JP3258998B2 - Operation control method for cogeneration system - Google Patents

Operation control method for cogeneration system

Info

Publication number
JP3258998B2
JP3258998B2 JP21416692A JP21416692A JP3258998B2 JP 3258998 B2 JP3258998 B2 JP 3258998B2 JP 21416692 A JP21416692 A JP 21416692A JP 21416692 A JP21416692 A JP 21416692A JP 3258998 B2 JP3258998 B2 JP 3258998B2
Authority
JP
Japan
Prior art keywords
heat
thermoelectric
demand
cogeneration system
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21416692A
Other languages
Japanese (ja)
Other versions
JPH0659747A (en
Inventor
政義 佐藤
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
East Japan Railway Co
Original Assignee
Mitsubishi Electric Corp
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, East Japan Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP21416692A priority Critical patent/JP3258998B2/en
Publication of JPH0659747A publication Critical patent/JPH0659747A/en
Application granted granted Critical
Publication of JP3258998B2 publication Critical patent/JP3258998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Control Of Temperature (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エンジン駆動コジェネ
レーションシステムとヒートポンプ及び蓄熱槽とを組み
合わせた熱電併給システムにおけるコジェネレーション
システムの運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a cogeneration system in a cogeneration system combining an engine-driven cogeneration system with a heat pump and a heat storage tank.

【0002】[0002]

【従来の技術】図3は例えば「コジェネレーション」
(Vol.4,No2,1989,P25〜P30)に
示された従来のコジェネレーション・システムにおける
蓄熱槽の最適運用を示すシステム図であり、図におい
て、DGはディゼルエンジン発電機、REは電動ターボ
冷凍機、RWは温水吸収冷凍機、BAは温水ボイラ、R
Aは油焚冷暖房機、PC,PD,PH,PT,PWは各
種ポンプ、CTは冷却塔、STは蓄熱槽である。
2. Description of the Related Art FIG.
(Vol. 4, No. 2, 1989, P25 to P30) is a system diagram showing the optimal operation of the heat storage tank in the conventional cogeneration system, in which DG is a diesel engine generator and RE is an electric turbocharger. Refrigerator, RW is hot water absorption refrigerator, BA is hot water boiler, R
A is an oil-fired cooling / heating machine, PC, PD, PH, PT, and PW are various pumps, CT is a cooling tower, and ST is a heat storage tank.

【0003】次に動作について説明する。図3中、二点
鎖線は燃料の流れを示し、A重油はディゼルエンジン発
電機DGと温水ボイラBAと油焚冷暖房機RAとに投入
される。ディゼルエンジン発電機DGで電力を発生し、
排熱が回収されて蓄熱槽STに蓄えられる。また、蓄熱
槽内の温水を使って温水吸収冷凍機RWで冷水が得られ
冷房需要を賄う。さらに、蓄熱槽STの温水が暖房需要
と給湯需要に供される。それでも余る場合は、冷却塔C
Tで余剰熱は捨てられる。暖房需要と給湯需要に応じ切
れない時は、上記油焚冷房機RAと温水がボイラBAと
から供給され、冷房需要に対しては、上記油焚冷暖房機
RAと電動ターボ冷凍機REにより賄われる。
Next, the operation will be described. In FIG. 3, the two-dot chain line indicates the flow of the fuel, and the heavy oil A is supplied to the diesel engine generator DG, the hot water boiler BA, and the oil fired cooling / heating machine RA. Generate electricity with the diesel engine generator DG,
Exhausted heat is collected and stored in the heat storage tank ST. In addition, cold water is obtained by the hot water absorption refrigerator RW using the hot water in the heat storage tank to cover the cooling demand. Further, the hot water in the heat storage tank ST is used for heating demand and hot water supply demand. If there is still room for cooling tower C
At T, excess heat is discarded. When the heating demand and the hot water supply demand cannot be satisfied, the oil-fired cooling machine RA and the hot water are supplied from the boiler BA, and the cooling demand is covered by the oil-fired cooling / heating machine RA and the electric turbo chiller RE. .

【0004】[0004]

【発明が解決しようとする課題】従来のコジェネレーシ
ョンシステムにおける蓄熱槽の運転方法は、以上のよう
に構成されているので、負荷側と熱源側のつなぎとして
の機能を果たしているのではなく、コジェネレーション
システムのみの緩衝機能でしかありえず、他の熱源機を
も含めた熱源機群の選択に寄与してないという欠点があ
り、さらに、故障時などのバックアップ体制が考慮され
ていないので、制御が複雑で信頼性に乏しく、買電との
制御の組合せが明確でないという問題点があった。
The operation method of the heat storage tank in the conventional cogeneration system is configured as described above, so that it does not function as a connection between the load side and the heat source side, but the There is a drawback that it can only be a buffer function of the generation system only and does not contribute to the selection of heat source equipment group including other heat source equipment.Furthermore, since the backup system in case of failure etc. is not considered, control However, there is a problem in that the control is complicated and the reliability is poor, and the control combination with the power purchase is not clear.

【0005】本発明は、上記のような問題点を解消する
ためになされたもので、負荷側と熱源側の中間に蓄熱槽
を配し、両者のつなぎとしての機能を果たし、熱源機群
全体の能力制御を実行でき、熱源機種の選択、故障時の
バックアップ等簡単な制御で負荷側の需要に応ずること
が可能なコジェネレーションシステムの運転制御方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A heat storage tank is provided between a load side and a heat source side, and functions as a connection between the two. It is an object of the present invention to provide an operation control method of a cogeneration system which can execute the capacity control of the cogeneration system and can respond to the demand on the load side by a simple control such as selection of a heat source model and backup in case of a failure.

【0006】[0006]

【課題を解決するための手段】本発明に係るコジェネレ
ーションシステムの運転制御方法は、エンジン駆動コジ
ェネレーションシステムとヒートポンプ及び蓄熱槽とを
組み合わせた熱電併給システムにおいて、コジェネレー
ションシステムにおける熱電発生比率に対し、需要側熱
電比率が小さい時は、電力需要に合わせてコジェネレー
ションシステムを運転し、余剰熱を蓄熱槽に蓄熱し、需
要側熱電比率が大きい時は、所望熱電需要量から蓄熱槽
からの利用熱量を差し引いたみなし熱需要量を求め、上
記みなし熱需要量と所望電力需要量とから成る熱電需要
点を求め、上記コジェネレーションシステムの熱電発生
図中の上記熱電需要点を通り傾きが成績係数の逆数とな
る熱電実現直線と上記コジェネレーションシステムの熱
電発生図中の熱電発生直線の上に買電直線を重ねた熱電
供給線を作成し、上記熱電実現直線と上記熱電供給線と
の交点で上記コジェネレーションシステムとヒートポン
プを運転するものである。
SUMMARY OF THE INVENTION An operation control method for a cogeneration system according to the present invention is directed to a cogeneration system combining an engine-driven cogeneration system, a heat pump and a heat storage tank. When the demand-side heat-to-power ratio is low, the cogeneration system is operated according to the power demand, and the surplus heat is stored in the heat storage tank. The deemed heat demand amount obtained by subtracting the heat amount is obtained, the thermoelectric demand point composed of the above deemed heat demand amount and the desired power demand amount is obtained, and the slope passing through the thermoelectric demand point in the thermoelectric generation diagram of the cogeneration system is a coefficient of performance. Thermoelectric realization line, which is the reciprocal of Create a thermoelectric supply line of extensive power purchase straight on raw linear, in which operating the cogeneration system and the heat pump at the intersection between the thermoelectric realized line and the thermoelectric supply line.

【0007】[0007]

【作用】本発明においては、エンジン駆動コジェネレー
ションシステムとヒートポンプ及び蓄熱槽を組み合わせ
た熱電併給システムにおいて、蓄熱槽を介して負荷側と
熱源側に分離し、熱電負荷比が小さい時は、コジェネレ
ーションシステムのみを運転し余剰熱を蓄熱槽内に蓄熱
し、熱電負荷比が大の時は、一部の熱を蓄熱槽からの熱
で賄いつつ、残りの熱電負荷量に対し、コジェネレーシ
ョンシステムとヒートポンプで熱電供給線と熱電実現直
線の交点で運転する。
According to the present invention, in a cogeneration system combining an engine-driven cogeneration system with a heat pump and a heat storage tank, the heat and power is separated into a load side and a heat source side via a heat storage tank. Only the system is operated to store excess heat in the heat storage tank, and when the thermoelectric load ratio is high, a part of the heat is supplied from the heat storage tank while the remaining heat and power load is The heat pump operates at the intersection of the thermoelectric supply line and the thermoelectric realization line.

【0008】[0008]

【実施例】以下、本発明の一実施例を図について説明す
る。図1において、CGSはエンジン駆動コジェネレー
ションシステム、Hはヒートポンプ、WL は電力負荷、
L は熱負荷、STは蓄熱槽、θSTは蓄熱槽内温度レベ
ル、PC ,PH ,PL はそれぞれポンプ、VC ,VH
L はそれぞれ三方弁、WA は補機電力、WB は買電で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In Figure 1, CGS engine driven cogeneration system, H is the heat pump, W L is the power load,
Q L is the heat load, ST is the heat storage tank, θ ST is the temperature level in the heat storage tank, P C , P H , and P L are pumps, V C , V H ,
V L each three-way valve, W A is auxiliary power, W B is the purchase of electricity.

【0009】また、図2はエンジン駆動コジェネレーシ
ョンシステムCGSの熱電発生図であり、横軸Qh は熱
発生量、縦軸Wは電力発生量、aは熱電発生直線、X
1 ,X2 は熱電負荷需要点、Y1 ,Y2 ’’はコジェネ
レーションシステムのそれぞれの運転点を示す。QST1
は発生熱が余ることを示し、QST2 は蓄熱槽からの採取
熱量を示している。また、買電直線はbであり、a+b
の折れ線全体が熱電供給線である。
[0009] FIG. 2 is a thermoelectric generation view of an engine-driven cogeneration system CGS, the abscissa Q h is the heat generation amount, and the vertical axis W is power generation amount, a is thermoelectric generating linear, X
1 , X 2 indicates a thermoelectric load demand point, and Y 1 , Y 2 ″ indicate respective operating points of the cogeneration system. Q ST1
Represents surplus generated heat, and Q ST2 represents the amount of heat collected from the heat storage tank. The power purchase straight line is b, and a + b
Is a thermoelectric supply line.

【0010】図1に示すように、蓄熱槽STを介して、
負荷側と熱源機群側とに分離されて構成される。蓄熱槽
ST内は左端が高温槽で右端が低温槽になるように構成
されている。熱負荷QL 側には定流量ポンプPL に三方
弁VL を介して任意の温水が作れるようになっている。
熱源機側はコジェネレーションシステムCGSとヒート
ポンプHが並列に接続されており、それぞれ定流ポンプ
C とPH が各々三方弁VC とVH を介して接続され、
出口水温が一定の高温になるように制御されている。
As shown in FIG. 1, through a heat storage tank ST,
The load side and the heat source device group side are configured separately. In the heat storage tank ST, the left end is a high-temperature tank and the right end is a low-temperature tank. The heat load Q L side so make any hot water through the three-way valve V L to the constant flow rate pump P L.
Heat source apparatus side cogeneration are systems CGS and heat pump H are connected in parallel, each constant flow pump P C and P H are connected via the respective three-way valve V C and V H,
The outlet water temperature is controlled to be constant.

【0011】従って、図2の熱電負荷比の小さいX1
需要に対し、コジェネレーションシステムCGSは電力
負荷WL に追従したY1 で運転し、余剰熱QST1 は蓄熱
槽内STに蓄えられる。一方、熱電負荷比の大きいX2
=QL /WL の時は、熱負荷の一部QST2 を蓄熱槽ST
からの放熱で賄うため、コジェネレーションシステムに
必要とされるみなし熱需要量はQh ’となり、必要な熱
電需要点はX2 ’となる。熱電需要点X2 ’を通り傾き
が1/COPとなる直線lと熱電発生直線a+bとの交
点Y2 ’がコジェネレーションシステム+買電の運転点
であり、買電がWB で、コジェネレーションシステムC
GSは定格運転点がY2 ’’であり、ヒートポンプHへ
の電気入力はWH である。
Accordingly, with respect to the demand for small X 1 thermoelectric load ratio of 2, cogeneration systems CGS is operated by Y 1 that following the power load W L, excess heat Q ST1 is stored in the thermal storage tank ST . On the other hand, X 2 having a large thermoelectric load ratio
= Q L / W L , a part of the heat load Q ST2 is stored in the heat storage tank ST
Since the heat is supplied from the heat source, the deemed heat demand required for the cogeneration system is Q h ′, and the required thermoelectric demand point is X 2 ′. An operating point of cogeneration system + power purchase 'intersection Y 2 between the line l and the thermoelectric generating linear a + b that passes through the slope becomes 1 / COP' thermoelectric demand point X 2, in purchased power is W B, cogeneration System C
GS has a rated operating point of Y 2 ″, and the electric input to the heat pump H is W H.

【0012】従って、上記実施例によれば、熱電負荷比
が小なる時は電力負荷追従運転で余剰熱を蓄熱槽に蓄え
ておき、熱電負荷化が大きい時は蓄熱槽内の熱を使いつ
つ買電を含めた熱電負荷需要を賄いうることが可能な制
御性のよい、信頼性のある制御方法を提供できる。
Therefore, according to the above embodiment, when the thermoelectric load ratio is small, the surplus heat is stored in the heat storage tank by the power load following operation, and when the thermoelectric load is large, the heat in the heat storage tank is used. A highly controllable and reliable control method capable of covering the thermoelectric load demand including power purchase can be provided.

【0013】[0013]

【発明の効果】以上のように、本発明によれば、負荷側
と熱源機群側とを蓄熱槽を介して構成し、熱源機として
コジェネレーションシステムとヒートポンプを並列に配
置し、熱電比が小の時は電力追従運転を実行し、余剰熱
を蓄熱槽に蓄え、熱電比が大の時は蓄熱槽の熱を利用
し、残りの熱負荷と電力負荷に対し、買電を伴う運転を
するので、任意の電力負荷と任意の熱負荷に対応でき、
しかも熱源機側のバックアップが自動的に実行でき、制
御が簡単になるという効果がある。
As described above, according to the present invention, the load side and the heat source device group side are configured via the heat storage tank, and the cogeneration system and the heat pump are arranged in parallel as the heat source device, and the heat-to-electricity ratio is reduced. When the power is small, the power follow-up operation is performed, and the surplus heat is stored in the heat storage tank. So it can handle any power load and any heat load,
Moreover, there is an effect that the backup on the heat source device side can be automatically executed, and the control is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるコジェネレーションシ
ステムとヒートポンプと蓄熱槽の構成図である。
FIG. 1 is a configuration diagram of a cogeneration system, a heat pump, and a heat storage tank according to an embodiment of the present invention.

【図2】エンジン駆動方コジェネレーションシステムの
熱電発生図である。
FIG. 2 is a thermoelectric generation diagram of an engine-driven cogeneration system.

【図3】従来のコジェネレーションシステムにおける蓄
熱槽を含むシステムの構成図である。
FIG. 3 is a configuration diagram of a system including a heat storage tank in a conventional cogeneration system.

【符号の説明】[Explanation of symbols]

CGS エンジン駆動コジェネレーションシステム ST 蓄熱槽 H ヒートポンプ COP 成績係数 WL 電力負荷(電力需要量) QL 熱負荷 X1 ,X2 熱電(負荷)需要点 Y1 ,Y2 コジェネレーション運転点 QST1 余剰熱 QST2 蓄熱槽からの利用熱量 Qh ’ みなし熱需要量 l 熱電実現直線 a 熱電発生直線 b 買電直線 a+b 熱電供給線 WB 買電 WH ヒートポンプへの投入電力CGS engine driven cogeneration system ST heat storage tank H heat pump COP coefficient of performance W L power load (power demand) Q L heat load X 1 , X 2 thermoelectric (load) demand point Y 1 , Y 2 cogeneration operating point Q ST1 surplus Heat Q ST2 Heat used from the heat storage tank Q h 'Deemed heat demand l Thermoelectric realization straight line a Thermoelectric generation straight line b Purchasing straight line a + b Heating power supply line W B purchasing power W H Power input to heat pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−253756(JP,A) 特開 平1−144101(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05D 23/00 - 23/32 G05B 11/00 - 13/04 H02J 3/00 - 5/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-253756 (JP, A) JP-A-1-144101 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G05D 23/00-23/32 G05B 11/00-13/04 H02J 3/00-5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エンジン駆動コジェネレーションシステ
ムとヒートポンプ及び蓄熱槽とを組み合わせた熱電併給
システムにおいて、コジェネレーションシステムにおけ
る熱電発生比率に対し、需要側熱電比率が小さい時は、
電力需要に合わせてコジェネレーションシステムを運転
し、余剰熱を蓄熱槽に蓄熱し、需要側熱電比率が大きい
時は、所望熱電需要量から蓄熱槽からの利用熱量を差し
引いたみなし熱需要量を求め、上記みなし熱需要量と所
望電力需要量とから成る熱電需要点を求め、上記コジェ
ネレーションシステムの熱電発生図中の上記熱電需要点
を通り傾きが成績係数の逆数となる熱電実現直線と上記
コジェネレーションシステムの熱電発生図中の熱電発生
直線の上に買電直線を重ねた熱電供給線を作成し、上記
熱電実現直線と上記熱電供給線との交点で上記コジェネ
レーションシステムとヒートポンプを運転するコジェネ
レーションシステムの運転制御方法。
In a cogeneration system combining an engine-driven cogeneration system with a heat pump and a heat storage tank, when the demand-side heat / power ratio is smaller than the thermoelectric generation ratio in the cogeneration system,
Operate the cogeneration system according to the power demand, store the excess heat in the heat storage tank, and when the demand-side heat-to-power ratio is large, find the deemed heat demand by subtracting the amount of heat used from the heat storage tank from the desired heat and power demand. A thermoelectric demand point comprising the deemed heat demand and the desired power demand is obtained, and a thermoelectric realization straight line having a reciprocal of the coefficient of performance, which passes through the thermoelectric demand point in the thermoelectric generation diagram of the cogeneration system and A thermoelectric supply line is created by superimposing a power purchase straight line on the thermoelectric generation line in the thermoelectric generation diagram of the generation system, and operating the cogeneration system and heat pump at the intersection of the thermoelectric realization line and the thermoelectric supply line. Operation control method for generation system.
JP21416692A 1992-08-11 1992-08-11 Operation control method for cogeneration system Expired - Fee Related JP3258998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21416692A JP3258998B2 (en) 1992-08-11 1992-08-11 Operation control method for cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21416692A JP3258998B2 (en) 1992-08-11 1992-08-11 Operation control method for cogeneration system

Publications (2)

Publication Number Publication Date
JPH0659747A JPH0659747A (en) 1994-03-04
JP3258998B2 true JP3258998B2 (en) 2002-02-18

Family

ID=16651331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21416692A Expired - Fee Related JP3258998B2 (en) 1992-08-11 1992-08-11 Operation control method for cogeneration system

Country Status (1)

Country Link
JP (1) JP3258998B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008695A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Running time setting method of combined heat and power generation equipment
JP2008180473A (en) * 2007-01-26 2008-08-07 Kenji Umetsu Hybrid energy-using heat pump device

Also Published As

Publication number Publication date
JPH0659747A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
JPH02245453A (en) Optimum control method for co-generation system
US4589262A (en) Absorption type air conditioning system
JP3258998B2 (en) Operation control method for cogeneration system
JPH084586A (en) Cogeneration system
JP2009074744A (en) Gas heat pump cogeneration apparatus
JP3301784B2 (en) Control method of heat storage tank in combined heat and power system
JP3653256B2 (en) Hybrid energy system
JPH0329523Y2 (en)
JP2939486B2 (en) Cogeneration system
JPH0659748A (en) Temperature control method of heat storage tank in cogeneration system
JP3616826B2 (en) Gas turbine system and operation method thereof
JPH0666110A (en) Control method of heat pump in heat and electric power double supplying system
JP3624275B2 (en) Cold and hot water generation method that does not require external power supply
JPH0658692A (en) Control system of heat storage tank for cogeneration system
JPS6046251B2 (en) Heating and cooling system with emergency power generator
JP3675070B2 (en) Cogeneration system
JP2695210B2 (en) Air conditioning
JP2628218B2 (en) Optimal control method for cogeneration system
JPH01131859A (en) Cold and hot water controller
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
JP2002089994A (en) Absorption type water cooling and heating device utilizing waste heat
JPH0474531B2 (en)
JPH02301606A (en) Cogeneration system
JPH08232681A (en) Cogeneration device
JPH062569A (en) Multipurpose cooling method for gas turbine generating equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees