JP3262003B2 - 多気筒内燃機関の出力変動検出方法 - Google Patents

多気筒内燃機関の出力変動検出方法

Info

Publication number
JP3262003B2
JP3262003B2 JP33729796A JP33729796A JP3262003B2 JP 3262003 B2 JP3262003 B2 JP 3262003B2 JP 33729796 A JP33729796 A JP 33729796A JP 33729796 A JP33729796 A JP 33729796A JP 3262003 B2 JP3262003 B2 JP 3262003B2
Authority
JP
Japan
Prior art keywords
cylinder
angular velocity
amount
torque fluctuation
elapsed time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33729796A
Other languages
English (en)
Other versions
JPH10176590A (ja
Inventor
信之 柴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33729796A priority Critical patent/JP3262003B2/ja
Priority to US08/989,418 priority patent/US6199426B1/en
Priority to DE69729056T priority patent/DE69729056T2/de
Priority to EP97122144A priority patent/EP0849581B1/en
Publication of JPH10176590A publication Critical patent/JPH10176590A/ja
Application granted granted Critical
Publication of JP3262003B2 publication Critical patent/JP3262003B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は多気筒内燃機関にお
ける出力変動検出方法に関する。
【0002】
【従来の技術】クランクシャフトが圧縮上死点後30°
から60°まで回転するのに要する時間からこのにお
けるクランクシャフトの第1の角速度を求め、クランク
シャフトが圧縮上死点後90°から120°まで回転す
るのに要する時間からこの間におけるクランクシャフト
の第2の角速度を求め、第1の角速度の2乗と第2の角
速度の2乗から気筒が発生するトルクを求め、この発生
トルクの変動量からトルク変動量を算出するようにした
内燃機関が公知である。(特公平7−33809号公報
参照)。
【0003】即ち、各気筒において燃焼が行われると燃
焼圧によってクランクシャフトの角速度は第1の角速度
ωaから第2の角速度ωbへ上昇せしめられる。このと
き、機関の回転慣性モーメントをIとすると燃焼圧によ
って運動エネルギが(1/2)・Iωa2 から(1/
2)・Iωb2 へ上昇せしめられる。概略的に云うとこ
の運動エネルギの上昇量(1/2)・I・(ωb2 −ω
2 )によってトルクが発生するので発生トルクは(ω
2 −ωa2 )に比例することになる。従って発生トル
クは第1の角速度ωaの2乗と第2の角速度ωbの2乗
との差から求まることになり、従って上述の内燃機関で
はこのようにして求めた発生トルクからトルク変動量を
算出するようにしている。
【0004】
【発明が解決しようとする課題】しかしながらこのよう
に角速度ωa,ωbに基づいて発生トルクを算出すると
例えば機関駆動系が捩り振動したときに角速度ωa,ω
bに基づき算出された発生トルクが真の発生トルクを表
わさなくなる。即ち、機関駆動系に捩り振動が発生して
いないときには第2の角速度ωbは第1の角速度ωaに
対して燃焼圧による角速度増大分だけ増大する。これに
対して機関駆動系に捩り振動が発生すると第2の角速度
ωbは燃焼圧による角速度増大分に加え、第1の角速度
ωaを検出してから第2の角速度ωbを検出するまでの
間における機関駆動系の捩り振動による角速度の変化分
を含むことになる。例えば第1の角速度ωaを検出して
から第2の角速度ωbを検出するまでの間に機関駆動系
の捩り振動により角速度が増大したとすると第1の角速
度ωaに対する第2の角速度ωbの増大分は燃焼圧によ
る角速度増大分に加え、機関駆動系の捩り振動による角
速度増大分を含むことになる。従って機関駆動系に捩り
振動が発生すると燃焼圧による第2の角速度ωbの増大
分が一定であったとしても、即ち発生トルクが変化して
いない場合であっても角速度ωa,ωbに基づいて算出
された発生トルクは変動し、斯くして真のトルク変動を
算出することができないという問題がある。
【0005】
【課題を解決するための手段】上記問題点を解決するた
めに第1の発明によれば、第1の気筒と第1の気筒の次
に燃焼が行われる第2の気筒とを具備した多気筒内燃機
関の出力変動検出方法において、各気筒に対し圧縮行程
末期から爆発行程初期までのクランク角度領域内に第1
のクランク角度範囲を設定すると共に第1のクランク角
度範囲から一定のクランク角を隔てた爆発行程中期のク
ランク角度領域内に第2のクランク角度範囲を設定して
第1のクランク角度範囲内におけるクランクシャフトの
第1の角速度を検出すると共に第2のクランク角度範囲
内におけるクランクシャフトの第2の角速度を検出し、
第1の気筒および第2の気筒について夫々先の燃焼時に
おける第1の角速度と次の燃焼時における第1の角速度
との変化量を求めると共に、これら変化量と第1の気筒
の先の燃焼時における第2の角速度とに基づいて第1の
気筒の出力が変動しないと仮定したときの第1の気筒の
次の燃焼時における仮想の第2の角速度を求め、第1の
気筒の次の燃焼時における実際の第2の角速度と仮想の
第2の角速度に基づいて第1の気筒の出力変動を検出す
るようにしている。即ち機関駆動系に捩り振動が発生し
ていたとしても第1の気筒の出力が変動していない場合
には実際の第2の角速度と仮想の第2の角速度とは等し
くなり、第1の気筒の出力が変動すると実際の第2の角
速度と仮想の第2の角速度との間で差を生ずる。従って
実際の第2の角速度と仮想の第2の角速度に基づいて第
1の気筒の出力変動を検出することができる。
【0006】2番目の発明では1番目の発明において、
実際の第2の角速度と仮想の第2の角速度との偏差から
第1の気筒の出力変動量を求めるようにしている。3番
目の発明では1番目の発明において、実際の第2の角速
度の2乗と仮想の第2の角速度の2乗との偏差から第1
の気筒の出力トルク変動量を求めるようにしている。
【0007】4番目の発明では3番目の発明において、
出力トルク変動量を各気筒毎に求め、これらの出力トル
ク変動量から機関の出力トルク変動量を求めるようにし
ている。5番目の発明では4番目の発明において、各気
筒について第1の角速度の変化量を求めると共にこの変
化量の変動の振幅を求め、この振幅が予め定められた振
幅よりも大きくなったときには上述の変化量が最大又は
最小となった気筒の出力トルク変動量を機関の出力トル
ク変動量の算出に用いることを禁止するようにしてい
る。即ち、路面の凸凹が激しくなると第1の角速度ωa
の変化量変動の振幅が大きくなる。このように第1の角
速度ωaの変化量の変動の振幅が大きくなると第1の角
速度ωaの変化量が増大から減少、又は減少から増大に
移行するときに、即ち第1の角速度ωaの変化量が最大
又は最小になったときに仮想の第2の角速度の算出値が
正規の値からずれてしまい、その結果第1の角速度ωa
の変化量が最大又は最小となる気筒について算出された
発生トルクが真の発生トルクを表わさなくなる。そこで
5番目の発生では第1の角速度ωaの変化量の変動の振
幅が大きくなったときには真の発生トルクを算出するの
が困難な気筒についてはトルク変動量を求めるに当って
除外するようにしている。
【0008】6番目の発明では1番目の発明において、
機関の運転時において燃料の供給が停止されたときに第
1の角速度の平均的な減少率を求めると共にこの平均的
な減少率でもって減少したときの第1の角速度を求め、
この平均的な減少率でもって減少したときの第1の角速
度に対する実際に検出された第1の角速度のずれ量に基
づいて実際に検出された第1の角速度を補正し、補正さ
れた第1の角速度を用いて第1の気筒の出力変動を検出
するようにしている。
【0009】即ち、角速度の検出値が正確でないときに
は第1の気筒の出力変動を正確に求めることができな
い。そこで6番目の発明では角速度の検出値が正確でな
い場合でも出力変動を求めるために用いる第1の角速度
ωaをできるだけ正確に求めるために平均的な減少率で
もって減少したときの第1の角速度に対する実際に検出
された第1の角速度のずれ量を求め、このずれ量に基づ
いて実際に検出された第1の角速度を補正するようにし
ている。なお、このずれ量の算出は機関駆動系の捩り振
動が発生しない燃料の供給停止時に行われる。
【0010】7番目の発明では1番目の発明において、
機関の運転時において燃料の供給が停止されたときに第
2の角速度の平均的な減少率を求めると共にこの平均的
な減少率でもって減少したときの第2の角速度を求め、
この平均的な減少率でもって減少したときの第2の角速
度に対する実際に検出された第2の角速度のずれ量に基
づいて実際に検出された第2の角速度を補正し、補正さ
れた第2の角速度を用いて第1の気筒の出力変動を検出
するようにしている。
【0011】即ち、角速度の検出値が正確でないときに
は第1の気筒の出力変動を正確に求めることができな
い。そこで7番目の発明では角速度の検出値が正確でな
い場合でも出力変動を求めるために用いる第2の角速度
ωbをできるだけ正確に求めるために平均的な減少率で
もって減少したときの第2の角速度に対する実際に検出
された第2の角速度のずれ量を求め、このずれ量に基づ
いて実際に検出された第2の角速度を補正するようにし
ている。なお、このずれ量の算出は機関駆動系の捩り振
動が発生しない燃料の供給停止時に行われる。
【0012】
【発明の実施の形態】図1を参照すると、1は1番気筒
#1、2番気筒#2、3番気筒#3、4番気筒#4から
なる4つの気筒を具備した機関本体を示す。各気筒#
1,#2,#3,#4は夫々対応する吸気枝管2を介し
てサージタンク3に連結され、各吸気枝管2内には夫々
対応する吸気ポート内に向って燃料を噴射する燃料噴射
弁4が取付けられる。サージタンク3は吸気ダクト5お
よびエアフローメータ6を介してエアクリーナ7に連結
され、吸気ダクト5内にはスロットル弁8が配置され
る。一方、各気筒#1,#2,#3,#4は排気マニホ
ルド9および排気管10を介してNOx 吸収剤11を内
蔵したケーシング12に連結される。このNOx 吸収剤
11は空燃比がリーンのときに排気ガス中に含まれるN
x を吸収し、空燃比が理論空燃比又はリッチになると
吸収したNOx を放出しかつ還元する機能を有する。
【0013】電子制御ユニット20はディジタルコンピ
ュータからなり、双方向性バス21によって相互に接続
されたROM(リードオンリメモリ)22、RAM(ラ
ンダムアクセスメモリ)23、CPU(マイクロプロセ
ッサ)24、常時電源に接続されたバックアップRAM
25、入力ポート26および出力ポート27を具備す
る。機関の出力軸13には外歯付ロータ14が取付けら
れ、ロータ14の外歯に対面して電磁ピックアップから
なるクランク角センサ15が配置される。図1に示され
る実施例ではロータ14の外周上に30°クランク角度
毎に外歯が形成されており、例えば1番気筒の圧縮上死
点を検出するために一部の外歯が削除されている。従っ
てこの外歯が削除された部分、即ち欠歯部分を除いてク
ランク角センサ15は出力軸13が30°クランク角度
回転する毎に出力パルスを発生し、この出力パルスが入
力ポート26に入力される。
【0014】エアフローメータ6は吸入空気量に比例し
た出力電圧を発生し、この出力電圧が対応するAD変換
器28を介して入力ポート26に入力される。また、ス
ロットル弁8にはスロットル弁8がアイドリング開度に
あることを検出するためのアイドルスイッチ16が取付
けられ、このアイドルスイッチ16の出力信号が入力ポ
ート26に入力される。また、排気マニホルド9内には
空燃比を検出するための空燃比センサ(O2 センサ)1
7が配置されており、この空燃比センサ17の出力信号
が対応するAD変換器28を介して入力ポート26に入
力される。一方、出力ポート27は対応する駆動回路2
9を介して各燃料噴射弁4に接続される。
【0015】図1に示す内燃機関では燃料噴射時間TA
Uが次式に基づいて算出される。 TAU=TP・FLEAN・FLLFB・FAF+TA
UV ここでTPは基本燃料噴射時間を、FLEANはリーン
補正係数を、FLLFBはリーンリミットフィードバッ
ク補正係数を、FAFは理論空燃比フィードバック補正
係数を、TAUVは無効噴射時間を夫々示している。
【0016】基本燃料噴射時間TPは空燃比を理論空燃
比とするのに必要な噴射時間を示している。この基本燃
料噴射時間TPは実験により求められ、この基本燃料噴
射時間TPは機関負荷Q/N(吸入空気量Q/機関回転
数N)および機関回転数Nの関数として図2に示すマッ
プの形で予めROM22内に記憶されている。リーン補
正係数FLEANは空燃比を目標リーン空燃比とするた
めの補正係数であり、このリーン補正係数FLEANは
機関負荷Q/Nおよび機関回転数Nの関数として図4に
示すマップの形で予めROM22内に記憶されている。
【0017】リーンリミットフィードバック補正係数F
LLFBは空燃比をリーン限界に維持するための補正係
数である。本発明による実施例では吸入空気量Qと機関
回転数Nに対してリーン空燃比フィードバック制御に対
する学習領域が図5に示されるように例えば9つの領域
で分けられており、各学習領域に対して夫々リーンリミ
ットフィードバック補正係数FLLFB11〜FLLFB
33が設定されている。
【0018】理論空燃比フィードバック補正係数FAF
は空燃比を理論空燃比に維持するための係数である。理
論空燃比フィードバック補正係数FAFは空燃比を理論
空燃比に維持すべきときに空燃比センサ17の出力信号
に基づいて制御され、このとき理論空燃比フィードバッ
ク補正係数FAFはほぼ1.0を中心として上下動す
る。
【0019】図4に示されるように破線により囲まれた
運転領域内については機関の運転状態に応じてリーン補
正係数FLEANが定められており、この運転領域内で
は空燃比が目標リーン空燃比に維持される。これに対し
て図4の破線で囲まれた領域外の運転領域では空燃比が
理論空燃比に維持される。空燃比を理論空燃比に維持す
べきときにはリーン補正係数FLEANおよびリーンリ
ミットフィードバック補正係数FLLFBは1.0に固
定され、理論空燃比フィードバック補正係数FAFが空
燃比センサ17の出力信号に基づいて制御される。
【0020】一方、空燃比を目標リーン空燃比に維持す
べきときには理論空燃比フィードバック補正係数FAF
が1.0に固定され、即ち空燃比センサ17の出力信号
に基づくフィードバック制御が停止され、リーン補正係
数FLEANとリーンリミットフィードバック補正係数
FLLFBとにより空燃比が目標リーン空燃比に制御さ
れる。
【0021】次に図3を参照しつつリーンリミットフィ
ードバック制御について説明する。図3は機関出力トル
ク変動量およびNOx 発生量と空燃比との関係を示して
いる。空燃比がリーンになるほど燃料消費率は小さくな
り、また空燃比がリーンになるほどNOx の発生量が少
なくなる。従ってこれらの点からみると空燃比はできる
だけリーンにすることが好ましいことになる。ところが
空燃比が或る程度以上リーンになると燃焼が不安定とな
り、その結果図3に示されるようにトルク変動量が大き
くなる。そこで本発明による実施例では図3に示される
ようにトルク変動が増大し始める空燃比制御領域内に空
燃比を維持するようにしている。
【0022】即ち具体的に云うとリーン補正係数FLE
ANはリーンリミットフィードバック補正係数FLLF
BをFLLFB=1.0としたときに空燃比が図3に示
される空燃比制御領域の中央部となるように定められて
いる。一方、リーンリミットフィードバック補正係数F
LLFBはトルク変動量に応じて図3に示されるトルク
変動制御領域内において制御され、トルク変動量が大き
くなればリーンリミットフィードバック補正係数FLL
FBが増大せしめられ、即ち空燃比が小さくされ、トル
ク変動量が小さくなればリーンリミットフィードバック
補正係数FLLFBが減少せしめられ、即ち空燃比が大
きくされる。このようにして空燃比が図3に示される空
燃比制御領域内に制御される。
【0023】なお、リーンリミットフィードバック補正
係数FLLFBはリーン補正係数FLEANが定められ
ている機関運転領域をカバーするように設定されてい
る。トルク変動量が図3に示されるトルク変動制御領域
内に制御されると良好な車両の運転性を確保しつつ燃料
消費率およびNOx の発生量を大巾に低減することがで
きる。ただし、このようにトルク変動量をトルク変動制
御領域内に制御するためにはトルク変動量を検出しなけ
ればならない。
【0024】ところでトルク変動量を算出する方法は従
来より種々の方法が提案されている。代表的な例を挙げ
ると燃焼室内に燃焼圧センサを取付けてこの燃焼圧セン
サの出力信号に基づきトルク変動量を算出する方法や、
或いは冒頭で述べたように第1の角速度ωaの2乗と第
2の角速度ωbの2乗との差に基づいてトルク変動量を
算出する方法が挙げられる。
【0025】燃焼圧センサを用いると燃焼圧センサを取
付けた気筒が発生するトルクを確実に検出することがで
きるという利点がある反面、燃焼圧センサが必要である
という欠点を有している。これに対して角速度ωa,ω
bは従来より内燃機関が備えているクランク角センサの
出力信号から算出することができるので角速度ωa,ω
bに基づき出力トルクを算出するようにした場合には新
たなセンサを設ける必要がないという利点がある。ただ
し、この場合冒頭に述べたように機関駆動系が捩り振動
を生ずるとトルク変動量を正確に検出できなくなるとい
う問題を有している。しかしながらこの問題を解決しさ
えすれば新たなセンサを必要としない角速度に基づくト
ルク算出方法の方が好ましいことは明らかである。そこ
で本発明では発生トルクを角速度に基づき算出するよう
にし、その際機関駆動系が捩り振動を生じたとしてもト
ルク変動量を正確に検出しうるようにしている。
【0026】次に機関の出力変動およびトルク変動を算
出するための本発明による新たな方法について説明す
る。まず初めに、機関駆動系が捩り振動を生じていない
定常運転時を示す図6(A),(B)を参照しつつ各気
筒が発生する駆動力および各気筒が発生するトルクを算
出する方法について説明する。前述したようにクランク
角センサ15はクランクシャフトが30°クランク角度
回転する毎に出力パルスを発生し、更にクランク角セン
サ15は各気筒#1,#2,#3,#4の圧縮上死点T
DCにおいて出力パルスを発生するように配置されてい
る。従ってクランク角センサ15は各気筒#1,#2,
#3,#4の圧縮上死点TDCから30°クランク角毎
に出力パルスを発生することになる。なお、本発明にお
いて用いられている内燃機関の点火順序は1−3−4−
2である。
【0027】図6(A),(B)において縦軸T30は
クランク角センサ15が出力パルスを発生してから次の
出力パルスを発生するまでの30°クランク角度の経過
時間を表わしている。また、Ta(i)はi番気筒の圧
縮上死点(以下TDCと称す)から圧縮上死点後(以下
ATDCと称す)30°までの経過時間を示しており、
Tb(i)はi番気筒のATDC60°からATDC9
0°までの経過時間を示している。従って例えばTa
(1)は1番気筒のTDCからATDC30°までの経
過時間を示しており、Tb(1)は1番気筒のATDC
60°からATDC90°までの経過時間を示している
ことになる。一方、30°クランク角度を経過時間T3
0で除算するとこの除算結果は角速度ωを表わしてい
る。本発明による実施例では30°クランク角度/Ta
(i)をi番気筒における第1の角速度ωaと称し、3
0°クランク角度/Tb(i)をi番気筒における第2
の角速度ωbと称する。従って30°クランク角度/T
a(1)は1番気筒の第1の角速度ωaを表わし、30
°クランク角度/Tb(1)は1番気筒の第2の角速度
ωbを表わすことになる。
【0028】図6(A),(B)の1番気筒に注目して
みると、燃焼が開始されて燃焼圧が高まると経過時間が
Ta(1)からTb(1)まで低下し、次いでTb
(1)から再び上昇する。云い換えるとクランクシャフ
トの角速度ωが第1の角速度ωaから第2の角速度ωb
まで上昇し、次いで第2の角速度ωbから再び下降す
る。即ち、燃焼圧によってクランクシャフトの角速度ω
が第1の角速度ωaから第2の角速度ωbへと増大せし
められたことになる。図6(A)は燃焼圧が比較的高い
場合を示しており、図6(B)は燃焼圧が比較的低い場
合を示している。図6(A),(B)から燃焼圧が高い
場合には燃焼圧が低い場合に比べて経過時間の減少量
(Ta(i)−Tb(i))が大きくなり、従って角速
度ωの増大量(ωb−ωa)が大きくなることがわか
。燃焼圧が高くなればその気筒の発生する駆動力が大
きくなり、従って角速度ωの増大量(ωb−ωa)が大
きくなれば気筒の発生する駆動力が大きくなることにな
る。従って第1の角速度ωaと第2の角速度ωbとの差
(ωb−ωa)から気筒の発生する駆動力を算出するこ
とができる。
【0029】一方、機関の回転慣性モーメントをIとす
ると燃焼圧によって運動エネルギが(1/2)Iωa2
から(1/2)Iωb2 に増大せしめられる。この運動
エネルギの増大量(1/2)・I・(ωb2 −ωa2
はその気筒が発生するトルクを表わしており、従って第
1の角速度ωaの2乗と第2の角速度ωbの2乗との差
(ωb2 −ωa2 )から気筒の発生するトルクを算出で
きることになる。
【0030】このように第1の角速度ωaと第2の角速
度ωbを検出すればこれらの検出値から対応する気筒の
発生する駆動力および対応する気筒の発生するトルクを
算出できることになる。なお、図6(A),(B)に示
される経過時間T30の変化は機関によって若干異な
り、従って第1の角速度ωaを検出すべきクランク角度
範囲および第2の角速度ωbを検出すべきクランク角度
範囲は機関に応じて(ωb−ωa)が機関の発生する駆
動力を最もよく表わすように、或いは(ωb2 −ω
2 )が機関の発生するトルクを最もよく表わすように
定められる。従って機関によっては第1の角速度ωaを
検出すべきクランク角度範囲が圧縮上死点前BTDC3
0°からTDCであり、第2の角速度ωbを検出すべき
クランク角度範囲がATDC90°からATDC120
°となることもあり得る。
【0031】従って各角速度ωa,ωbの検出のしかた
について一般的に表現すると、圧縮行程末期から爆発行
程初期までのクランク角度領域内に第1のクランク角度
範囲を設定し、第1のクランク角度範囲から一定のクラ
ンク角を隔てた爆発行程中期のクランク角度領域内に第
2のクランク角度範囲を設定し、第1のクランク角度範
囲内におけるクランクシャフトの第1の角速度ωaを検
出し、第2のクランク角度範囲内におけるクランクシャ
フトの第2の角速度ωbを検出するということになる。
【0032】上述したように角速度ωa,ωbを検出す
れば検出値に基づいて対応する気筒の発生する駆動力お
よびトルクを算出することができる。しかしながら機関
駆動系には各気筒において順次行われる爆発作用により
駆動系の固有振動数でもって振動する捩り振動が発生し
ており、このように機関駆動系に捩り振動が発生してい
ると角速度ωa,ωbに基づいて気筒の発生する駆動力
およびトルクを正確に算出することができなくなる。次
にこのことについて図7および図8を参照しつつ説明す
る。
【0033】図7は機関駆動系に捩り振動が発生してい
るときに各気筒に対し順次算出される経過時間Ta
(i)の変化を示している。機関駆動系に捩り振動が発
生するとこの捩り振動によってクランクシャフトの角速
度が周期的に増大減少せしめられるので経過時間Ta
(i)は図7に示されるように周期的に増大減少するこ
とになる。
【0034】一方、図8は図7において経過時間Ta
(i)が減少している部分を拡大して示している。図8
に示されるように経過時間Ta(i)はTa(1)とT
a(3)との間でho時間だけ減少しており、このho
時間の減少は捩り振動による捩れ量の増大によるものと
考えられる。この場合、Ta(1)とTa(3)との間
では捩り振動による経過時間の減少量は時間の経過と共
にほぼ直線的に増大するものと考えられ、従ってこの捩
り振動による経過時間の減少量はTa(1)およびTa
(3)を結ぶ破線とTa(1)を通る水平線との差で表
わされることになる。従ってTa(1)とTb(1)と
の間では捩り振動によって経過時間がhだけ減少してい
ることになる。
【0035】このように機関駆動系に捩り振動が発生す
るとTb(1)はTa(1)に対して経過時間が減少
し、この減少した経過時間は燃焼圧による経過時間の減
少量fと捩り振動による経過時間の減少量hとを含んで
いることになる。従って燃焼圧により減少した経過時間
Tb(1)だけを求めるためにはTb(1)にhを加算
しなければならないことになる。即ち、検出された経過
時間Ta(i)およびTb(i)に基づいて各気筒が発
生する駆動力或いはトルクを求めても真の駆動力或いは
トルクを求めることができず、斯くして真の機関の出力
変動或いはトルク変動を求めることができない。
【0036】更に、多気筒内燃機関ではこのような機関
駆動系の捩り振動に加えてクランクシャフト自体の捩り
振動を発生し、このようなクランクシャフト自体の捩り
振動が発生した場合にも真の機関の出力変動或いはトル
ク変動を求めることができなくなる。次にこのことにつ
いて図9を参照しつつ説明する。多気筒内燃機関、例え
ば図1に示されるような4気筒内燃機関では1番気筒お
よび2番気筒において大きなクランクシャフト自体の捩
り振動が発生する。即ち、クランクシャフト自体の捩り
振動がほとんど発生しない気筒、例えば3番気筒#3で
は図9に示されるようにTa(3)からTb(3)に向
けて経過時間は徐々に減少するが1番気筒#1において
はTa(1)からTb(1)に向けて経過時間は徐々に
減少せず、クランクシャフト自体の捩り振動によってT
b(1)の経過時間が長くなってしまう。その結果、1
番気筒#1については検出された経過時間Ta(1)お
よびTb(1)に基づいて1番気筒#1が発生する駆動
力或いはトルクを求めても真の駆動力或いはトルクを求
めることができず、斯くして真の機関の出力変動或いは
トルク変動を求めることができない。
【0037】そこで本発明では機関駆動系の捩り振動が
発生しても、またクランクシャフト自体の捩り振動が発
生しても真の機関の出力変動或いはトルク変動を算出す
ることができる新たな算出方法を採用している。次にこ
の新たな算出方法について図10を参照しつつ説明す
る。図10においてTa(1)j-1 およびTb(1)
j-1 は1番気筒#1の先の燃焼時における経過時間を表
しており、Ta(1)j およびTb(1)j は1番気筒
#1の次の燃焼時における経過時間を表している。一
方、Ta(3)j-1 は1番気筒#1の先の燃焼にひき続
いて行われる3番気筒#3の先の燃焼時における経過時
間を表しており、Ta(3)j は3番気筒#3の次の燃
焼時における経過時間を表わしている。
【0038】まず初めにTa(1)j とTa(1)j-1
との差DTa(1)(=Ta(1) j −Ta
(1)j-1 )、およびTa(3)j とTb(3)j-1
の差DTa(3)(=Ta(3)j −Ta(3)j-1
とを求める。次いで1番気筒#1の先の燃焼時の出力ト
ルクと次の燃焼時の出力トルクとが同一であったと仮定
したときの1番気筒#1の次の燃焼時におけるATDC
60°からATDC90°までの仮想の経過時間をT
b′(1)j とし、このTb′(1)j とTb(1)
j-1 との差Kb(1)(=Tb′(1)j −Tb(1)
j-1 )を求める。これらの差DTa(1),Kb(1)
およびDTa(3)を一直線上における高さとして書き
直すと図11に示されるようになる。
【0039】図11に示されるように経過時間差DTa
(1)とDTa(3)との間では経過時間差がI0 時間
だけ減少している。クランクシャフト自体に捩り振動が
発生したとしてもこの捩り振動による影響は経過時間差
には表れず、従って経過時間差のI0 時間の減少は機関
駆動系の捩り振動によるものである。この場合、DTa
(1)とDTa(3)との間では機関駆動系の捩り振動
による経過時間差の減少量は時間の経過と共にほぼ直線
的に増大するものと考えられる。従って1番気筒#1の
先の燃焼時の出力トルクと次の燃焼時の出力トルクとが
同一であると仮定すると経過時間差DTa(1)とKb
(1)との間では機関駆動系の捩り振動によって経過時
間差がIだけ減少するものと考えられる。従って図11
からわかるように1番気筒#1の先の燃焼時の出力トル
クと次の燃焼時の出力トルクとが同一であると仮定した
場合に経過時間差Kb(1)は次式で表される。
【0040】 Kb(1)=(2DTa(1)+DTa(3))/3 ところで1番気筒#1の先の燃焼時の出力トルクと次の
燃焼時の出力トルクとが同一であると仮定したときの1
番気筒#1の仮想の経過時間Tb′(1)j は次式で表
される。 Tb′(1)j =Tb(1)j-1 +Kb(1) 従って1番気筒#1の先の燃焼時の出力トルクと次の燃
焼時における出力トルクが同一であると仮定したときの
1番気筒#1の次の燃焼時における仮想の出力トルクD
SN(1)は次式で表される。 DSN(1)={30°/Tb′(1)j 2 −{30°/Ta(1)j 2 ={30°/(Tb(1)j-1 +Kb(1))}2 −{30°/Ta(1)j 2 一方、1番気筒#1の次の燃焼時におけるATDC60
°からATDC90°までの実際の経過時間Tb(1)
j を用いて実際の出力トルクを算出するとこの出力トル
クDN(1)は次式で表される。
【0041】DN(1)={30°/Tb(1)j 2
−{30°/Ta(1)j 2 この場合、1番気筒#1の仮想の出力トルクDSN
(1)と実際の出力トルクDN(1)との差は1番気筒
#1のトルク変動量を表しており、従って1番気筒#1
のトルク変動量DLN(1)は次式で表されることにな
る。 DLN(1)=DNS(1)−DN(1)={30°/
Tb′(1)j 2−{30°/Tb(1)j 2 一般的に表すとi番気筒のトルク変動量DLN(i)は
次式で表すことができる。
【0042】DLN(i)=DNS(i)−DN(i)
={30°/Tb′(i)}2−{30°/Tb
(i)}2 即ち、i番気筒のトルク変動量はi番気筒の仮想の第2
の角速度の2乗と実際の第2の角速度の2乗との偏差か
ら求まることになる。このような方法でもってトルク変
動量を算出することによって機関駆動系に捩り振動が発
生したとしても、更にクランクシャフト自体に捩り振動
が発生したとしても各気筒のトルク変動量を正確に検出
できることになる。
【0043】一方、このような方法でもってトルク変動
量を算出する場合、ロータ14(図1)の外周に沿って
形成されている外歯の間隔にばらつきがあると各気筒の
トルク変動量を正確に検出することができない。そこで
本発明による実施例ではロータ14の外歯の間隔にばら
つきがあったとしても各気筒のトルク変動量を正確に検
出しうるように検出された各経過時間Ta(i),Tb
(i)を補正するようにしている。次に経過時間Ta
(i)の補正方法について図12を参照しつつ説明す
る。
【0044】本発明による実施例では経過時間Ta
(i)が次式に基づいて算出される。 Ta(i)=(i番気筒のTDCからATDC30°ま
での所要時間)・(1+KTa(i)) ここでKTa(i)はi番気筒に対する補正係数を表し
ており、これらの補正係数KTa(i)は機関駆動系の
捩り振動が発生せず、クランクシャフト自体の捩り振動
も発生しない減速運転時の燃料供給停止時に算出され
る。図12は減速運転時における経過時間Ta(i)の
変化を示している。減速運転時にはクランクシャフトの
回転速度が次第に低下するので経過時間Ta(i)はT
a(1)j-1 ,Ta(3)j-1 ,Ta(4)j-1 ,Ta
(2)j-1 ,Ta(1)j ,Ta(3)j ,Ta(4)
j ,Ta(2)j で表されるように次第に増大する。こ
のときロータ14の外歯の間隔が同一であったとすると
各経過時間Ta(i)は図12の実線に沿って変化する
ものと考えられ、検出された経過時間Ta(i)が図1
2の実線からずれている場合には図12の実線からずれ
ている経過時間Ta(i)を検出するための外歯の間隔
が正規の間隔からずれているものと考えられる。そこで
本発明による実施例では経過時間Ta(i)が図12に
示す直線からずれている場合にはその経過時間Ta
(i)が図12の実線上に位置するように経過時間Ta
(i)を補正係数KTa(i)によって補正するように
している。
【0045】具体的に云うと、本発明による実施例では
720°クランク角範囲(j−1),(j)…における
4気筒の経過時間Ta(i)の平均値TaAVj-1 {=
(Ta(1)j-1 +Ta(3)j-1 +Ta(4)j-1
Ta(2)j-1 )/4},TaAVj {=(Ta(1)
j +Ta(3)j +Ta(4)j +Ta(2)j )/
4},…を順次算出する。次いで各経過時間Ta(4)
j-1 ,Ta(2)j-1 ,Ta(1)j ,Ta(3)j
平均値TaAVj-1 から平均値TaAVj まで平均的な
一定の増大率でもって増大したと考え、平均的な一定の
増大率でもって増大したと考えたときの各気筒について
の経過時間AAV(4),AAV(2),AAV
(1),AAV(3)を次式より求める。
【0046】AAV(4)=(TaAVj −TaAV
j-1 )・(1/8)+TaAVj-1 AAV(2)=(TaAVj −TaAVj-1 )・(3/
8)+TaAVj-1 AAV(1)=(TaAVj −TaAVj-1 )・(5/
8)+TaAVj-1 AAV(3)=(TaAVj −TaAVj-1 )・(7/
8)+TaAVj-1 次いで次式に基づき各気筒についてこれら経過時間AA
V(4),AAV(2),AAV(1),AAV(3)
に対する実際に検出された経過時間Ta(4) j-1 ,T
a(2)j-1 ,Ta(1)j ,Ta(3)j のずれ割合
KAFC(4),KAFC(2),KAFC(1),K
AFC(3)を求める。
【0047】KAFC(4)={Ta(4)j-1 −AA
V(4)}/AAV(4) KAFC(2)={Ta(2)j-1 −AAV(2)}/
AAV(2) KAFC(1)={Ta(1)j −AAV(1)}/A
AV(1) KAFC(3)={Ta(3)j −AAV(3)}/A
AV(3) 次に次式を用いて基本補正係数KTaB(i)を各気筒
毎に求める。
【0048】KTaB(i)=KTa(i)j-1 −KA
FC(i)/4 即ち、各気筒に対するこれまでの補正係数KTa(i)
j-1 からずれ割合KAFC(i)の1/4を減算するこ
とによって基本補正係数KTaB(i)が算出される。
次いで基本補正係数KTaB(i)の平均値tKTaM
が次式に基づき算出される。
【0049】tKTaM={KTaB(1)+KTaB
(2)+KTaB(3)+KTaB(4)}/4 次いで次式に示されるように各基本補正係数KTaB
(i)から平均値tKTaMを減算することによって各
気筒に対する補正係数KTa(i)が算出される。
【0050】 KTa(i)=KTaB(i)−tKTaM 上述したように補正係数KTa(i)j-1 をずれ割合K
AFC(i)に基づいて直接補正せず、一旦基本補正係
数KTaB(i)を求めるようにしているのは次の理由
による。例えば1番気筒#1についてのみずれ割合KA
FC(1)が存在し、このずれ割合KAFC(1)に基
づいて1番気筒#1の補正係数KTa(1)のみを補正
したとする。この場合、1番気筒#1のみの経過時間T
a(1)が増大又は減少せしめられる。しかしながら1
番気筒#1のみの経過時間Ta(1)が増大又は減少せ
しめられると今度は残りの気筒#2,#3,#4の補正
係数KTa(2),KTa(3),KTa(4)がずれ
を生じることになる。
【0051】このような問題が生じないようにするため
に基本補正係数KTaB(i)を一旦求め、この基本補
正係数KTaB(i)から基本補正係数の平均値tKT
aMを減算することによって最終的な補正係数KTa
(i)を求めるようにしている。即ち、例えば1番気筒
#1の基本補正係数KTaB(1)が増大せしめられた
場合には全ての気筒#1,#2,#3,#4の基本補正
係数KTaB(i)から基本補正係数の平均値tKTa
Mが減算される。このように全ての気筒の基本補正係数
KTaB(i)からtKTaMが減算されると1番気筒
#1の補正係数KTa(1)は増大するが残りの気筒#
2,#3,#4の補正係数KTa(2),KTa
(3),KTa(4)は減少せしめられ、KTa
(1),KTa(2),KTa(3)およびKTa
(4)の和は常に零に維持される。このようにKTa
(1),KTa(2),KTa(3)およびKTa
(4)の和が常に零になるように各補正係数KTa
(i)を補正するといずれか一つの補正係数KTa
(i)が補正されても他の補正係数KTa(i)はずれ
を生じなくなる。
【0052】図12に示される実施例では例えば1番気
筒#1の経過時間Ta(1)j が平均的な一定の増大率
でもって増大したと考えたときの経過時間AAV(1)
よりも大きいときには1番気筒#1に対するずれ割合K
AFC(1)が正の値となる。その結果補正係数KTa
(1)は、ずれ割合KAFC(1)が零となるまで減少
せしめられ、ずれ割合KAFC(1)が零になると補正
係数KTa(1)の値は一定値に落ち着くことになる。
このとき経過時間Ta(1)は経過時間AVV(1)に
一致する。全ての気筒についての補正係数KTa(i)
が一定値に落ち着くとロータ14の回転速度が一定のと
きには補正係数KTa(i)を用いて補正された各気筒
の経過時間Ta(i)は全て等しくなる。従ってロータ
14の外歯の間隔にばらつきがあったとしても各気筒の
トルク変動を正確に検出することができる。
【0053】再びトルク変動の算出に話しを戻すと機関
駆動系に捩り振動が発生したときに経過時間差DTa
(i)は図10に示されるように変動する。しかしなが
らこの経過時間差DTa(i)は車両が凸凹道を走行し
たときにも変動し、しかもこのときにはDTa(i)の
変動巾が極めて大きくなる場合がある。図13は車両が
凸凹道を走行したときのDTa(i)の変動を示してお
り、図13のAMPは最小のDTa(i)と最大のDT
a(i)との差、即ち振幅を示している。この振幅AM
Pが小さいときにはこれまで述べた方法によって各気筒
の出力変動およびトルク変動を正確に検出することがで
きる。
【0054】しかしながら振幅AMPが大きくなるとD
Ta(i)が最大又は最小となる気筒の出力変動又はト
ルク変動を正確に検出できなくなる。即ち、図13にお
いて例えば最初にDTa(i)が最大になる気筒が1番
気筒#1であったとすると1番気筒#1の仮想の経過時
間差Kb(1)の捩り振動による減少量Iは図11のD
Ta(1)とDTa(3)とを結ぶ鎖線の傾きから求め
られる。しかしながらDTa(1)が最大となる付近で
は捩り振動による経過時間の増大量又は減少量はDTa
(2),DTa(1),DTa(3)を通る滑らかな曲
線で変化しており、従って1番気筒#1のKb(1)を
DTa(1)とDTa(3)から求めるとKb(1)の
値は実際の値よりもかなり小さく計算される。その結
果、Kb(1)が正規の値を示さなくなり、斯くして出
力変動量およびトルク変動量を正確に検出できなくな
る。振幅AMPが大きくなるとDTa(i)が最小とな
る気筒においても同じことが生ずる。
【0055】また、一つ前に燃焼が行われた気筒のDT
a(i)に対してDTa(i)が急変した気筒において
もKb(i)の値が実際の値からずれ、斯くして出力変
動およびトルク変動を正確に検出できなくなる。そこで
本発明による実施例では振幅AMPが大きいときにはD
Ta(i)が最大又は最小となる気筒については出力変
動量又はトルク変動量を求めずに、更に一つ前に燃焼が
行われた気筒のDTa(i)に対してDTa(i)が急
変した気筒についても出力変動量又はトルク変動量を求
めないようにしている。
【0056】次に図14から図25を参照しつつ各気筒
のトルク変動量を求めるためのルーチンについて説明す
る。なお、図25は各ルーチンにおいて行われる各値の
計算タイミングを示している。図14は30°クランク
角度毎に行われる割込みルーチンを示している。図14
を参照するとまず初めに経過時間差DTa(i)および
経過時間Tb(i)を算出するためのルーチン(ステッ
プ100)に進む。このルーチンは図15から図18に
示されている。次いでトルク変動の算出を許可するか否
かをチェックするためのルーチン(ステップ200)に
進む。このルーチンは図19から図21に示されてい
る。次いでトルク変動を算出するためのルーチン(ステ
ップ300)に進む。このルーチンは図23に示されて
いる。次いでトルク変動値の算出に用いるカウンタCD
LNIXの処理ルーチン(ステップ400)に進む。こ
のルーチンは図24に示されている。
【0057】経過時間差DTa(i)および経過時間T
b(i)の算出ルーチンを示す図15から図18を参照
すると、まず初めにステップ101において時刻TIM
EがTIMEOとされる。電子制御ユニット20は時刻
を表わすフリーランカウンタを備えており、このフリー
ランカウンタのカウント値から時刻TIMEが算出され
る。次いでステップ102では現在の時刻TIMEが取
込まれる。従ってステップ101のTIMEOは30°
クランク角度前の時刻を表わしていることになる。
【0058】次いでステップ103では現在i番気筒の
ATDC30°であるか否かが判別される。現在i番気
筒のATDC30°でない場合にはステップ111にジ
ャンプして現在i番気筒のATDC90°であるか否か
が判別される。現在i番気筒のATDC90°でない場
合には経過時間差DTa(i)および経過時間Tb
(i)の算出ルーチンを完了する。
【0059】これに対してステップ103において現在
i番気筒のATDC30°であると判別されたときには
ステップ104に進んで720°クランク角度前に算出
された経過時間Ta(i)がTaO(i)とされる。次
いでステップ105では次式に基づいてi番気筒のTD
CからATDC30°までの最終的な経過時間Ta
(i)が算出される。
【0060】Ta(i)=(TIME−TIMEO)・
(1+KTa(i)) 即ち、例えば現在1番気筒#1のATDC30°である
とすると1番気筒#1のTDCからATDC30°まで
の最終的な経過時間Ta(1)が(TIME−TIME
O)・(1+KTa(1))から算出される。ここで
(TIME−TIMEO)はクランク角センサ15によ
り実測された経過時間Ta(1)を表わしており、KT
a(1)はロータ13の外歯間隔による誤差を補正する
ための補正係数であり、従って(TIME−TIME
O)に(1+KTa(1))を乗算することによって得
られた最終的な経過時間Ta(1)はクランクシャフト
が30°クランク角度回転する間の経過時間を正確に表
わしていることになる。
【0061】次いでステップ106では今回算出された
経過時間Ta(i)から720°クランク角度前に算出
された経過時間TaO(i)を減算することによって経
過時間差DTa(i)(=Ta(i)−TaO(i))
が算出される。次いでステップ107では現在2番気筒
#2のATDC30°であるか否かが判別される。現在
2番気筒#2のATDC30°でないときにはステップ
110にジャンプし、一つ前に燃焼が行われた(i−
1)番気筒のトルク変動量を算出すべきことを示すフラ
グXCAL(i−1)がセット(XCAL(i−1)←
“1”)される。次いでステップ111に進む。本発明
による実施例では前述したように点火順序が1−3−4
−2であるので現在1番気筒#1のATDC30°であ
るとすると一つ前に燃焼が行われた2番気筒#2のトル
ク変動量を算出すべきことを示すフラグXCAL(2)
がセットされる。同様に図25に示される如く最終的な
経過時間Ta(3)が算出されるとフラグXCAL
(1)がセットされ、最終的な経過時間Ta(4)が算
出されるとフラグXCAL(3)がセットされ、最終的
な経過時間Ta(2)が算出されるとフラグXCAL
(4)がセットされる。
【0062】一方、ステップ111において現在i番気
筒のATDC90°であると判別されたときにはステッ
プ112に進んで720°クランク角度前に算出された
経過時間Tb(i)がTbO(i)とされる。次いでス
テップ113では次式に基づいてi番気筒のATDC6
0°からATDC90°までの最終的な経過時間Tb
(i)が算出される。
【0063】Tb(i)=(TIME−TIMEO)・
(1+KTb(i)) 即ち、例えば現在1番気筒#1のATDC90°である
とすると1番気筒#1のATDC60°からATDC9
0°までの最終的な経過時間Tb(1)が(TIME−
TIMEO)・(1+KTb(i))から算出される。
この場合にもロータ13の外歯間隔による誤差を補正す
るための値(1+KTb(i))が(TIME−TIM
EO)に乗算されているので最終的な経過時間Tb
(1)はクランクシャフトが30°クランク角度回転す
る間の経過時間を正確に表わしていることになる。次い
でステップ114では現在2番気筒#2のATDC90
°であるか否かが判別される。現在2番気筒#2のAT
DC90°でないときには経過時間差DTa(i)およ
び経過時間Tb(i)の算出ルーチンを完了する。
【0064】一方、ステップ107において現在2番気
筒#2のATDC30°であると判別されたときにはス
テップ108に進んで次式に基づき図12の720°ク
ランク角度範囲(j)における経過時間Ta(i)の平
均値TaAVj が算出される。 TaAVj =(Ta(1)+Ta(3)+Ta(4)+
Ta(2))/4 ここでTa(1),Ta(3),Ta(4),Ta
(2)は図12におけるTa(1)j ,Ta(3)j
Ta(4)j ,Ta(2)j に夫々相当する。次いでス
テップ109の補正係数KTa(i)の算出ルーチンに
進む。このルーチンは図17に示されている。
【0065】図17を参照するとまず初めにステップ1
20において減速運転中の燃料供給停止時であるか否か
が判別される。減速運転中の燃料供給停止時でないとき
には処理サイクルを完了し、減速運転中の燃料供給停止
時にはステップ121に進む。ステップ121ではステ
ップ108において算出された経過時間Ta(i)の平
均値TaAVj と、既に算出されている図12の720
°クランク角度範囲(j−1)における経過時間Ta
(i)の平均値TaAVj-1 (=(Ta(1)+Ta
(3)+Ta(4)+Ta(2))/4)(ここでTa
(1),Ta(3),Ta(4),Ta(2)は夫々図
12に示されるTa(1)j-1 ,Ta(3) j-1 ,Ta
(4)j-1 ,Ta(2)j-1 に相当する)から、平均的
な一定の増大率でもって増大したと考えたときの図12
に示す経過時間AAV(4),AAV(2),AAV
(1),AAV(3)が次のようにして算出される。
【0066】AAV(4)=(TaAVj −TaAV
j-1 )・(1/8)+TaAVj-1 AAV(2)=(TaAVj −TaAVj-1 )・(3/
8)+TaAVj-1 AAV(1)=(TaAVj −TaAVj-1 )・(5/
8)+TaAVj-1 AAV(3)=(TaAVj −TaAVj-1 )・(7/
8)+TaAVj-1 次いでステップ122では次式に基づいてこれら経過時
間AAV(4),AAV(2),AAV(1),AAV
(3)に対する実際に検出された経過時間TaO
(4),TaO(2),Ta(1),Ta(3)のずれ
割合KAFC(4),KAFC(2),KAFC
(1),KAFC(3)が算出される。ここでTaO
(4),TaO(2),Ta(1),Ta(3)は夫々
図12に示されるTa(4)j-1 ,Ta(2)j-1 ,T
a(1)j ,Ta(3)j に相当する。
【0067】KAFC(4)={TaO(4)−AAV
(4)}/AAV(4) KAFC(2)={TaO(2)−AAV(2)}/A
AV(2) KAFC(1)={Ta(1)−AAV(1)}/AA
V(1) KAFC(3)={Ta(3)−AAV(3)}/AA
V(3) 次いでステップ123では補正係数KTa(i)の学習
条件が成立しているか否かが判別される。例えば燃料供
給停止から一定時間経過しており、機関回転数が予め定
められた範囲内にあり、かつ車両が悪路を走行していな
いとき、例えば図13に示される経過時間差DTa
(i)の振幅AMPが設定値を越えていないときに学習
条件が成立していると判断される。学習条件が成立して
いないときにはステップ128に進んでずれ量KAFC
(i)の積算値KAFCI(i)が零とされ、次いでス
テップ129において積算カウント値CKAFCがクリ
アされる。
【0068】これに対して学習条件が成立している場合
にはステップ124に進んで各気筒に対するずれ量KA
FC(i)が対応する積算値KAFCI(i)に加算さ
れ、次いでステップ125において積算カウント値CK
AFCが1だけインクリメントされる。次いでステップ
126では積算カウント値CKAFCが8になったか否
かが判別される。積算カウント値CKAFCが8でない
ときには処理サイクルを完了し、積算カウント値CKA
FCが8になるとステップ127に進んで補正係数KT
a(i)が算出される。即ち、各気筒についてずれ量K
AFC(i)が8回積算されるとステップ127に進ん
で補正係数KTa(i)が算出される。
【0069】ステップ127では次のようにして補正係
数KTa(i)が算出される。即ち、まず初めに各積算
値KAFCI(i)がKAFCE(i)に置き換えられ
る。次いで次式に基づき基本補正係数KTaB(i)が
算出される。 KTaB(i)=KTa(i)−(KAFCI(i)/
8)/4 即ち、実際に検出された経過時間Ta(i)が平均的な
一定の増大率でもって増大したと考えたときの経過時間
AAV(i)に対してずれを生じている場合には現在の
補正係数KTa(i)を積算値KAFCI(i)の平均
値の1/4だけ修正した値が基本補正係数KTaB
(i)とされる。次いで次式に基づき全気筒に対する基
本補正係数KTaB(i)の平均値tKTaMが算出さ
れる。
【0070】tKTaM=(KTaB(1)+KTaB
(2)+KTaB(3)+KTaB(4))/4 次いで次式に示されるように基本補正係数KTaB
(i)をその平均値tKTaMでもって修正することに
より補正係数KTa(i)が更新される。 KTa(i)=KTaB(i)−tKTaM このようにして減速運転中の燃料噴射停止時に各気筒に
対する補正係数KTa(i)の更新が行われる。
【0071】一方、図16のステップ114において現
在2番気筒#2のATDC90°であると判別されたと
きにはステップ115に進んでTaAVj を求めたとき
と同じ方法により次式に基づいて720°クランク角度
範囲における経過時間Tb(i)の平均値TbAVj
算出される。 TbAVj =(Tb(1)+Tb(3)+Tb(4)+
Tb(2))/4 次いでステップ116の補正係数KTb(i)の算出ル
ーチンに進む。このルーチンは図18に示されている。
【0072】図18を参照するとまず初めにステップ1
30において減速運転中の燃料供給停止時であるか否か
が判別される。減速運転中の燃料供給停止時でないとき
には処理サイクルを完了し、減速運転中の燃料供給停止
時にはステップ131に進む。ステップ131ではステ
ップ115において算出された経過時間Tb(i)の平
均値TbAVj と、一つ前の720°クランク角度範囲
における経過時間Tb(i)の平均値TbAVj-1 (=
(Tb(1)+Tb(3)+Tb(4)+Tb(2))
/4)から、平均的な一定の増大率でもって増大したと
考えたときの経過時間BAV(4),BAV(2),B
AV(1),BAV(3)が算出される。
【0073】BAV(4)=(TbAVj −TbAV
j-1 )・(1/8)+TbAVj-1 BAV(2)=(TbAVj −TbAVj-1 )・(3/
8)+TbAVj-1 BAV(1)=(TbAVj −TbAVj-1 )・(5/
8)+TbAVj-1 BAV(3)=(TbAVj −TbAVj-1 )・(7/
8)+TbAVj-1 次いでステップ132では次式に基づいてこれら経過時
間BAV(4),BAV(2),BAV(1),BAV
(3)に対する実際に検出された経過時間TbO
(4),TbO(2),Tb(1),Tb(3)のずれ
割合KBFC(4),KBFC(2),KBFC
(1),KBFC(3)が算出される。
【0074】KBFC(4)={TbO(4)−BAV
(4)}/BAV(4) KBFC(2)={TbO(2)−BAV(2)}/B
AV(2) KBFC(1)={Tb(1)−BAV(1)}/BA
V(1) KBFC(3)={Tb(3)−BAV(3)}/BA
V(3) 次いでステップ133では補正係数KTb(i)の学習
条件が成立しているか否かが判別される。前述したよう
に、例えば燃料供給停止から一定時間経過しており、機
関回転数が予め定められた範囲内にあり、かつ車両が悪
路を走行していないとき、例えば図13に示される経過
時間差DTa(i)の振幅AMPが設定値を越えていな
いときに学習条件が成立していると判断される。学習条
件が成立していないときにはステップ138に進んでず
れ量KBFC(i)の積算値KBFCI(i)が零とさ
れ、次いでステップ139において積算カウント値CK
BFCがクリアされる。
【0075】これに対して学習条件が成立している場合
にはステップ134に進んで各気筒に対するずれ量KB
FC(i)が対応する積算値KBFCI(i)に加算さ
れ、次いでステップ135において積算カウント値CK
BFCが1だけインクリメントされる。次いでステップ
136では積算カウント値CKBFCが8になったか否
かが判別される。積算カウント値CKBFCが8でない
ときには処理サイクルを完了し、積算カウント値CKB
FCが8になるとステップ137に進んで補正係数KT
b(i)が算出される。即ち、各気筒についてずれ量K
BFC(i)が8回積算されるとステップ137に進ん
で補正係数KTb(i)が算出される。
【0076】ステップ137では次のようにして補正係
数KTb(i)が算出される。即ち、まず初めに各積算
値KBFCI(i)がKBFCE(i)に置き換えられ
る。次いで次式に基づき基本補正係数KTbB(i)が
算出される。 KTbB(i)=KTb(i)−(KBFCI(i)/
8)/4 即ち、実際に検出された経過時間Tb(i)が平均的な
一定の増大率でもって増大したと考えたときの経過時間
BAV(i)に対してずれを生じている場合には現在の
補正係数KTb(i)を積算値KBFCI(i)の平均
値の1/4だけ修正した値が基本補正係数KTbB
(i)とされる。次いで次式に基づき全気筒に対する基
本補正係数KTbB(i)の平均値tKTbMが算出さ
れる。
【0077】tKTbM=(KTbB(1)+KTbB
(2)+KTbB(3)+KTbB(4))/4 次いで次式に示されるように基本補正係数KTbB
(i)をその平均値tKTbMでもって修正することに
より補正係数KTb(i)が更新される。 KTb(i)=KTbB(i)−tKTbM このようにして減速運転中の燃料噴射停止時に各気筒に
対する補正係数KTb(i)の更新が行われる。
【0078】次に図19から図21に示されるトルク変
動算出許可チェックルーチンについて図22を参照しつ
つ説明する。このルーチンは車両が凸凹道を走行するこ
とにより経過時間差DTa(i)の変動の振幅AMP
(図13)が大きくなったときには特定の気筒について
のトルク変動量の算出を禁止するために設けられてい
る。
【0079】即ち、図19から図21を参照すると、ま
ず初めにステップ201において現在いずれかの気筒の
ATDC30°であるか否かが判別される。現在いずれ
かの気筒のATDC30°でないときには処理サイクル
を完了し、現在いずれかの気筒のATDC30°である
ときにはステップ202に進む。ステップ202からス
テップ204では経過時間差DTa(i)が増大し次い
で減少する際の最大経過時間差DT30maxが算出さ
れる。即ち、ステップ202では図15のステップ10
6において算出されたDTa(i)が最大経過時間差D
T30maxよりも大きいか否かが判別される。DT3
0max>DTa(i)のときにはステップ205にジ
ャンプし、これに対してDT30max≦DTa(i)
のときにはステップ203に進んでDTa(i)がDT
30maxとされる。次いでステップ204ではDTa
(i)が増大していることを示す増大フラグXMXRE
Cがセット(XMXREC←“1”)され、次いでステ
ップ205に進む。
【0080】ステップ205からステップ207では経
過時間差DTa(i)が減少し次いで増大する際の最小
経過時間差DT30minが算出される。即ち、ステッ
プ205では図15のステップ106において算出され
たDTa(i)が最小経過時間差DT30minよりも
小さいか否かが判別される。DT30min<DTa
(i)のときにはステップ208にジャンプし、これに
対してDT30min≧DTa(i)のときにはステッ
プ206に進んでDTa(i)がDT30minとされ
る。次いでステップ207ではDTa(i)が減少して
いることを示す減少フラグXMNRECがセット(XM
NREC←“1”)され、次いでステップ208に進
む。
【0081】ステップ208からステップ214ではD
Ta(i)の変動の振幅AMP(図13)が設定値A0
を越えたときにはDTa(i)が最大となった気筒につ
いてのトルク変動量の算出を禁止する禁止フラグがセッ
トされる。即ち、ステップ208ではDT30max>
DTa(i)でかつXMXREC=“1”であるか否か
が判別される。DT30max≦DTa(i)である
か、又は増大フラグXMXRECがリセット(XMXR
EC=“0”)されているときにはステップ215にジ
ャンプし、これに対してDT30max>DTa(i)
でかつXMXREC=“1”のときにはステップ209
に進む。
【0082】即ち、図22に示されるように時刻t1
おいて1番気筒#1の経過時間差DTa(1)が最大に
なったとする。この場合、時刻t1 において行われる割
込みルーチンではステップ202からステップ203に
進んでDTa(1)がDT30maxとされ、次いでス
テップ204において最大フラグXMXRECがセット
される。一方、図22の時刻t2 において行われる割込
みルーチンではステップ202からステップ205にジ
ャンプする。このときステップ208ではDT30ma
x>DTa(3)であり、かつXMXREC=“1”で
あると判断されるのでステップ209に進む。即ち、ス
テップ209に進むのは経過時間差DTa(i)が減少
しはじめる時刻t2 である。
【0083】ステップ209では最大経過時間差DT3
0maxがTMXRECとされる。次いでステップ21
0では最大経過時間差TMXRECから最小経過時間差
TMNREC(後述するステップ216で求められる)
を減算することによってDTa(i)の変動の振幅AM
Pが算出される。次いでステップ211では最小経過時
間差DT30minの初期値がDTa(i)とされる。
次いでステップ212では増大フラグXMXRECがリ
セット(XMXREC←“0”)される。次いでステッ
プ213では振幅AMPが設定値A0 よりも大きいか否
かが判別される。AMP<A0 のときにはステップ21
5にジャンプする。これに対してAMP≧A0 のときに
はステップ214に進んでトルク変動算出禁止フラグX
NOCALがセット(XNOCAL←“1”)される。
即ち、図22の時刻t2 において行われる割込みルーチ
ンでは前述したように1番気筒#1のトルク変動量が算
出される。従ってこの割込みルーチンにおいてAMP≧
0 となり、トルク変動算出禁止フラグXNOCALが
セットされると1番気筒#1のトルク変動量の算出、即
ち、DTa(i)が最大となる気筒のトルク変動量の算
出が禁止される。
【0084】ステップ215からステップ221ではD
Ta(i)の変動の振幅AMPが設定値A0 を越えたと
きにはDTa(i)が最小となった気筒についてのトル
ク変動量の算出を禁止する禁止フラグがセットされる。
即ち、ステップ215ではDT30min<DTa
(i)でかつXMNREC=“1”であるか否かが判別
される。DT30min≧DTa(i)であるか、又は
減少フラグXMNRECがリセット(XMNREC=
“0”)されているときにはステップ222にジャンプ
し、これに対してDT30min<DTa(i)でかつ
XMNREC=“1”のときにはステップ216に進
む。
【0085】即ち、図22に示されるように時刻t3
おいて1番気筒#1の経過時間差DTa(1)が最小に
なったとする。この場合、時刻t3 において行われる割
込みルーチンではステップ205からステップ206に
進んでDTa(1)がDT30minとされ、次いでス
テップ207において減少フラグXMNRECがセット
される。一方、図22の時刻t4 において行われる割込
みルーチンではステップ205からステップ208にジ
ャンプする。このときステップ215ではDT30mi
n<DTa(3)であり、かつXMNREC=“1”で
あると判断されるのでステップ216に進む。即ち、ス
テップ216に進むのは経過時間差DTa(i)が増大
しはじめる時刻t4 である。
【0086】ステップ216では最小経過時間差DT3
0minがTMNRECとされる。次いでステップ21
7では最大経過時間差TMXRECから最小経過時間差
TMNRECを減算することによってDTa(i)の変
動の振幅AMPが算出される。次いでステップ218で
は最大経過時間差DT30maxの初期値がDTa
(i)とされる。次いでステップ219では減少フラグ
XMNRECがリセット(XMNREC←“0”)され
る。次いでステップ220では振幅AMPが設定値A0
よりも大きいか否かが判別される。AMP<A0 のとき
にはステップ222にジャンプする。これに対してAM
P≧A0 のときにはステップ221に進んでトルク変動
算出禁止フラグXNOCALがセット(XNOCAL←
“1”)される。即ち、図22の時刻t4 において行わ
れる割込みルーチンでは1番気筒#1のトルク変動量が
算出される。従ってこの割込みルーチンにおいてAMP
≧A0となり、トルク変動算出禁止フラグXNOCAL
がセットされると1番気筒#1のトルク変動量の算出、
即ち、DTa(i)が最小となる気筒のトルク変動量の
算出が禁止される。
【0087】ステップ222およびステップ223では
経過時間差DTa(i)が急変した気筒についてのトル
ク変動量の算出が禁止される。即ち、ステップ222で
は|DTa(i−2)−DTa(i−1)|がKo ・|
DTa(i−1)−DTa(i)|よりも大きいか否か
が判別される。ここで定数Ko は3.0から4.0程度
の値である。ステップ222において|DTa(i−
2)−DTa(i−1)|<Ko ・|DTa(i−1)
−DTa(i)|であると判別されたときには処理ルー
チンを完了し、|DTa(i−2)−DTa(i−1)
|≧Ko ・|DTa(i−1)−DTa(i)|である
と判別されたときにはステップ223に進んでトルク変
動算出禁止フラグXNOCALがセットされる。
【0088】即ち、今図22の時刻t3 における割込み
ルーチンであるとするとこのときには|DTa(4)−
DTa(2)|がKo ・|DTa(2)−DTa(1)
|であるか否かが判別される。図22に示されるように
DTa(4)に対してDTa(2)が急変すると|DT
a(4)−DTa(2)|はKo ・|DTa(2)−D
Ta(1)|よりも大きくなる。このときトルク変動算
出禁止フラグがセットされ、経過時間差DTa(i)が
急変した2番気筒#2のトルク変動量の算出が禁止され
る。
【0089】次に図23に示すトルク変動算出ルーチン
について説明する。図23を参照すると、まず初めにス
テップ301において一つ前に燃焼が行われた(i−
1)番気筒のトルク変動量を算出すべきことを示すフラ
グXCAL(i−1)がセットされているか否かが判別
される。フラグXCAL(i−1)=“0”のとき、即
ちフラグXCAL(i−1)がセットされていないとき
には処理サイクルを完了する。これに対してフラグXC
AL(i−1)=“1”のとき、即ちフラグXCAL
(i−1)がセットされているときにはステップ302
に進んでフラグXCAL(i−1)がリセットされ、次
いでステップ303に進む。
【0090】ステップ303では一つ前に燃焼が行われ
た気筒についてのトルク変動量の算出を禁止する禁止フ
ラグXNOCALがリセット(XNOCAL=“0”)
されているか否かが判別される。この禁止フラグがセッ
ト(XNOCAL=“1”)されているときにはステッ
プ311に進んで禁止フラグXNOCALがリセットさ
れる。これに対して禁止フラグがリセットされていると
きにはステップ304に進む。即ち、フラグXCALが
セットされており、かつ禁止フラグXNOCALがリセ
ットされているときのみステップ304に進む。
【0091】ステップ304では一つ前に燃焼が行われ
た(i−1)番気筒の仮想の経過時間差Kb(i−1)
(図10および図11参照)が次式に基づいて算出され
る。 Kb(i−1)={2・DTa(i−1)+DTa
(i)}/3 次いでステップ305では次式に基づいて一つ前に燃焼
が行われた(i−1)番気筒の実際の出力トルクDN
(i−1)が算出される。
【0092】DN(i−1)={30°/Tb(i−
1)}2−{30°/Ta(i−1)}2 次いでステップ306では次式に基づいて一つ前に燃焼
が行われた(i−1)番気筒の仮想の出力トルクDNS
(i−1)が算出される。 DNS(i−1)={30°/(TbO(i−1)+K
b(i−1))}2−{30°/Ta(i−1)}2 次いでステップ307では次式に示すように仮想の出力
トルクDNS(i−1)から実際の出力トルクDN(i
−1)を減算することによって一つ前に燃焼が行われた
(i−1)番気筒のトルク変動量DLN(i−1)が算
出される。
【0093】 DLN(i−1)=DNS(i−1)−DN(i−1) 即ち、例えば今3番気筒#3のATDC30°であって
フラグXCAL(1)がセットされているとするとステ
ップ304において1番気筒#1に対する仮想の経過時
間差Kb(1)が算出され、次いでステップ305にお
いて1番気筒#1の実際の出力トルクDN(1)が算出
され、ステップ306において1番気筒#1の仮想の出
力トルクDNS(1)が算出され、次いでステップ30
7において1番気筒#1のトルク変動量DLN(1)が
算出される。
【0094】なお、各気筒の出力変動量GLN(i−
1)を求める場合にはステップ305からステップ30
7において以下のような計算を行えばよい。即ち、ステ
ップ305では実際のトルク変動量DN(i−1)を求
める代りに次式に基づいて実際の出力変動量GN(i−
1)を算出する。 GN(i−1)={30°/Tb(i−1)}−{30
°/Ta(i−1)} 次いでステップ306では仮想のトルク変動量DNS
(i−1)を求める代りに次式に基づいて仮想の出力変
動量GNS(i−1)を算出する。
【0095】GNS(i−1)={30°/(TbO
(i−1)+Kb(i−1))}−{30°/Ta(i
−1)} 次いでステップ307ではトルク変動量DLN(i−
1)を求める代りに次式に基づいて出力変動量GLN
(i−1)を算出する。 GLN(i−1)=GNS(i−1)−GN(i−1) さて、ステップ307においてトルク変動量DLN(i
−1)が算出されるとステップ308に進んでトルク変
動量DLN(i−1)が正であるか否かが判別される。
DLN(i−1)≧0であればステップ310にジャン
プして一つ前に燃焼が行われた気筒のトルク変動量DL
N(i−1)を積算すべきことを示す積算要求フラグX
DLNI(i−1)がセット(XDLNI(i−1)←
“1”)される。これに対してDLN(i−1)<0で
あればステップ309に進んでDLN(i−1)が零と
され、次いでステップ310に進む。なお、各気筒のト
ルクは上昇と低下を繰返し、この場合トルク変動量を求
めるにはトルクの上昇分かトルクの減少分のいずれかを
積算すればよい。図23に示すルーチンではトルクの減
少分のみを積算するようにしており、従って上述したよ
うにDLN(i−1)<0のときにはDLN(i−1)
を零にしている。
【0096】次に図24を参照しつつカウンタCDLN
IXの処理について説明する。このカウンタCDLNI
Xのカウント値は後に説明する機関のトルク変動値を算
出する際に使用される。図24を参照すると、まず初め
にステップ401において現在3番気筒#3のATDC
30°であるか否かが判別される。現在3番気筒#3の
ATDC30°でないときには処理サイクルを完了し、
現在3番気筒#3のATDC30°であるときにはステ
ップ402に進む。ステップ402では機関のトルク変
動値を算出するためのトルク変動値算出条件が成立して
いるか否かが判別される。例えば空燃比をリーンとする
条件が成立していないか、或いは機関負荷Q/Nの単位
時間当りの変化量ΔQ/Nが設定値以上であるか、或い
は機関回転数の単位時間当りの変化量ΔNが設定値以上
であるときにはトルク変動値算出条件が成立していない
と判断され、それ以外のときにはトルク変動値算出条件
が成立していると判断される。
【0097】ステップ402においてトルク変動値算出
条件が成立していると判断されたときにはステップ40
8に進んでカウント値CDLNIXが1だけインクリメ
ントされる。このカウント値CDLNIXのインクリメ
ント作用は3番気筒#3がATDC30°となる毎に、
即ち720°クランク角度毎に行われる。次いでステッ
プ409ではカウント値CDLNIXのインクリメント
作用が開始されてからカウント値CDLNIXがクリア
されるまでの間の機関回転数の平均値NAVE および吸入
空気量Qの平均値QAVE が算出される。
【0098】一方、ステップ402においてトルク変動
値算出条件が成立していないと判断されたときにはステ
ップ403に進んでカウント値CDLNIXがクリアさ
れる。次いでステップ404では各気筒に対するトルク
変動量DLN(i)の積算値DLNI(i)(この積算
値は後に説明するルーチンにおいて算出される)がクリ
アされ、次いでステップ405では各気筒に対する積算
カウント値CDLNI(i)(この積算カウント値は後
に説明するルーチンにおいて算出される)がクリアされ
る。
【0099】次いでステップ406では目標トルク変動
値LVLLFBが算出される。本発明による実施例では
後に説明するように算出されたトルク変動値がこの目標
トルク変動値LVLLFBとなるように空燃比がフィー
ドバック制御される。この目標トルク変動値LVLLF
Bは等しい変動値を実線で示した図26(A)に示され
るように機関負荷Q/Nが高くなるほど大きくなり、機
関回転数Nが高くなるほど大きくなる。この目標トルク
変動値LVLLFBは図26(B)に示されるように機
関負荷Q/Nおよび機関回転数Nの関数としてマップの
形で予めROM22内に記憶されている。次いでステッ
プ407では各気筒のトルク変動値DLNISM(i)
(このトルク変動値は後に説明するルーチンにおいて算
出される)が図26(B)のマップから算出された目標
トルク変動値LVLLFBとされる。
【0100】図28は繰返し実行されるメインルーチン
を示している。このメインルーチンではまず初めにトル
ク変動値の算出ルーチン(ステップ600)が実行され
る。このルーチンが図29および図30に示されてい
る。次いでリーンリミットフィードバック補正係数FL
LFBの算出ルーチン(ステップ700)が実行され
る。このルーチンが図31に示されている。次いで予め
定められたクランク角になったときに噴射時間算出ルー
チン(ステップ800)が実行される。このルーチンが
図32に示されている。次いでその他のルーチン(ステ
ップ900)が実行される。
【0101】次に図29および図30に示されるトルク
変動値の算出ルーチンについて説明する。図29および
図30を参照すると、まず初めにステップ601におい
てトルク変動量DLN(i)を積算すべきことを示す積
算要求フラグXDLNI(i)がセット(XDLNI
(i)=“1”)されているか否かが判別される。積算
要求フラグXDLNI(i)がセットされていないとき
にはステップ609にジャンプし、積算要求フラグXD
LNI(i)がセットされているときにはステップ60
2に進む。ステップ602では積算要求フラグXDLN
I(i)がリセットされる。次いでステップ603では
トルク変動量DLN(i)がトルク変動量積算値DLN
I(i)に加算される。次いでステップ604では積算
カウント値CDLNI(i)が1だけインクリメントさ
れる。即ち、例えばステップ601において1番気筒に
ついての積算要求フラグXDLNI(1)がセットされ
たとするとステップ602においてこのフラグXDLN
I(1)がリセットされ、ステップ603においてトル
ク変動量積算値DLNI(1)が算出され、ステップ6
04において積算カウント値CDLNI(1)が1だけ
インクリメントされる。
【0102】次いでステップ605では積算カウント値
CDLNI(i)が“8”になったか否かが判別され
る。CDLNI(i)が“8”でないときにはステップ
609にジャンプし、CDLNI(i)が“8”になる
とステップ606に進んで次式から各気筒のトルク変動
値DLNISM(i)が算出される。 DLNISM(i)=DLNISM(i)+{DLNI
(i)−DLNISM(i)}/4 次いでステップ607では各気筒に対するトルク変動量
積算値DLNI(i)がクリアされ、次いでステップ6
08では積算カウント値CDLNI(i)がリセットさ
れる。
【0103】即ち、算出されたトルク変動量積算値DL
NI(i)とこれまで用いられてきたトルク変動値DL
NISM(i)との間に差があるときにはこの差{DL
NI(i)−DLNISM(i)}に1/4を乗算した
値がトルク変動値DLNISM(i)に加算される。従
って例えば1番気筒#1についての積算カウント値CD
LNI(1)が“8”になるとステップ606において
トルク変動値DLNISM(1)が算出されることにな
る。
【0104】次いでステップ609では図24に示すル
ーチンにおいて算出されたカウント値CDLNIXが
“8”になったか否かが判別される。CDLNIXが
“8”でないときには処理サイクルを完了し、CDLN
IXが“8”になるとステップ610に進んで各気筒の
トルク変動値DLNISM(i)の平均値である平均ト
ルク変動値DLNISM(={DLNISM(1)+D
LNISM(2)+DLNISM(3)+DLNISM
(4)}/4)が算出される。次いでステップ611で
はカウント値CDLNIXがクリアされる。このように
して機関のトルク変動量を代表する値DLNISMが算
出される。
【0105】なお、前述したようにカウント値CDLN
IXは720°クランク角度毎に1だけインクリメント
され、いずれの気筒についてもトルクの算出が禁止され
たことがなければカウント値CDLNIXが“8”にな
ったときには全ての気筒に対する積算カウント値CDL
NI(1),CDLNI(2),CDLNI(3),C
DLNI(4)は既に“8”となっている。従ってこの
場合には全ての気筒についてトルク変動値DLNISM
(i)が算出される。一方、例えば1番気筒#1につい
てトルク変動量の算出が禁止されたとするとカウント値
CDLNIXが“8”になったときに1番気筒#1の積
算カウント値CDLNI(1)だけは“8”になってお
らず、斯くして1番気筒#1については新たなトルク変
動量積算値DLNI(1)は算出されていない。従って
この場合、ステップ610において平均トルク変動値D
LNISMを求める際には1番気筒#1だけについては
以前に算出されたトルク変動値DLNISM(1)が使
用される。
【0106】次に図31を参照しつつFLLFB算出ル
ーチンについて説明する。図31を参照すると、まず初
めにステップ701においてリーンリミットフィードバ
ック補正係数FLLFBの更新条件が成立しているか否
かが判別される。例えば暖機運転時であるとき、或いは
機関の運転状態が図5において破線で囲まれた学習領域
にないときには更新条件が成立していないと判断され、
その他のときには更新条件が成立していると判断され
る。更新条件が成立していないときには処理サイクルを
完了し、更新条件が成立しているときにはステップ70
2に進む。
【0107】ステップ702では機関負荷Q/Nと機関
回転数Nから図26(B)に示すマップに基づいて目標
トルク変動値LVLLFBが算出される。次いでステッ
プ703およびステップ704では目標トルク変動値L
VLLFBに応じた変動量判別値DH(n),DL
(n)に基づいて次式に示されるトルク変動レベルLV
LH(n),LVLL(n)が算出される。
【0108】 LVLH(n)=LVLLFB+DH(n) LVLL(n)=LVLLFB+DL(n) ここで、変動量判別値DH(n)およびDL(n)は図
27(A)に示されるように予め定められている。即
ち、図27(A)からわかるようにDH(n)について
は3つの正の値が定められており、DH(3)>DH
(2)>DH(1)の関係を有する。更に、これらDH
(1),DH(2),DH(3)は目標トルク変動値L
VLLFBが大きくなるにつれて次第に増大する。一
方、DL(n)については3つの負の値が定められてお
り、DL(1)>DL(2)>DL(3)の関係を有す
る。更に、これらDL(1),DL(2),DL(3)
の絶対値は目標トルク変動値LVLLFBが大きくなる
につれて次第に増大する。
【0109】ところで今、ステップ702において算出
された目標トルク変動値LVLLFBが破線で示される
値だったとする。この場合、ステップ703では破線上
のDH(1),DH(2),DH(3)を目標トルク変
動値LVLLFBに加算した値が夫々トルク変動レベル
LVLH(1),LVLH(2),LVLH(3)とさ
れ、ステップ704では破線上のDL(1),DL
(2),DL(3)を目標トルク変動値LVLLFBに
加算した値が夫々トルク変動レベルLVLL(1),L
VLL(2),LVLL(3)とされる。
【0110】一方、図27(B)に示されるように各ト
ルク変動レベルLVLH(n),LVLL(n)間の領
域に対してフィードバック補正値+a1 ,+a2 ,+a
3 ,+a4 ,−b1 ,−b2 ,−b3 ,−b4 が予め定
められており、例えばトルク変動レベルがLVLH
(1)とLVLH(2)の間の領域に対してはフィード
バック補正値は+a2 となる。これらフィードバック補
正値は+a4 >+a3 >+a2 >+a1 でありかつ−b
1 >−b2 >−b3 >−b4 である。図27(B)に示
す各フィードバック補正値+a1 ,+a2 ,+a3 ,+
4 ,−b1 ,−b 2 ,−b3 ,−b4 が図27(A)
の対応する領域に示されている。
【0111】ステップ703およびステップ704にお
いて夫々トルク変動レベルLVLH(n),LVLL
(n)が算出されるとステップ705に進んで図29お
よび図30に示すトルク変動値の算出ルーチンにより算
出された平均トルク変動値DLNISMが図27(B)
に示されるどのトルク変動レベルLVLH(n),LV
LL(n)の間にあるかが判別される。次いでステップ
706では対応するフィードバック補正値DLFBが算
出される。例えば今、目標トルク変動値LVLLFBが
図27(A)において破線で示される値であり、算出さ
れた平均トルク変動値DLNISMが図27(B)のL
VLH(1)とLVLH(2)との間である場合、即ち
目標トルク変動値LVLLFBに対する平均トルク変動
値DLNISMの偏差が図27(A)の破線上において
DH(1)とDH(2)の間にある場合にはフィードバ
ック補正値DLFBは+a2 とされる。
【0112】次いでステップ707では図24に示すC
DLNIXの処理ルーチンのステップ409において求
められた機関回転数の平均値NAVE および吸入空気量Q
の平均値QAVE に基づいて更新すべきリーンリミットフ
ィードバック補正係数FLLFBijが図5に示される
どの学習領域のリーンリミットフィードバック補正係数
であるかが決定される。次いでステップ708ではステ
ップ707において決定されたリーンリミットフィード
バック補正係数FLLFBijにフィードバック補正値
DLFBが加算される。
【0113】即ち、上述したように例えばDLNISM
>LVLLFBであって、LVLH(1)<DLNIS
M<LVLH(2)である場合にはリーンリミットフィ
ードバック補正係数FLLFBijに+a2 が加算され
る。その結果、空燃比が小さくなるので各気筒のトルク
変動量が減少せしめられる。一方、DLNISM<LV
LLFBであってLVLL(1)>DLNISM>LV
LL(2)である場合にはリーンリミットフィードバッ
ク補正係数FLLFBijに−b2 が加算される。その
結果、空燃比が大きくなるので各気筒のトルク変動量が
増大せしめられる。このようにして全気筒の平均トルク
変動値DLNISMが目標トルク変動値LVLLFBと
なるようにリーン運転時の空燃比が制御される。
【0114】なお、図24に示すルーチンに示されるよ
うにトルク変動値の算出条件が成立しないときにはステ
ップ407において全ての気筒に対するDLNISM
(i)がLVLLFBとされ、斯くして平均トルク変動
値DLNISMも目標トルク変動値LVLLFBとされ
る。従ってこのときにはリーンリミットフィードバック
補正係数FLLFBijの更新は行われない。
【0115】次に図32を参照しつつ燃料噴射時間の算
出ルーチンについて説明する。図32を参照すると、ま
ず初めにステップ801において図2に示すマップから
基本燃料噴射時間TPが算出される。次いでステップ8
02ではリーン運転を行うべき運転状態か否かが判別さ
れる。リーン運転を行うべき運転状態のときにはステッ
プ803に進んで理論空燃比フィードバック補正係数F
AFの値が1.0に固定される。次いでステップ804
では図4に示すマップからリーン補正係数FLEANが
算出され、次いでステップ805では図5に示すマップ
からリーンリミットフィードバック補正係数FLLFB
が読込まれる。次いでステップ809では次式に基づい
て燃料噴射時間TAUが算出される。
【0116】TAU=TP・FLEAN・FLLFB・
FAF+TAUV これに対し、ステップ802においてリーン運転を行う
べき運転状態でないと判別されたとき、即ち空燃比を理
論空燃比にすべきときにはステップ806に進んでリー
ン補正係数FLEANが1.0に固定され、次いでステ
ップ807においてリーンリミットフィードバック補正
係数FLLFBが1.0に固定される。次いでステップ
808では空燃比センサ17の出力信号に基づいて空燃
比が理論空燃比となるように理論空燃比フィードバック
補正係数FAFが制御される。次いでステップ809に
進み、燃料噴射時間TAUが算出される。
【0117】
【発明の効果】各気筒の出力変動およびトルク変動を正
確に検出することができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】基本燃料噴射時間のマップを示す図である。
【図3】NOx の発生量とトルク変動を示す図である。
【図4】リーン補正係数のマップを示す図である。
【図5】リーンリミットフィードバック補正係数のマッ
プを示す図である。
【図6】30°クランク角度の経過時間Ta(i),T
b(i)の変化を示すタイムチャートである。
【図7】30°クランク角度の経過時間Ta(i)の変
化を示すタイムチャートである。
【図8】30°クランク角度の経過時間Ta(i),T
b(i)の変化を示すタイムチャートである。
【図9】30°クランク角度の経過時間Ta(i),T
b(i)の変化を示すタイムチャートである。
【図10】30°クランク角度の経過時間Ta(i)の
変化を示すタイムチャートである。
【図11】経過時間差DTa(i)とKb(i)との関
係を示す図である。
【図12】減速運転時における経過時間Ta(i)の変
化を示すタイムチャートである。
【図13】経過時間差DTa(i)の変化を示すタイム
チャートである。
【図14】割込みルーチンを示すフローチャートであ
る。
【図15】経過時間差DTa(i)および経過時間Tb
(i)を算出するためのフローチャートである。
【図16】経過時間差DTa(i)および経過時間Tb
(i)を算出するためのフローチャートである。
【図17】KTa(i)を算出するためのフローチャー
トである。
【図18】KTb(i)を算出するためのフローチャー
トである。
【図19】トルク変動量算出の許可をチェックするため
のフローチャートである。
【図20】トルク変動量算出の許可をチェックするため
のフローチャートである。
【図21】トルク変動量算出の許可をチェックするため
のフローチャートである。
【図22】経過時間差DTa(i)の変化とフラグXM
XREC,XMNRECの変化を示すタイムチャートで
ある。
【図23】トルク変動量を算出するためのフローチャー
トである。
【図24】カウンタCDLNIXを処理するためのフロ
ーチャートである。
【図25】種々の値の計算タイミングを示す図である。
【図26】目標トルク変動値を示す図である。
【図27】変動量判別値DH(n),DL(n)および
トルク変動レベルLVLH(n),LVLL(n)を示
す図である。
【図28】メインルーチンを示すフローチャートであ
る。
【図29】トルク変動値を算出するためのフローチャー
トである。
【図30】トルク変動値を算出するためのフローチャー
トである。
【図31】リーンリミットフィードバック補正係数を算
出するためのフローチャートである。
【図32】燃料噴射時間を算出するためのフローチャー
トである。
【符号の説明】
3…サージタンク 4…燃料噴射弁 8…スロットル弁 14…ロータ 15…クランク角センサ

Claims (7)

    (57)【特許請求の範囲】
  1. 【請求項1】 第1の気筒と第1の気筒の次に燃焼が行
    われる第2の気筒とを具備した多気筒内燃機関の出力変
    動検出方法において、各気筒に対し圧縮行程末期から爆
    発行程初期までのクランク角度領域内に第1のクランク
    角度範囲を設定すると共に第1のクランク角度範囲から
    一定のクランク角を隔てた爆発行程中期のクランク角度
    領域内に第2のクランク角度範囲を設定して該第1のク
    ランク角度範囲内におけるクランクシャフトの第1の角
    速度を検出すると共に該第2のクランク角度範囲内にお
    けるクランクシャフトの第2の角速度を検出し、第1の
    気筒および第2の気筒について夫々先の燃焼時における
    第1の角速度と次の燃焼時における第1の角速度との変
    化量を求めると共に、これら変化量と第1の気筒の先の
    燃焼時における第2の角速度とに基づいて第1の気筒の
    出力が変動しないと仮定したときの第1の気筒の次の燃
    焼時における仮想の第2の角速度を求め、第1の気筒の
    次の燃焼時における実際の第2の角速度と該仮想の第2
    の角速度に基づいて第1の気筒の出力変動を検出するよ
    うにした多気筒内燃機関の出力変動検出方法。
  2. 【請求項2】 上記実際の第2の角速度と上記仮想の第
    2の角速度との偏差から第1の気筒の出力変動量を求め
    るようにした請求項1に記載の多気筒内燃機関の出力変
    動検出方法。
  3. 【請求項3】 上記実際の第2の角速度の2乗と上記仮
    想の第2の角速度の2乗との偏差から第1の気筒の出力
    トルク変動量を求めるようにした請求項1に記載の多気
    筒内燃機関の出力変動検出方法。
  4. 【請求項4】 上記出力トルク変動量を各気筒毎に求
    め、これらの出力トルク変動量から機関の出力トルク変
    動量を求めるようにした請求項3に記載の多気筒内燃機
    関の出力変動検出方法。
  5. 【請求項5】 各気筒について上記第1の角速度の変化
    量を求めると共に該変化量の変動の振幅を求め、該振幅
    が予め定められた振幅よりも大きくなったときには該変
    化量が最大又は最小となった気筒の出力トルク変動量を
    機関の出力トルク変動量の算出に用いることを禁止する
    ようにした請求項4に記載の多気筒内燃機関の出力変動
    検出方法。
  6. 【請求項6】 機関の運転時において燃料の供給が停止
    されたときに上記第1の角速度の平均的な減少率を求め
    ると共に該平均的な減少率でもって減少したときの第1
    の角速度を求め、該平均的な減少率でもって減少したと
    きの第1の角速度に対する実際に検出された第1の角速
    度のずれ量に基づいて実際に検出された第1の角速度を
    補正し、補正された第1の角速度を用いて第1の気筒の
    出力変動を検出するようにした請求項1に記載の多気筒
    内燃機関の出力変動検出方法。
  7. 【請求項7】 機関の運転時において燃料の供給が停止
    されたときに上記第2の角速度の平均的な減少率を求め
    ると共に該平均的な減少率でもって減少したときの第2
    の角速度を求め、該平均的な減少率でもって減少したと
    きの第2の角速度に対する実際に検出された第2の角速
    度のずれ量に基づいて実際に検出された第2の角速度を
    補正し、補正された第2の角速度を用いて第1の気筒の
    出力変動を検出するようにした請求項1に記載の多気筒
    内燃機関の出力変動検出方法。
JP33729796A 1996-12-17 1996-12-17 多気筒内燃機関の出力変動検出方法 Expired - Fee Related JP3262003B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33729796A JP3262003B2 (ja) 1996-12-17 1996-12-17 多気筒内燃機関の出力変動検出方法
US08/989,418 US6199426B1 (en) 1996-12-17 1997-12-12 Method of detection of output fluctuation in internal combustion engine
DE69729056T DE69729056T2 (de) 1996-12-17 1997-12-16 Verfahren zur Detektion von Ausgangsfluktuationen bei Verbrennungsmotoren
EP97122144A EP0849581B1 (en) 1996-12-17 1997-12-16 Method of detection of output fluctuation in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33729796A JP3262003B2 (ja) 1996-12-17 1996-12-17 多気筒内燃機関の出力変動検出方法

Publications (2)

Publication Number Publication Date
JPH10176590A JPH10176590A (ja) 1998-06-30
JP3262003B2 true JP3262003B2 (ja) 2002-03-04

Family

ID=18307303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33729796A Expired - Fee Related JP3262003B2 (ja) 1996-12-17 1996-12-17 多気筒内燃機関の出力変動検出方法

Country Status (1)

Country Link
JP (1) JP3262003B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653965B2 (en) 2000-09-19 2003-11-25 Fujitsu Limited Digital servo control method, digital Servo controller, storage device and head position control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144533A (ja) * 2008-12-16 2010-07-01 Toyota Motor Corp 内燃機関のラフアイドル検出装置
JP6818127B2 (ja) * 2017-03-31 2021-01-20 本田技研工業株式会社 エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653965B2 (en) 2000-09-19 2003-11-25 Fujitsu Limited Digital servo control method, digital Servo controller, storage device and head position control method

Also Published As

Publication number Publication date
JPH10176590A (ja) 1998-06-30

Similar Documents

Publication Publication Date Title
JP3303739B2 (ja) 内燃機関の空燃比制御方法
US6199426B1 (en) Method of detection of output fluctuation in internal combustion engine
JP3303732B2 (ja) 内燃機関の制御装置
JP3216577B2 (ja) 内燃機関の空燃比制御方法
JP3262003B2 (ja) 多気筒内燃機関の出力変動検出方法
JP3085220B2 (ja) 内燃機関の空燃比制御方法
JP3303669B2 (ja) 内燃機関の空燃比制御方法
JP3279179B2 (ja) 多気筒内燃機関における検出方法
JP3246325B2 (ja) 内燃機関における検出方法
EP0799983B1 (en) Method of detection of angular velocity and torque in an internal combustion engine
JPH1182119A (ja) 内燃機関の出力制御装置
JP3246328B2 (ja) 内燃機関における検出方法
EP0811758B1 (en) Method of controlling an air-fuel ratio of an engine
JPH1182086A (ja) 内燃機関の空燃比制御方法
JP3218970B2 (ja) 内燃機関における検出方法
JPH10331685A (ja) 内燃機関の空燃比制御装置
JP3156588B2 (ja) 内燃機関の空燃比制御方法
JPH1130148A (ja) 内燃機関の空燃比制御方法
JPH1191409A (ja) 内燃機関の動力伝達制御装置
JP2679243B2 (ja) 車両のサージング防止装置
JPH09281006A (ja) 内燃機関における変動検出方法
JP2712752B2 (ja) 内燃機関の燃料噴射量制御装置
JPH0751929B2 (ja) 内燃機関の点火時期制御装置
JPS61255233A (ja) 機関の燃料噴射制御装置
JPH04358736A (ja) 燃料噴射量制御装置

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees