JPH01131859A - Cold and hot water controller - Google Patents

Cold and hot water controller

Info

Publication number
JPH01131859A
JPH01131859A JP62288483A JP28848387A JPH01131859A JP H01131859 A JPH01131859 A JP H01131859A JP 62288483 A JP62288483 A JP 62288483A JP 28848387 A JP28848387 A JP 28848387A JP H01131859 A JPH01131859 A JP H01131859A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
heat
water supply
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62288483A
Other languages
Japanese (ja)
Inventor
Mikio Umeda
梅田 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62288483A priority Critical patent/JPH01131859A/en
Publication of JPH01131859A publication Critical patent/JPH01131859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE: To lighten the load of an electric turbo refrigerating machine by making use of the quantity of heat recovered from waste heat preferentially to the demand of hot water supply, and making use of the surplus quantity of heat to a hot water system of absorption refrigerating machine. CONSTITUTION: The waste heat of an engine generator 5 is recovered with a cooling water heat recovery heat exchanger 7 and an exhaust gas heat recovery heat exchanger 6, and its heating medium is utilized, being circulated in a absorption refrigerating machine 1, a heat exchanger 3 for hot water supply heating, a cooling water heat recovery heat exchanger 7, and an exhaust gas heat recovery heat exchanger 6 in order. Moreover, the heat of the hot water made by the waste heat of the engine 5 is sent round preferentially to a heat exchanger 3 for hot water supply heating, by putting the control of three-way adjusting valves 18 and 19 fitted with controllers for hot water adjustment put in a hot water system of absorption refrigerating machine 1 into practice, operating the temperature information of the first temperature sensor 11 in the outlet line of the output side of that hot water system of absorption refrigerating machine 1 and the second temperature sensor 12 in the outlet line on the secondary side of the heat exchanger 3 for hot water supply heating with a central processing unit 4, and the waste heat is effectively made use of, by fulfilling a part of the cooling demand with surplus hot water.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はコージェネレーションプラントの最適経済運用
を行うための冷温水制御に適用される冷温水制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cold/hot water control device applied to cold/hot water control for optimally economical operation of a cogeneration plant.

〔従来の技術〕[Conventional technology]

従来の温水式吸収冷凍機の制御方式は、つくられ之冷水
の温度が一定と述るよう龜水投大量を制御するいわゆる
lループローカルml IIOrある。又給湯用温水の
制御も温水温度が一定となるようバーナを制御するlル
ープローカル制御である。このように両機器の冷水及び
温水制御は夫々単独に存在するのみで関連がなかった。
A conventional control method for a hot water absorption refrigerator is a so-called l-loop local ml IIOr method, which controls the amount of water input so that the temperature of the produced cold water is constant. The control of hot water for hot water supply is also an l-loop local control that controls the burner so that the hot water temperature is constant. In this way, the cold water and hot water controls for both devices existed independently and were not related.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

コージェネレーションプラントの最適経済運用法につい
ては、線形計画法等により、電力・熱需要に対して理論
的に求めることができる。
The optimal economic operation method for a cogeneration plant can be theoretically determined for electric power and heat demand using linear programming and the like.

同理論によれば、エンジンの排熱回収により得られた熱
量で給湯需要を満たし、余剰の熱量にて温水式吸収冷凍
機を稼動することが最も経済的である。しかし上記従来
の温水式吸収冷凍機は、つくられた冷水が一定温度(例
えば7℃)となるよう投入温水量を制御するいわゆるロ
ーカル制御のみで、コージヱネレー7=1シブラントと
しての最適経済運転を実用化することにはほど遠かった
According to this theory, it is most economical to satisfy the demand for hot water supply with the amount of heat obtained by recovering exhaust heat from the engine, and to use the surplus amount of heat to operate a hot water absorption refrigerator. However, the above-mentioned conventional hot water absorption chiller only uses so-called local control to control the amount of hot water input so that the produced cold water has a constant temperature (for example, 7 degrees Celsius), and is able to achieve optimal economical operation as a 7 = 1 Sibelant. It was far from becoming a reality.

