JP2628218B2 - Optimal control method for cogeneration system - Google Patents

Optimal control method for cogeneration system

Info

Publication number
JP2628218B2
JP2628218B2 JP2083599A JP8359990A JP2628218B2 JP 2628218 B2 JP2628218 B2 JP 2628218B2 JP 2083599 A JP2083599 A JP 2083599A JP 8359990 A JP8359990 A JP 8359990A JP 2628218 B2 JP2628218 B2 JP 2628218B2
Authority
JP
Japan
Prior art keywords
power
heat
demand
cost
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2083599A
Other languages
Japanese (ja)
Other versions
JPH03285520A (en
Inventor
惇 高橋
雄偉 伊藤
浩一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2083599A priority Critical patent/JP2628218B2/en
Publication of JPH03285520A publication Critical patent/JPH03285520A/en
Application granted granted Critical
Publication of JP2628218B2 publication Critical patent/JP2628218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,自家発電機と熱回収装置をもつ建物や施設
において,電気と熱の2種類の2次エネルギを同時に使
用するさいの消費エネルギのコストを最小にすることを
目的としたコージェネレーション・システムの最適制御
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to energy consumption in buildings and facilities having a private power generator and a heat recovery device when two types of secondary energy, electricity and heat, are used simultaneously. The present invention relates to an optimal control method for a cogeneration system aiming at minimizing the cost of the system.

〔発明の背景〕[Background of the Invention]

商用電力のほかに自家発電によって建物または施設内
の電力需要と熱需要をまかなうことが普及しているが,
このような建物または施設(以下,建物等という)にお
いて電気と熱を同時に使用する場合に,1次エネルギ(自
家発電に要するエネルギおよび系外から供給される商用
電力の合計)の利用効率が最も高くなるように電力需要
と熱需要がバランスしていることが望ましい。しかし,
実際には,時間的にも,また量的にもバランスしている
ことはむしろ稀である。コージェネレーション・システ
ム(CGS)は,かような電気と熱の2次エネルギを同時
に使用する場合の1次エネルギの利用効率を高めること
を目的としたものであるが,このために最も投資効率の
よい機器構成を採用したとしても,その運転態様が適切
でなければCGSの真価が発揮され得ない。
In addition to commercial power, private power generation to meet the power demand and heat demand in buildings or facilities has become popular.
When electricity and heat are used simultaneously in such buildings or facilities (hereinafter referred to as buildings, etc.), the utilization efficiency of primary energy (the sum of the energy required for in-house power generation and the commercial power supplied from outside the system) is the highest. It is desirable that the power demand and the heat demand are balanced so as to be higher. However,
In practice, it is rather rare to be balanced in time and in quantity. The cogeneration system (CGS) aims to increase the utilization efficiency of primary energy when such secondary energy of electricity and heat is used at the same time. Even if a good equipment configuration is adopted, the true value of CGS cannot be demonstrated unless the operation mode is appropriate.

