP3093314B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
KR100681895B1 (en) Thin-film transistors and method for producing the same, and an electronic device and a liquid crystal display
USRE41632E1 (en) Liquid crystal display device and method of manufacturing the same
US8134158B2 (en) TFT-LCD pixel unit and method for manufacturing the same
JP4221314B2 (en) THIN FILM TRANSISTOR, LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND METHOD FOR PRODUCING THE THIN FILM TRANSISTOR
KR100844392B1 (en) Thin film transistors and their manufacture method
JPH09292632A (en) Matrix array of active matrix liquid crystal display device and liquid crystal display device as well as their production
US5892246A (en) Polysilicon TFT having exact alignment between the source/drain and the gate electrode
US7655947B2 (en) Thin film transistor used as a switching element in an active matrix type liquid crystal display device
US6391499B1 (en) Light exposure mask and method of manufacturing the same
KR20160101211A (en) Thin film transistor array substrate and producing method thereof
JP2678044B2 (en) Active matrix substrate manufacturing method
EP0449404A1 (en) Method of manufacturing a thin-film semiconductor device on a transparent insulative substrate
JP3706043B2 (en) Manufacturing method of matrix substrate for liquid crystal
KR100272266B1 (en) Thin film transistor and method of manufacturing same
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
US20050148123A1 (en) Method for fabricating self-aligned thin-film transistor
US5597747A (en) Method of making inverted thin film transistor using backsick exposure and negative photoresist
JPH04326769A (en) Thin film transistor and manufacture thereof
JP3706033B2 (en) Manufacturing method of matrix substrate for liquid crystal
JPS61191072A (en) Thin film transistor and manufacture thereof
JPH0488641A (en) Manufacture of thin film transistor
JPS62239580A (en) Thin film transistor
JP3536518B2 (en) Polycrystalline semiconductor TFT, manufacturing method thereof, and TFT substrate
US5889290A (en) Thin film transistor and manufacturing method thereof
JPH07142737A (en) Manufacture of thin-film transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11