又、給湯用温水についても、水温が低い場合にバーナ点
火を自動制御するのみで、余剰熱量を検出する手段がな
く上記同様、プラントとしての最適経済運転を実現して
いなかった。
Furthermore, with regard to hot water for hot water supply, burner ignition is only automatically controlled when the water temperature is low, and there is no means for detecting surplus heat, and as described above, optimal economical operation of the plant has not been achieved.

本発明は、給湯需要に対し優先的に排熱回収熱量を利用
し余剰の熱量を温水式吸収冷凍機にて利用して、電動タ
ーボ冷凍機の負荷を軽減する、最適経済運転を可能とす
ることを目的とする。
The present invention enables optimal economical operation by preferentially utilizing the recovered waste heat for hot water demand and using the excess heat in a hot water absorption chiller to reduce the load on the electric centrifugal chiller. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.

すなわち、エンジン発電機の排熱を冷却水熱回収熱交換
器と排ガス熱回収熱交換器で回収し、その熱媒体を順次
吸収冷凍機、給湯暖房用熱交換器、上記冷却水熱回収熱
交換器、排ガス熱回収熱交換器に循環し利用するととも
に上記とは別の冷凍機を上記吸収冷凍機と併用するコー
ジェネレーションプラントにおいて、上記吸収冷凍機の
出力側の出口ラインに設けられた第1温度センサと、同
吸収冷凍機の入力側ラインの出口側に配設される制御装
置付三方調整弁と、上記給湯暖房用熱交換器の二次側の
出口ラインに設けられた第2温度センサと、上記各温度
センサ及び制御装置付三方調整弁とを信号ラインで接続
された中央演算装置と、上記給湯暖房用熱交換器の一次
側ラインの出口側に配設される制御装置付三方調整弁と
を備え、前記エンジン発電機の排熱回収熱が優先的に給
湯暖房に利用され、余剰熱が冷房に利用されるようにし
た。
That is, the exhaust heat of the engine generator is recovered by the cooling water heat recovery heat exchanger and the exhaust gas heat recovery heat exchanger, and the heat medium is sequentially transferred to the absorption refrigerator, the hot water supply heating heat exchanger, and the above-mentioned cooling water heat recovery heat exchanger. In a cogeneration plant in which the exhaust gas is circulated to a heat recovery heat exchanger for use and a refrigerator other than the above is used in conjunction with the absorption refrigerator, a first a temperature sensor, a three-way regulating valve with a control device disposed on the outlet side of the input line of the absorption chiller, and a second temperature sensor disposed on the outlet line of the secondary side of the heat exchanger for hot water supply and heating. , a central processing unit connected to each of the temperature sensors and the three-way regulating valve with a control device by a signal line, and a three-way regulating device with a control device disposed on the outlet side of the primary line of the heat exchanger for hot water supply and heating. The exhaust heat recovered from the engine generator is preferentially used for hot water supply and heating, and the surplus heat is used for cooling.

〔作用〕[Effect]

温水式吸収冷凍機への投入温水量調整用の制御装置付三
方調整弁の制御を同温水式吸収冷凍機の出力側の出口ラ
インの第1温度センサと給湯暖房用熱交換器の二次側の
出口ラインの第2温度センサとの温度情報を中央演算装
置にて演算して実行しくすることにより、エンジン排熱
によりつくられた温水の熱を優先的に給湯暖房用熱交換
器へ回し、余剰の生じた温水にて会場冷房需要の一部を
満たすことにより、コージェネレーションプラントとし
て排熱を有効かつ最も経済的方法で利用する。
The three-way regulating valve with a control device for adjusting the amount of hot water input to the hot water absorption chiller is controlled by the first temperature sensor on the output line of the hot water absorption chiller and the secondary side of the hot water heating heat exchanger. By calculating and executing the temperature information from the second temperature sensor on the outlet line in the central processing unit, the heat of the hot water created by the engine exhaust heat is preferentially routed to the hot water supply and heating heat exchanger. By meeting a portion of the venue's cooling demand with surplus hot water, waste heat is used effectively and in the most economical way as a cogeneration plant.

〔実施例〕〔Example〕

本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be explained with reference to FIG.

エンジン発電機5の冷却水系に冷却水熱回収熱交換器7
、排気系に排ガス熱回収熱交換器6が設けられる。冷却
水熱回収熱交換器7の二次側出口は制御装置付の第1三
方調整弁(以下の第1〜第5三方調整弁はすべて制御装
置付とする)nの第1ボートに接続される。排ガス熱回
収熱交換器6の二次側入口ラインは上記冷却水熱回収熱
交換器7の出口ラインに接続され、出口ラインは上記第
1三方調整弁nの第2ボートに接続される。又第1三方
調整弁nの第3ボート(出口)は温水式の吸収冷凍機1
の入力ラインの入口に接続される。第2三方調整弁18
の第1ボートは上記吸収冷凍機lの入力ラインの入口に
、第2ボートは上記吸収冷凍機lの入力ラインの出口に
それぞれつながれる。また第2三方調整弁18の第3ポ
ート(出口)は給湯暖房用熱交換器3の一次側の入口に
、同一次側の人口へのラインは第3三方調整弁19の第
1ボートにそれぞれ接続される。又同第3三方調整弁1
9の第2ボートは上記給湯・暖房用熱交換器3の−次何
人カラインに、第3ボート(出口)は第4三方調整弁加
の第1ボートにそれぞれつながれる。
Cooling water heat recovery heat exchanger 7 in the cooling water system of the engine generator 5
, an exhaust gas heat recovery heat exchanger 6 is provided in the exhaust system. The secondary side outlet of the cooling water heat recovery heat exchanger 7 is connected to the first boat of the first three-way regulating valve (the following first to fifth three-way regulating valves are all equipped with a control device) equipped with a control device. Ru. The secondary side inlet line of the exhaust gas heat recovery heat exchanger 6 is connected to the outlet line of the cooling water heat recovery heat exchanger 7, and the outlet line is connected to the second boat of the first three-way regulating valve n. Also, the third boat (outlet) of the first three-way regulating valve n is a hot water type absorption refrigerator 1.
connected to the inlet of the input line. Second three-way regulating valve 18
The first boat is connected to the inlet of the input line of the absorption chiller l, and the second boat is connected to the outlet of the input line of the absorption chiller l. In addition, the third port (outlet) of the second three-way regulating valve 18 is connected to the inlet of the primary side of the hot water heating heat exchanger 3, and the line to the population on the same outgoing side is connected to the first boat of the third three-way regulating valve 19. Connected. Also, the third three-way regulating valve 1
The second boat No. 9 is connected to the first water line of the hot water/heating heat exchanger 3, and the third boat (outlet) is connected to the first boat of the fourth three-way adjustment valve.

同第4三方調整弁美の第2ボート(出口)は循環水放熱
熱交換器8を経て前記冷却水熱回収熱交換器7の二次側
入口に、第3ボート(出口)は同循環水放熱熱交換器8
の出口ラインにそれぞれつながれる。
The second boat (outlet) of the fourth three-way regulating valve is connected to the secondary side inlet of the cooling water heat recovery heat exchanger 7 via the circulating water heat radiation heat exchanger 8, and the third boat (outlet) is connected to the circulating water Radiation heat exchanger 8
are connected to the respective exit lines.

一方、吸収冷凍機1の出力ラインの出口は混流器10の
一つの入口につながれる。同混流器10の出口は電動タ
ーボ冷凍機2を経て冷房供給ラインaにつながれる。冷
房供給のリターンラインbは冷房用冷水戻りヘッダ9を
経て前記吸収冷凍機1の出力側の入口と、混流器10の
他の入口とにそれぞれつながれる。
On the other hand, the output line outlet of the absorption refrigerator 1 is connected to one inlet of the mixer 10. The outlet of the mixer 10 is connected to a cooling supply line a via an electric centrifugal refrigerator 2. The cooling supply return line b is connected to the output side inlet of the absorption refrigerator 1 and the other inlet of the mixer 10 via the cooling cold water return header 9.

また一方、給湯暖房用熱交換器3の二次側の出口は第5
三方調整弁21の第1ボートから第3ボート(出口)を
経て給湯・暖房用供給2インCに接続される。また上記
第5三方調整弁21の第1ボートへのラインと第2ボー
トの間に温水ボイラるが接続される。さらに上記給湯・
暖房用供給ラインCのリターンラインdは給湯暖房用熱
交換器3の二次側の入口につながれる。
On the other hand, the outlet on the secondary side of the heat exchanger 3 for hot water supply and heating is the fifth
The first boat of the three-way regulating valve 21 is connected to the hot water/heating supply 2-in C via the third boat (outlet). Further, a hot water boiler is connected between the line of the fifth three-way regulating valve 21 to the first boat and the second boat. In addition, the above hot water supply
The return line d of the heating supply line C is connected to the secondary side inlet of the hot water supply and heating heat exchanger 3.

以上の機器を制御するため中央演算装置4は、第2三方
調整弁18と、吸収冷凍機1の出方側の出口ラインに設
けられた第1温度センサ(以下第1センサと略記、他の
温度センサについても同様)11と、給湯暖房用熱交換
器3の二次側の出口ラインに設けられた第2センサ12
と、それぞれ接続されている。また第1三方調整弁nは
排ガス熱回収熱交換器6の出口排気管に設けられた第3
センサ16につながれる。第4三方調整弁加は冷却水熱
回収熱交換器7の二次側の入口ラインに配設された第4
セ/す15につながれる。
In order to control the above-mentioned devices, the central processing unit 4 controls the second three-way regulating valve 18 and a first temperature sensor (hereinafter abbreviated as the first sensor, other The same applies to the temperature sensor) 11, and a second sensor 12 provided on the outlet line on the secondary side of the hot water supply/heating heat exchanger 3.
are connected to each other. Further, the first three-way regulating valve n is a third valve provided at the outlet exhaust pipe of the exhaust gas heat recovery heat exchanger 6.
Connected to sensor 16. The fourth three-way adjustment valve is the fourth three-way adjustment valve installed in the inlet line on the secondary side of the cooling water heat recovery heat exchanger 7.
Connected to the cell/su15.

また第3三方調整弁19はその第3ボートのラインに設
けられた第5センサ13に、第5三方調整弁21はその
第3ボートのラインに設けられた第6センサ14に、そ
れぞれつながれる。さらに電動ターボ冷凍機2はその出
口ラインに設けられた第7センサにつながれる。
Further, the third three-way regulating valve 19 is connected to the fifth sensor 13 provided on the line of the third boat, and the fifth three-way regulating valve 21 is connected to the sixth sensor 14 provided on the line of the third boat. . Further, the electric centrifugal refrigerator 2 is connected to a seventh sensor provided on its outlet line.

以上の構成において、エンジン発電機5の排熱は、冷却
水熱回収熱交換器7、排ガス熱回収熱交換器6を介して
温水熱として回収される。
In the above configuration, the exhaust heat of the engine generator 5 is recovered as hot water heat via the cooling water heat recovery heat exchanger 7 and the exhaust gas heat recovery heat exchanger 6.

この温水は、第2三方調整弁18、第3三方調整弁19
の開度を制御することによシ夫々吸収冷凍機l、給湯暖
房用熱交換器3へ所定量供給される。冷却水熱回収熱交
換器7への給水温度は一定に保つ必要があるため第5セ
ンサ13によってその水温が設定値以下にならないよう
第3三方調整弁19の開度を調節して制御する。
This hot water is supplied to the second three-way regulating valve 18 and the third three-way regulating valve 19.
By controlling the opening degrees of the water, a predetermined amount of water is supplied to the absorption refrigerator 1 and the hot water supply/heating heat exchanger 3, respectively. Since the temperature of the water supplied to the cooling water heat recovery heat exchanger 7 needs to be kept constant, the opening degree of the third three-way regulating valve 19 is controlled by the fifth sensor 13 so that the water temperature does not fall below a set value.

冷房給湯需要が少なく水温が設定値より高い場合は、第
4三方調整弁加の開度を調整し、循環水放熱熱交換器8
にて水温を下げ設定値を保つ。
When the demand for air conditioning and hot water supply is low and the water temperature is higher than the set value, adjust the opening of the fourth three-way control valve and close the circulating water heat radiation heat exchanger 8.
Lower the water temperature and maintain the set value.

また暖房給湯需要が多く第2センサ12部の水温が低い
場合、第2三方調整弁18は、吸収冷凍機1の温水供給
を減少させ、給湯暖房熱交換器3への温水供給を増加す
る。第3三方調整弁19の開度が元のままだと第5セ/
す13部の水温が上昇するので、この信号により給湯暖
房熱交換器3への給水量が増加する。さらに給湯暖房用
温水の温度が低下する場合は温水ボイ223にて追加加
熱される。
Further, when the demand for heating and hot water supply is high and the water temperature at the second sensor 12 is low, the second three-way regulating valve 18 reduces the hot water supply to the absorption chiller 1 and increases the hot water supply to the hot water supply and heating heat exchanger 3. If the opening degree of the third three-way regulating valve 19 remains the same, the fifth stage/
Since the water temperature in the bath 13 rises, this signal increases the amount of water supplied to the hot water heating heat exchanger 3. Further, when the temperature of the hot water for hot water supply and heating decreases, additional heating is performed in the hot water boiler 223.

第2七ンサ12部の水温が高い場合(余剰熱量がある場
合)、同上ンサ12部の水温が設定より高く、かつ第1
センサ11部の冷水温が設定値より高い場合、すなわち
給湯需要より排熱回収量が多く、かつ冷水温が設定値よ
り高い場合は、冷房需要が大であると中央演算装[4で
判定して、第2三方調整弁18を調整して、吸収冷凍機
1への温水供給を第2センサ12の温度が設定値ヨリ下
ることのない程度に増加して、第1センサ11部の水温
を下げる。吸収冷凍機lの出力側冷水温即ち第1センサ
11部の水は、混流器1oにて冷房用戻り冷水の別回路
分と混流し、電動ターボ冷凍機2へ供給される。電動タ
ーボ冷凍機2は、第7センサ17部の出口水温が一定と
なるよう制御されるので、第1センサ11部の水温が低
下する程電力消費量が減少する。また第2センサ12部
の水温が高くても、第1センサ11部の冷水温が設定値
(たとえば7℃)iで下っている場合は、吸収冷凍機1
への温水供給量が増加することはない。
If the water temperature in the 12th part of the 27th sensor is high (if there is surplus heat), the water temperature in the 12th part of the 27th sensor is higher than the setting, and
If the chilled water temperature of sensor 11 is higher than the set value, that is, if the amount of waste heat recovery is greater than the hot water demand, and if the chilled water temperature is higher than the set value, the central processing unit [4] determines that the cooling demand is large. Then, the second three-way regulating valve 18 is adjusted to increase the supply of hot water to the absorption chiller 1 to an extent that the temperature of the second sensor 12 does not fall below the set value, thereby increasing the water temperature of the first sensor 11. Lower it. The cold water temperature on the output side of the absorption chiller 1, that is, the water at the first sensor 11 section, is mixed with another circuit of return cold water for cooling in a mixer 1o, and is supplied to the electric centrifugal chiller 2. Since the electric centrifugal refrigerator 2 is controlled so that the water temperature at the outlet of the seventh sensor 17 section is constant, the power consumption decreases as the water temperature of the first sensor 11 section decreases. Furthermore, even if the water temperature at the second sensor 12 section is high, if the cold water temperature at the first sensor 11 section is lower than the set value (for example, 7°C) i, the absorption chiller 1
The amount of hot water supplied to the area will not increase.

なお、電動ターボ冷凍機2の電力としては、エンジン発
電機5に発生した電力あるいは電力会社から供給される
電力のいずれを使用しても良い。また電動ターボ冷凍機
2は吸収冷凍機lと独立したものであれば良く、ガス焚
、油焚冷凍機でも良い。エンジン発電機5は、1台で例
示したが、コージェネレーシ璽ンプラントで一般的に使
用されるように複数台を設置してもよい。本実施例では
、電力会゛社から購入する買電についてはふれていない
が、エンジン発電機5での電力と買電は同一線に併入さ
れるので同じものとして扱えることはいうまでもない。
Note that as the electric power for the electric centrifugal chiller 2, either the electric power generated by the engine generator 5 or the electric power supplied from the electric power company may be used. The electric centrifugal refrigerator 2 may be independent of the absorption refrigerator 1, and may be a gas-fired or oil-fired refrigerator. Although one engine generator 5 is illustrated, a plurality of engine generators 5 may be installed as is generally used in a cogeneration plant. Although this embodiment does not mention electricity purchased from the electric power company, it goes without saying that the electricity generated by the engine generator 5 and the electricity purchased can be treated as the same thing since they are included in the same line. .

また、吸収冷凍機1は温水式吸収冷凍機で例示したが蒸
気式吸収冷凍機にしてもよい。
Further, although the absorption refrigerator 1 is exemplified as a hot water type absorption refrigerator, it may be a steam type absorption refrigerator.

以上のようにして、コージェネレーションプラントにお
いてエンジンの排熱回収熱量をまず給湯、暖房に優先的
に利用し、余剰熱量を吸収冷凍機に供給し冷房需要の一
部に利用する最適経済運転の冷温水制御が可能となる。
As described above, in a cogeneration plant, the exhaust heat recovered from the engine is first used preferentially for hot water supply and space heating, and the surplus heat is supplied to the absorption chiller and used for part of the cooling demand. Water control becomes possible.

〔発明の効果〕〔Effect of the invention〕

コージエネレー7四ンプラントとして最適経済運転を実
施する場合、エンジン排熱回収熱量をまず給湯、暖房に
優先的に利用し、余剰熱量を吸収冷凍機に供給し冷房需
要の一部に利用することが最適であり、本発明の冷温水
制御装置により、上記のことが具体的に実現可能となる
When implementing optimal economical operation as a COGENERA 74 plant, it is best to first use the heat recovered from the engine exhaust heat for hot water supply and space heating first, and then supply the excess heat to the absorption chiller and use it to meet part of the cooling demand. With the cold/hot water control device of the present invention, the above can be concretely realized.

3:給湯暖房用熱交換器、4:中央演算装置、5:エン
ジン発電機、6:排ガス熱回収熱交換器、7:冷却水熱
回収熱交換器、8:循環水放熱熱交換器、9:冷房用冷
水戻シヘッダ、lO:混流器、11:第1セ/す、12
:第2セ/す、13:第5センサ、14:第6セ/す、
15:第4センサ、16:第3センサ、17:第7セン
サ、18:第2三方調整弁、19:第3三方調整弁、2
0:第4三方調整弁、21:第5三方調整弁、22:第
1三方調整弁、23:温水ボイラ。
3: Hot water heating heat exchanger, 4: Central processing unit, 5: Engine generator, 6: Exhaust gas heat recovery heat exchanger, 7: Cooling water heat recovery heat exchanger, 8: Circulating water radiation heat exchanger, 9 : Cold water return header for cooling, lO: Mixer, 11: 1st section, 12
: 2nd se/su, 13: 5th sensor, 14: 6th se/su,
15: Fourth sensor, 16: Third sensor, 17: Seventh sensor, 18: Second three-way regulating valve, 19: Third three-way regulating valve, 2
0: Fourth three-way regulating valve, 21: Fifth three-way regulating valve, 22: First three-way regulating valve, 23: Hot water boiler.

代理人 弁理士  坂 間   暁  外2名謔1図Agent: Patent Attorney: Sakama Akatsuki, 2 others, 1 illustration

Claims (1)

【特許請求の範囲】[Claims] エンジン発電機の排熱を冷却水熱回収熱交換器と排ガス
熱回収熱交換器で回収し、その熱媒体を順次吸収冷凍機
、給湯暖房用熱交換器、上記冷却水熱回収熱交換器、排
ガス熱回収熱交換器に循環し利用するとともに上記とは
別の冷凍機を上記吸収冷凍機と併用するコージェネレー
ションプラントにおいて、上記吸収冷凍機の出力側の出
口ラインに設けられた第1温度センサと、同吸収冷凍機
の入力側ラインの出口側に配設される制御装置付三方調
整弁と、上記給湯暖房用熱交換器の二次側の出口ライン
に設けられた第2温度センサと、上記各温度センサ及び
制御装置付三方調整弁とを信号ラインで接続された中央
演算装置と、上記給湯暖房用熱交換器の一次側ラインの
出口側に配設される制御装置付三方調整弁とを備え、前
記エンジン発電機の排熱回収熱量が優先的に給湯暖房に
利用され、余剰熱量が冷房に利用されるようにしたこと
を特徴とするコージェネレーションプラントの冷温水制
御装置。
The exhaust heat of the engine generator is recovered by a cooling water heat recovery heat exchanger and an exhaust gas heat recovery heat exchanger, and the heat medium is sequentially transferred to an absorption refrigerator, a hot water supply and heating heat exchanger, the above-mentioned cooling water heat recovery heat exchanger, In a cogeneration plant in which exhaust gas heat is circulated to a heat recovery heat exchanger for use and a refrigerator other than the above is used in combination with the absorption refrigerator, a first temperature sensor installed in an outlet line on the output side of the absorption refrigerator. a three-way regulating valve with a control device disposed on the outlet side of the input line of the absorption chiller; and a second temperature sensor disposed on the outlet line of the secondary side of the hot water supply and heating heat exchanger. A central processing unit connected to each of the temperature sensors and the three-way regulating valve with a control device via a signal line, and a three-way regulating valve with a control device disposed on the outlet side of the primary line of the heat exchanger for hot water supply and heating. A cold/hot water control device for a cogeneration plant, characterized in that the exhaust heat recovered from the engine generator is preferentially used for hot water supply and heating, and the surplus heat is used for cooling.
JP62288483A 1987-11-17 1987-11-17 Cold and hot water controller Pending JPH01131859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288483A JPH01131859A (en) 1987-11-17 1987-11-17 Cold and hot water controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288483A JPH01131859A (en) 1987-11-17 1987-11-17 Cold and hot water controller

Publications (1)

Publication Number Publication Date
JPH01131859A true JPH01131859A (en) 1989-05-24

Family

ID=17730791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288483A Pending JPH01131859A (en) 1987-11-17 1987-11-17 Cold and hot water controller

Country Status (1)

Country Link
JP (1) JPH01131859A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279761A (en) * 1990-03-27 1991-12-10 Mitsubishi Heavy Ind Ltd Cogeneration system
JP2006313049A (en) * 2005-05-09 2006-11-16 Ebara Corp Waste heat utilizing system and its operating method
JP2012115813A (en) * 2010-12-03 2012-06-21 Mitsubishi Heavy Ind Ltd Heat pump system for wastewater treatment facility by biological treatment method, wastewater treatment facility by biological treatment method provided therewith, and method for control of the heat pump system for wastewater treatment facility by biological treatment method
WO2020250872A1 (en) * 2019-06-13 2020-12-17 三菱重工エンジン&ターボチャージャ株式会社 Cogeneration system, demand management device, control method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279761A (en) * 1990-03-27 1991-12-10 Mitsubishi Heavy Ind Ltd Cogeneration system
JP2006313049A (en) * 2005-05-09 2006-11-16 Ebara Corp Waste heat utilizing system and its operating method
JP2012115813A (en) * 2010-12-03 2012-06-21 Mitsubishi Heavy Ind Ltd Heat pump system for wastewater treatment facility by biological treatment method, wastewater treatment facility by biological treatment method provided therewith, and method for control of the heat pump system for wastewater treatment facility by biological treatment method
WO2020250872A1 (en) * 2019-06-13 2020-12-17 三菱重工エンジン&ターボチャージャ株式会社 Cogeneration system, demand management device, control method, and program

Similar Documents

Publication Publication Date Title
JPH01131859A (en) Cold and hot water controller
US2313439A (en) Power and heating system
JP2001342848A (en) Waste heat recovering method in gas turbine power generation system
JPH0329523Y2 (en)
JPH11257096A (en) Gas turbine power plant
US1595188A (en) Steam electric range
JPH01144101A (en) Fuel cost minimum operation controller for co-generation plant
JP2948346B2 (en) Control method of heat recovery device
JPH11336610A (en) Cogeneration system
JP2960607B2 (en) Cogeneration system
JPH03285520A (en) Optimum control method for cogeneration system
JPH03241204A (en) Coal saving device recirculation control apparatus
JPH05214956A (en) Gas turbine power plant
JPH01230962A (en) Operation device in heat and electricity supplying plant
JPS6227253B2 (en)
JPH1037802A (en) Heat recovery method for exhaust gas of prime mover
JP2593575B2 (en) Cogeneration system
SU705130A1 (en) Control system for a boiler and back-pressure turbine unit
JPH0474531B2 (en)
JPH0281907A (en) Steam supply and power generating plant
JPS622129B2 (en)
JPH01273936A (en) Heating and cooling system using hot water in heat and power generating plant
JP2006170508A (en) Cooling water system
JPH0445320A (en) Hot water heating device
JPH0242113A (en) Cogeneration plant by internal combustion engine