しかし,1次エネルギが最小になる省エネルギ制御をし
た場合,そのエネルギコストは必ずしも最小になるとは
限らない。第1図は,熱電比(同時刻の熱需要/電力需
要の比)が平均すると0.3程度の一般事務所ビルに導入
されたCGSについて,その運転方法を検討したものであ
る。ここで,省コスト率とはエネルギコストが少なくな
る割合である該(1)式で示される。また電力主体運転
とは電力需要に追従して発電を行い,余った熱は放熱さ
せる運転方法を意味し,熱主体運転とは熱需要にあわせ
て発電を行なう方法であり,ここでは,発電量が電力需
要を越えないところまで熱主体で発電を行なう場合を意
味している。第1図に見られるように,1次エネルギが最
小になる省エネルギ制御は,ガス/電力料金比が約0.35
の時の省コスト率と同じであり,その時には,最適運転
は熱主体運転となる。しかしガス/電力料金比が約0.29
以下では,最適運転は電力主体運転であり,その場合
は,1次エネルギが最小になる運転はコスト的には不利で
ある。現状のガス/電力料金比は,0.1〜0.4程度の間で
あるので,経済性を考慮する場合は,1次エネルギが最小
になる省エネルギ制御ではその制御方法には限界がある
(ガス/電力料金比が約0.29以上の場合に限られる。) 本発明は,CGSを構成している機器類の運転条件を適正
に制御して最小の消費エネルギコストで電力と熱を同時
にまかなうことを目的としてものである。
However, when energy saving control is performed so that the primary energy is minimized, the energy cost is not always minimized. Fig. 1 shows the operation method of CGS installed in a general office building where the heat-to-electric ratio (heat demand / power demand ratio at the same time) averages about 0.3. Here, the cost saving rate is a rate at which the energy cost is reduced, and is represented by the equation (1). Power-based operation is a method of generating electricity following power demand and radiating excess heat, and heat-driven operation is a method of generating power in accordance with heat demand. Means that power is generated mainly by heat up to a point where power demand is not exceeded. As can be seen in Fig. 1, the energy saving control that minimizes the primary energy uses a gas / power rate ratio of about 0.35.
This is the same as the cost saving rate in the case of, and in that case, the optimal operation is heat-based operation. But the gas / electricity ratio is about 0.29
In the following, the optimal operation is power-based operation, in which case the operation with the minimum primary energy is disadvantageous in terms of cost. The current gas / electricity charge ratio is between about 0.1 and 0.4, so in consideration of economy, there is a limit to the control method for energy saving control that minimizes primary energy (gas / electricity The present invention is intended to simultaneously control power and heat at the minimum energy consumption cost by properly controlling the operating conditions of the equipment constituting the CGS. Things.

〔発明の構成〕[Configuration of the invention]

本発明は,容量制御機能をもつ自家発電機と熱回収量
制御機能をもつ熱回収装置を備えた建物または施設にお
いて,該建物または施設の電力需要と熱需要を外気条件
の計測値から予測し,この予測値に従って該発電機と熱
回収装置の発停時期を判断すること,該建物または施設
の刻々の電力需要と熱需要をリアルタイムで計測して刻
々の熱電比(熱需要/電力需要の比)を求め,この熱電
比および該自家発電機の燃料料金と商用電力料金の料金
比の情報から,電力需要に追従して発電を行う電力主体
運転か,または発電量が電力需要を超えないところまで
熱需要に応じて発電を行なう熱主体運転のどちらが省コ
スト的に最適かを判断し,この判断に従ってその運転主
体を決定すること,そして,該電力主体運転において,
発電した電気が商用側に逆流しないための買電量を確保
しながら,式(1)で示す省コスト率(SC)が最大とな
り,消費エネルギのコストが最小となる発電依存率(発
電量/電力負荷)のもとで,該発電機の容量制御および
熱回収装置の容量制御を行なうこと, SC=(C1−C2)/C1×100 ……(1) ただし,C1はCGS(コージェネレーション・システム)
によらずに熱および電力需要量を供給する時の消費エネ
ルギのコスト,C2はCGSによって同一の熱および電力需要
量を供給する時の消費エネルギのコストを表す, を特徴とするコージェネレーション・システムの最適
制御法である。
The present invention predicts power demand and heat demand of a building or facility equipped with a private generator having a capacity control function and a heat recovery device having a heat recovery amount control function from measured values of outside air conditions. Judging the start / stop timing of the generator and the heat recovery device according to the predicted value, measuring the instantaneous power demand and heat demand of the building or facility in real time, and determining the instantaneous heat-to-electricity ratio (heat demand / power demand). Ratio), and from the thermoelectric ratio and the information on the charge ratio between the fuel rate of the private generator and the commercial power rate, the main power operation for generating power following the power demand or the amount of generated power does not exceed the power demand Up to this point, it is determined which of the heat main operation that generates electric power according to the heat demand is the most cost-effective, and the operation main body is determined according to this judgment.
While securing the amount of power purchased to prevent the generated electricity from flowing back to the commercial side, the cost-saving rate (SC) shown in equation (1) is maximized, and the power generation dependency ratio (power generation / power Load), control the capacity of the generator and the capacity of the heat recovery unit. SC = (C 1 -C 2 ) / C 1 × 100 (1) where C 1 is CGS ( Cogeneration system)
Cost of energy consumption during supplying heat and electricity demand irrespective of the cogeneration · C 2 is characterized by, representing the cost of the energy consumed during supplying the same heat and electricity demand by CGS This is the optimal control method for the system.

〔実施例〕〔Example〕

第2図に本発明を適用したCGS系の機器配置例を示
す。建物(某大学)には一般電力負荷WLと冷暖房のため
の熱負荷QL1および給湯熱負荷QL2が存在する。建物の電
力負荷WLは商用電力WSと自家発電機1で製造された電力
によってまかなわれる。一方,熱負荷QL1とQL2は,発電
機1の駆動源であるエンジン2の排熱を回収する熱回収
装置3および放熱用熱交換器4を用いることによってま
かなわれる。すなわち,エンジン2の排ガスは排ガス熱
交換器5に導入され,ここで高温水が製造され,この高
温水を熱回収装置3である冷温水発生機に1次側熱源回
路Pを経て導き,この冷温水発生機で冷房シーズンでは
冷房負荷QL1の冷水を作り,暖房シーズンでは直接的に
温水を作る。これらの冷水または温水は空調用機器群6
に対し2次側の往路7および還路8によって循環供給さ
れ,空調用熱源として利用される。また第2の熱回収装
置4である放熱用熱交換器にも高温水を導き,ここで受
熱した液媒を貯湯槽9に2次側の往路10および還路11に
よって循環供給し,給湯用熱源として利用される。
FIG. 2 shows an example of a device arrangement of a CGS system to which the present invention is applied. The building (certain university) General power load W heat load for L and Air Q L1 and the hot water supply heat load Q L2 is present. Building power load W L are covered by the power produced by the commercial electric power W S and private power generator 1. On the other hand, the heat loads QL1 and QL2 are provided by using a heat recovery device 3 and a heat-radiating heat exchanger 4 that recover exhaust heat of an engine 2 that is a driving source of the generator 1. That is, the exhaust gas of the engine 2 is introduced into the exhaust gas heat exchanger 5, where high-temperature water is produced, and the high-temperature water is led to the cold / hot water generator, which is the heat recovery device 3, through the primary heat source circuit P. in the cooling season in the cold and hot water generator to make the cold water of the cooling load Q L1, directly make the hot water in the heating season. These cold or hot water are supplied to the air conditioning equipment group 6.
Is circulated and supplied to the secondary side by way of a forward path 7 and a return path 8 and is used as a heat source for air conditioning. The high-temperature water is also guided to a heat-radiating heat exchanger, which is a second heat recovery device 4, and the liquid medium received here is circulated and supplied to the hot-water storage tank 9 via the secondary-side forward path 10 and return path 11, and Used as a heat source.

なお,エンジン2の冷却水循環路12には冷却用熱交換
器13が介装され,この冷却用熱交換器13で放熱する熱も
排ガス熱交換器5に入る前の循環水に供給するようにし
てある。また,第1の熱回収装置3と第2の熱回収装置
4とでも放熱しきれなかった熱を適宜放熱するための放
熱用熱交換器14が1次側熱源回路Pに設けてある。図例
のものではエンジンとしてはガスエンジンを用いた例を
示しているが、液体燃料を用いるものも適用可能であ
る。
A cooling heat exchanger 13 is interposed in the cooling water circulation path 12 of the engine 2, and the heat radiated by the cooling heat exchanger 13 is also supplied to the circulating water before entering the exhaust gas heat exchanger 5. It is. Further, a heat-radiating heat exchanger 14 for appropriately radiating the heat that could not be radiated by the first heat recovery device 3 and the second heat recovery device 4 is provided in the primary heat source circuit P. In the illustrated example, a gas engine is used as the engine, but an engine using a liquid fuel is also applicable.

以上のような構成になるCGS系において,自家発電機
の容量並びに熱回収装置の熱回収量を自在にコントロー
ルできる装置構成とする。これは,例えば発電機の容量
制御は,エンジンの台数制御および/または回転数制御
によって行うことができ,また熱回収装置の熱回収量制
御は,熱回収装置の台数制御および/または1次側また
は2次側熱源回路の流量制御によって行うことができ
る。この制御操作はコンピューター15からの制御信号X
およびYにより製作される制御盤16および17によって行
われる。
In the CGS system configured as described above, a device configuration that can freely control the capacity of the private generator and the amount of heat recovery of the heat recovery device is adopted. This can be done, for example, by controlling the capacity of the generator by controlling the number of engines and / or the number of revolutions, and controlling the amount of heat recovery of the heat recovery unit by controlling the number of heat recovery units and / or the primary side. Alternatively, it can be performed by controlling the flow rate of the secondary heat source circuit. This control operation is performed by a control signal X from the computer 15.
And Y by control panels 16 and 17 made by Y.

他方,コンピューター15には,外気条件の計測値並び
に電力需要と熱需要の計測値がリアルタイムで入力さ
れ,予め作成されたプログラムに従って外気条件から電
力需要と熱需要の両方を予測し学習する。ここで,電力
需要と熱需要を予測するのは,需要の傾向から予め発電
機を運転しておくか,または停止しておくかを判断する
ためである。一方,リアルタイムで計測された電力需要
と熱需要に応じて前記(1)式のSCが最大となるように
制御信号X,Yを出力する。外気条件の計測値としては,
外気温度T(検出信号イ),湿度H(同ロ),気圧P
(同ハ),日射R(同ニ)が採用され,電力需要の計測
値は商用電力計18の検出値(ホ)および自家発電機によ
る供給電力の電力計19の検出値(ヘ)が採用される。そ
して熱需要の計測値としては,冷暖房負荷と給湯負荷の
合計がリアルタイムで計測されるが,冷暖房負荷につい
ては空調用機器群6への2次側の往路7および還路8に
介装された熱量検出値(ト)(チ)の差から求められ,
給湯負荷については貯湯槽9への2次側の往路10と還路
11に介装された熱量検出値(リ)(ヌ)の差から求めら
れる。
On the other hand, the measured values of the outside air condition and the measured values of the power demand and the heat demand are input to the computer 15 in real time, and both the power demand and the heat demand are predicted and learned from the outside air condition according to a program created in advance. Here, the reason for estimating the power demand and the heat demand is to determine whether the generator is to be operated or stopped in advance from the tendency of the demand. On the other hand, control signals X and Y are output in accordance with the power demand and the heat demand measured in real time so that SC in the above equation (1) becomes maximum. As the measured value of the outside air condition,
Outside air temperature T (detection signal a), humidity H (same as above), pressure P
(Same as above), solar radiation R (same as above) is adopted, and the measured value of power demand is the detected value of the commercial power meter 18 (e) and the detected value of the power supplied by the private power generator 19 (f). Is done. As the measured value of the heat demand, the sum of the cooling and heating load and the hot water supply load is measured in real time, and the cooling and heating load is interposed in the secondary outward path 7 and the return path 8 to the air conditioning equipment group 6. Calculated from the difference between the calorific value detection values (g) and (h),
Regarding hot water supply load, outbound route 10 and return route to secondary storage tank 9
It is determined from the difference between the detected calorific values (R) and (N) interposed in 11.

このようにして検出値(イ)〜(ヌ)は刻々コンピュ
ーター15に入力され,前記(1)式の(SC)が最大とな
るようにエンジン2および熱回収装置3の運転条件をコ
ントロールする。そのさい,前記(1)式のうち,CGSに
よらずに熱および電力需要量を供給する時の消費エネル
ギのコストC1については,電力負荷は商用電力だけで供
給する時の消費電力を使用し,そして熱負荷はCGSと同
一の燃料を使用する冷凍機とボイラを使用して熱を供給
する時の燃料のコストを予め計算によって求めておいた
解析プログラムを使用し,また,CGSによって同一の熱お
よび電力需要量を供給する時の消費エネルギのコストC2
は,毎時の熱負荷および電力負荷に適合する発電機およ
び熱回収装置の運転台数と運転容量を予め解析し,CGSの
消費電力と燃料消費量を積算するCGS解析用プログラム
を使用すればよい。計算できる発電機の運転方法として
は定率,定量ベース,定量ピーク運転のいずれでもよ
い。
In this way, the detected values (a) to (nu) are input to the computer 15 every moment, and the operating conditions of the engine 2 and the heat recovery device 3 are controlled so that (SC) in the above equation (1) is maximized. Thereof the said (1) of the formula, the cost C 1 of the energy consumption during supplying heat and electricity demand regardless the CGS, the power load is used the power consumption at the time of supplying only the commercial power The heat load is calculated by using an analysis program in which the cost of fuel when supplying heat using a refrigerator and a boiler using the same fuel as CGS is calculated in advance, and Cost of energy consumption when supplying the heat and power demand of the country C 2
It is sufficient to use a CGS analysis program that analyzes in advance the number and operating capacity of generators and heat recovery units that are suitable for the heat load and power load for each hour, and integrates the power consumption and fuel consumption of CGS. The generator operation method that can be calculated may be any of constant rate, quantitative basis, and quantitative peak operation.

一例として,熱電比(同時刻の熱需要/電力需要の
比)が平均すると0.3程度の一般事務所ビルに導入され
たCGSを本発明の最適制御システムで制御した時の状態
を第3図〜第5図に従って説明する。
As an example, Fig. 3 to Fig. 3 show the state when the CGS installed in a general office building whose average heat-to-electric ratio (ratio of heat demand / power demand at the same time) is about 0.3 is controlled by the optimal control system of the present invention. This will be described with reference to FIG.

第3図は,各時刻における熱負荷,CGSで回収された熱
量から熱負荷を差し引いた放熱量(利用できなかった熱
量)および熱電比を示した。最適制御システムを導入し
ない場合には,放熱量が増大してエネルギの利用効率が
低下している状況がわかる。
FIG. 3 shows the heat load at each time, the heat release amount (heat amount that could not be used) obtained by subtracting the heat load from the heat amount recovered by the CGS, and the thermoelectric ratio. When the optimal control system is not introduced, it can be seen that the amount of heat radiation increases and the energy use efficiency decreases.

第4図は,熱電比が平均0.3程度の場合に,本発明に
従う最適制御システムでCGSを制御したときの発電量,
買電量と,電力負荷との関係を示したものである。CGS
で発電した電気が商用側に逆流しないための(逆潮流防
止のための)買電量を確保しながら,消費エネルギのコ
ストが最小となる発電依存率で運転されている。最適制
御システムを導入しない場合には,逆潮流防止のための
買電量を確保するだけを商用として買い,残り全部をCG
Sで発電してしまうことになる。
FIG. 4 shows the power generation when the CGS is controlled by the optimal control system according to the present invention when the thermoelectric ratio is about 0.3 on average.
It shows the relationship between the amount of power purchased and the power load. CGS
The system is operated at a power generation dependency ratio that minimizes the cost of energy consumption while securing the amount of power purchased (to prevent reverse power flow) so that the electricity generated in step (1) does not flow back to the commercial side. If the optimal control system is not introduced, only the amount of power purchased to prevent reverse power flow is purchased as a commercial product, and the remaining
S will generate electricity.

第5図は,最適制御システムを導入したCGSの運転に
よる消費エネルギコストの省コスト率と,最適制御シス
テムを導入しないでCGSを運転した時の消費エネルギコ
ストの省コスト率を比較したものである。起動時では両
者の省コスト率に大差はないが,午前7時以降,両者の
差は最大で9%程度になり,熱電比が低下した夜間はCG
Sで発電する時のムダを防止して買電で電力負荷をまか
なっていることが分る。
Fig. 5 compares the energy saving cost reduction rate of operating the CGS with the optimal control system and the energy saving cost rate of operating the CGS without the optimal control system. . At start-up, there is no significant difference in the cost saving ratio between the two, but after 7:00 am, the difference between the two becomes a maximum of about 9%, and at night when the thermoelectric ratio decreases, CG
You can see that the power load is covered by the power purchase by preventing waste when generating electricity with S.

以上のようにして,本発明によると,CGS系において消
費エネルギのコストが最も少ない状態でシステムが稼働
されることになり,真の省コストが達成される。
As described above, according to the present invention, the system is operated with the lowest energy consumption cost in the CGS system, and true cost saving is achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図はガス/電力料金比の変化に伴う省コスト率の変
化を示した図,第2図は本発明を適用するCGS系の例を
示した機器配置系統図,第3図は或る建物の各時刻の熱
負荷,放熱量,および熱電比の変化を示した図,第4図
は同建物について最適制御システムでCGSを制御したと
きの発電量,買電量,電力負荷の関係を示した図,第5
図は最適制御システムを導入したCGSの運転による消費
エネルギコストの省コスト率と,最適制御システムを導
入しないでCGSを運転した時の消費エネルギコストの省
コスト率を比較した図である。 1……自家発電機,2,……エンジン, 3……熱回収装置(冷温水発生機), 4……放熱用熱交換器,5……排ガス熱交換器, 6……空調機群,9……貯湯槽, 13……冷却用熱交換器,14……放熱用熱交換器, 15……コンピューター。
FIG. 1 is a diagram showing a change in a cost saving rate accompanying a change in a gas / electricity charge ratio, FIG. 2 is a device arrangement system diagram showing an example of a CGS system to which the present invention is applied, and FIG. Fig. 4 shows the changes in heat load, heat release, and thermoelectric ratio at each time of the building. Fig. 4 shows the relationship between power generation, purchased power, and power load when the CGS was controlled by the optimal control system for the building. Figure 5
The figure compares the cost saving rate of energy consumption cost by operating the CGS with the optimal control system and the energy saving cost rate of operating the CGS without the optimal control system. 1 ... private power generator, 2 ... engine, 3 ... heat recovery device (cold / hot water generator), 4 ... heat release heat exchanger, 5 ... exhaust gas heat exchanger, 6 ... air conditioner group, 9… Hot water storage tank, 13… Cooling heat exchanger, 14… Heat dissipation heat exchanger, 15… Computer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容量制御機能をもつ自家発電機と熱回収量
制御機能をもつ熱回収装置を備えた建物または施設にお
いて, 該建物または施設の電力需要と熱需要を外気条件の計測
値から予測し,この予測値に従って該発電機と熱回収装
置の発停時期を判断すること, 該建物または施設の刻々の電力需要と熱需要をリアルタ
イムで計測して刻々の熱電比(熱電要/電力需要の比)
を求め,この熱電比および該自家発電機の燃料料金と商
用電力料金の料金比の情報から,電力需要に追従して発
電を行う電力主体運転か,または発電量が電力需要を超
えないところまで熱需要に応じて発電を行なう熱主体運
転のどちらが省コスト的に最適かを判断し,この判断に
従ってその運転主体を決定すること, 該電力主体運転において,発電した電気が商用側に逆流
しないための買電量を確保しながら,式(1)で示す省
コスト率(SC)が最大となり,消費エネルギのコストが
最小となる発電依存率(発電量/電力負荷)のもとで,
該発電機の容量制御および熱回収装置の容量制御を行な
うこと, SC=(C1−C2)/C1×100 ……(1) ただし,C1はCGS(コージェネレーション・システム)に
よらずに熱および電力需要量を供給する時の消費エネル
ギのコスト,C2はCGSによって同一の熱および電力需要量
を供給する時の消費エネルギのコストを表す, を特徴とするコージェネレーション・システムの最適制
御法。
In a building or facility equipped with a private power generator having a capacity control function and a heat recovery device having a heat recovery amount control function, power demand and heat demand of the building or facility are predicted from measured values of outside air conditions. Determining the start / stop timing of the generator and the heat recovery device according to the predicted value; measuring the instantaneous power demand and heat demand of the building or facility in real time; Ratio)
From the thermoelectric ratio and the information on the charge ratio between the fuel rate of the private generator and the commercial power rate, determine whether power-driven operation follows power demand or power generation does not exceed power demand. Judgment is made as to which of the heat main operation, which generates electric power in response to heat demand, is the most cost-effective, and the operation main body is determined according to this judgment. In the electric power main operation, the generated electricity does not flow back to the commercial side. Under the power generation dependency ratio (power generation / power load), the cost saving rate (SC) shown in equation (1) is maximized and the cost of energy consumption is minimized while securing the amount of power purchased.
To control the capacity of the generator and the capacity of the heat recovery unit, SC = (C 1 -C 2 ) / C 1 × 100 (1) where C 1 is based on CGS (cogeneration system). cost of energy consumption during supplying heat and electricity demand without, C 2 is the cogeneration system according to claim, representing the cost of the energy consumed during supplying the same heat and electricity demand by CGS Optimal control method.
JP2083599A 1990-03-30 1990-03-30 Optimal control method for cogeneration system Expired - Fee Related JP2628218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083599A JP2628218B2 (en) 1990-03-30 1990-03-30 Optimal control method for cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083599A JP2628218B2 (en) 1990-03-30 1990-03-30 Optimal control method for cogeneration system

Publications (2)

Publication Number Publication Date
JPH03285520A JPH03285520A (en) 1991-12-16
JP2628218B2 true JP2628218B2 (en) 1997-07-09

Family

ID=13806956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083599A Expired - Fee Related JP2628218B2 (en) 1990-03-30 1990-03-30 Optimal control method for cogeneration system

Country Status (1)

Country Link
JP (1) JP2628218B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252926A (en) * 2001-02-26 2002-09-06 Toshiba Corp Cogeneration apparatus operating system and energy supply method for the same
JP4889167B2 (en) * 2001-08-09 2012-03-07 大阪瓦斯株式会社 Cogeneration system operation planning method
JP4504635B2 (en) * 2003-06-18 2010-07-14 積水化学工業株式会社 Cogeneration system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928843A (en) * 1982-08-06 1984-02-15 東京瓦斯株式会社 Contactless switching system of electric load in heat supply generating system
JPS61244229A (en) * 1985-04-23 1986-10-30 西芝電機株式会社 Dual-purpose internal combustion electricity/heat generator
US4752697A (en) * 1987-04-10 1988-06-21 International Cogeneration Corporation Cogeneration system and method

Also Published As

Publication number Publication date
JPH03285520A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JP2821760B2 (en) Optimal control method for cogeneration system
JP2000205044A (en) Cogeneration system
JP4605943B2 (en) Cogeneration system operation method
JP2628218B2 (en) Optimal control method for cogeneration system
JPH06176792A (en) Power storage type heat-electricity combined supply system
GB2387641A (en) Combined heat and power unit
JP3675070B2 (en) Cogeneration system
JP2788486B2 (en) Cogeneration equipment
JP2004012025A (en) Hybrid energy system
JP3821574B2 (en) Self-contained combined heat and power system
JP4889214B2 (en) Cogeneration system
JP2002048005A (en) Cogeneration system
JP2004257276A (en) Cogeneration system
JP2000087801A (en) Cogeneration device
JPH11351056A (en) Small-sized energy plant device
JP2940267B2 (en) Cogeneration system
JPH07217915A (en) Heat/electricity jointly feeding system
JPH11351057A (en) Hybrid energy supply system
JPH0117010Y2 (en)
JPH1030858A (en) Method and apparatus for generating hot and chilled water without necessity of power supply from outside
JP2003269789A (en) Cogeneration system
JP2002298886A (en) Operating method of heat and electricity combined system, and heat and electricity combined system
JPH0264255A (en) Cogeneration system by internal combustion engine
JP4588511B2 (en) Air conditioning and power generation system
JP2002295309A (en) Method of operating heat/electricity utilizing system and heat/electricity utilizing system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees