JPH06176792A - Power storage type heat-electricity combined supply system - Google Patents

Power storage type heat-electricity combined supply system

Info

Publication number
JPH06176792A
JPH06176792A JP4326416A JP32641692A JPH06176792A JP H06176792 A JPH06176792 A JP H06176792A JP 4326416 A JP4326416 A JP 4326416A JP 32641692 A JP32641692 A JP 32641692A JP H06176792 A JPH06176792 A JP H06176792A
Authority
JP
Japan
Prior art keywords
power
electric power
heat
water
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4326416A
Other languages
Japanese (ja)
Inventor
Hisamichi Inoue
久道 井上
Yoshihiro Nishihara
義寛 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4326416A priority Critical patent/JPH06176792A/en
Publication of JPH06176792A publication Critical patent/JPH06176792A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Secondary Cells (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To improve system operating efficiency and reliability on a power supply system for a co-generation system installation people. CONSTITUTION:A Na-S battery 2 used as a heat supply unit, for a co-generation system is kept in a consistently operating condition by parting hot gas 11 exhausted from an internal combustion engine 6 and guiding it to a constant- temperature tank 8 in power storage facilities which require heating. At this time, the flow rate of the hot gas is determined by controlling a flow control valve 12 depending on the temperature of the constant-temperature tank 8. Water absorbed by an exhaust heat boiler 1 which is operated by using exhaust heat from the internal combustion engine 1 is heated by a water-water heat exchanger 7 which uses return water of bearing cooling water for the internal combustion engine 1 for heat source and a gas-water heat exchanger 9 which is provided at the gas outlet of the constant-temperature tank 8, and the access of electric power to the Na-S battery 2 as the power supply unit is made through a DC-AC bidirectional convertor 18. In this way, new functions such as extra power adjustment in a power available time zone, reservation in the power supply unit and emergency power supply are added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエネルギの有効利用を図
るコジェネレーションシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration system for effectively utilizing energy.

【0002】[0002]

【従来の技術】従来技術を図2を用いて説明する。通常
コジェネレーションシステムでは、内燃機関からの発生
熱は、熱需要に供給され、発電機で発生した電力は、負
荷電力に供給される。商用電力は、発電機で賄えない電
力を補うものである。発電機側からの商品系統への逆潮
流は行えない。
2. Description of the Related Art A conventional technique will be described with reference to FIG. In a normal cogeneration system, heat generated from an internal combustion engine is supplied to heat demand, and electric power generated by a generator is supplied to load electric power. Commercial electric power supplements electric power that cannot be covered by a generator. Reverse flow from the generator side to the product system cannot be performed.

【0003】[0003]

【発明が解決しようとする課題】世界的な地球環境問題
への関心の高まりの中で、「エネルギ消費拡大型社会か
ら省エネルギ型社会への転換」が国民的課題となってお
り、省エネルギ性の高いコジェネレーションシステム等
の熱電併給システムの積極的な有効利用がこれまで以上
に期待されている。
With the increasing interest in global environmental problems, "shifting from an energy consumption expanding society to an energy saving society" has become a national issue. It is expected that active utilization of cogeneration systems such as highly efficient cogeneration systems will be more effective than ever.

【0004】このような状況を踏まえ通産省は、最近、
余剰電力が発生する発電設備の逆潮流についての法改訂
を行った。これにより、電気事業者と需要家(発電設備
所有者)の協議により、安全性が確保できれば、売電が
可能になった。このような状況下で、特に問題になるの
は、売電時間帯である。つまり、需要家の負荷需要は、
ほとんどが夜間に電力需要が減少し余剰電力が発生する
ため、売電時間帯が夜間に集中することである。電気事
業者側では、昼間の午後1時から4時に掛けて電力需要
のピークが発生することから、需要家からの逆潮流は、
この時間帯がベストとなる。需要家としても、夜間の売
電単価が安価(昼間の1/3程度)であるため、昼間売
電するほうが経済的に有利となる。
Given this situation, the Ministry of International Trade and Industry has recently
Revised the law on the reverse flow of power generation equipment that generates surplus power. As a result, power can be sold if safety can be secured through discussions between the electric utility and the customer (the owner of the power generation equipment). Under this circumstance, a particular problem is the power sale time zone. In other words, the load demand of the consumer is
Most of the time, the demand for electricity is reduced at night and surplus electricity is generated, so the power selling time is concentrated at night. On the electric power company side, the peak of electric power demand occurs from 1:00 pm to 4:00 pm in the daytime, so the reverse flow from the customer is
This time is the best. Even for consumers, the unit price of electricity sold at night is low (about 1/3 during the day), so it is economically advantageous to sell electricity during the day.

【0005】[0005]

【課題を解決するための手段】本発明では、上記問題を
解決するため、発電機出力側にAC/DC双方向変換器
を設置し、その下流側に電力貯蔵設備を設け夜間に主に
発生する余剰電力を蓄電し、昼間商用系統でピーク負荷
が発生する時間帯に放電し、AC/DC双方向変換器を
介して系統連係制御盤を経由して逆潮流により商用系統
に送電する熱電併給システムを考案した。
In order to solve the above problems, the present invention mainly installs at night by installing an AC / DC bidirectional converter on the output side of the generator and providing a power storage facility on the downstream side. The surplus electric power is stored, discharged during the daytime when the peak load occurs in the commercial grid, and transmitted to the commercial grid through the AC / DC bidirectional converter via the grid connection control panel and reverse power flow to the commercial grid. Devised a system.

【0006】ここで、電力貯蔵設備は、コジェネレーシ
ョンからの高温排熱を有効に利用でき、しかもエネルギ
密度が高くコンパクト設計が可能で高効率なNa−S電
池を使用する。
Here, the electric power storage equipment uses a high-efficiency Na—S battery which can effectively utilize high temperature exhaust heat from the cogeneration, has a high energy density and can be designed compactly.

【0007】このようなシステム構成とすることで、逆
潮流の時間帯調整だけでなく、商用系統の停電,電力負
荷の異常上昇時の予備電力,システム並びに商用電力同
時停電の非常用電力として利用が可能である。
With such a system configuration, it can be used not only for adjusting the reverse power flow time zone but also as an emergency power for a power failure of the commercial system, a standby power when the power load abnormally rises, a system and a simultaneous commercial power failure. Is possible.

【0008】[0008]

【作用】発電機4は内燃機関の回転力を電力に変換する
もので、発生した電力を電力負荷に供給する。
The generator 4 converts the rotational force of the internal combustion engine into electric power, and supplies the generated electric power to the electric power load.

【0009】蓄電池2(Na−S電池)では夜間余剰電
力が発生した時、その余剰電力を充電し、昼間商用系統
でピーク負荷が発生する時間帯に放電し、その電力を商
用系統に供給する。また、商用系統の停電等の非常時電
源並びに発電電力以上の電力負荷使用時の予備電源とし
て使用される。
In the storage battery 2 (Na-S battery), when surplus power is generated at night, the surplus power is charged and discharged during a daytime commercial grid peak load period to supply the power to the commercial grid. . It is also used as an emergency power source for blackouts in commercial systems and as a standby power source when using a power load that exceeds the generated power.

【0010】AC/DC双方向変換器18では蓄電池へ
の充電時は交流電力を直流に変換し、放電時は直流電力
を交流に変換する。
The AC / DC bidirectional converter 18 converts AC power into DC when charging the storage battery and converts DC power into AC when discharging.

【0011】系統連係制御盤15ではコジェネレーショ
ンシステムで負荷電力を賄えない場合は商用系統から電
力を供給するように働き、コジェネレーションシステム
で負荷を賄い余剰電力がある場合は商用系統へ電力を供
給するように働く。
The system linkage control panel 15 works to supply electric power from the commercial system when the cogeneration system cannot cover the load power, and supplies the electric power to the commercial system when the cogeneration system covers the load and there is surplus power. Work to supply.

【0012】一方、通常熱供給系では内燃機関6は、発
電機に回転力を与えるものであるが、投入したエネルギ
の約60%が熱となり排熱される。
On the other hand, in the normal heat supply system, the internal combustion engine 6 gives a rotating force to the generator, but about 60% of the input energy becomes heat and is exhausted.

【0013】内燃機関排気系に設置した排熱ボイラ1で
は内燃機関からの排熱ガスで熱負荷に供給する水を温水
または蒸気にする。
In the exhaust heat boiler 1 installed in the exhaust system of the internal combustion engine, the exhaust heat gas from the internal combustion engine turns the water supplied to the heat load into hot water or steam.

【0014】水−水熱交換器7では内燃機関の軸受部等
の冷却を行うと共に排熱ボイラの吸水加熱を行う。
In the water-water heat exchanger 7, the bearing portion of the internal combustion engine is cooled and the exhaust heat boiler is heated by absorbing water.

【0015】ボイラ3では熱負荷に温水または蒸気等を
供給する。
The boiler 3 supplies hot water, steam or the like to the heat load.

【0016】ヘッダ13では各熱負荷に供給熱を分配す
るものである。
The header 13 distributes the supplied heat to each heat load.

【0017】Na−S電池は、作動状態を維持するため
常に一定温度(約350℃)に保持しなければならな
い。したがって熱供給系が必要になる。通常Na−S電
池は、電気ヒータ等で加熱し、一定温度に保持するた
め、その分が損失となる。本発明では、高効率を達成す
るため、コジェネレーションシステムからの高温排熱を
利用する。以下、Na−S電池を一定温度に保持するた
めの排熱ガス系の機器の作用を示す。
The Na-S battery must always be kept at a constant temperature (about 350 ° C.) in order to maintain its operating condition. Therefore, a heat supply system is required. Normally, the Na-S battery is heated by an electric heater or the like and is maintained at a constant temperature, so that amount is lost. The present invention utilizes high temperature waste heat from the cogeneration system to achieve high efficiency. The operation of the exhaust heat gas system device for maintaining the Na-S battery at a constant temperature will be described below.

【0018】流量調節弁12ではガスタービン排熱系に
設置されNa−S電池側に供給する高温排ガスの流量を
調節する。
The flow rate control valve 12 is installed in the exhaust heat system of the gas turbine and controls the flow rate of the high temperature exhaust gas supplied to the Na-S battery side.

【0019】恒温槽8ではNa−S電池の作動状態を維
持するため常に一定温度(約350℃)に保持する。
In the constant temperature bath 8, a constant temperature (about 350 ° C.) is constantly maintained in order to maintain the operating state of the Na--S battery.

【0020】恒温槽排ガス系に設置したガス−水熱交換
器9では排熱を有効利用するため恒温槽からの排ガス出
口側に設置したもので、熱需要に供給される吸水加熱に
使用される。
The gas-water heat exchanger 9 installed in the exhaust gas system of the constant temperature tank is installed on the exhaust gas outlet side from the constant temperature tank in order to effectively utilize the exhaust heat, and is used for heating absorption water supplied for heat demand. .

【0021】[0021]

【実施例】図1に本発明の一実施例を示す。本発明によ
るコジェネレーションシステムは大きく分けて熱供給系
として排熱ボイラ1の吸水加熱系、Na−S電池2加熱
系,ボイラ3による熱供給系,電力供給系として発電機
4,Na−S電池2,商用系統5がある。ここで、熱供
給系の一つである吸水加熱系の構成は、ガスタービン6
等の軸受冷却水を冷却する水−水熱交換器7,Na−S
電池2を一定温度に保持する恒温槽8排気系に設置した
ガス−水熱交換器9より成り、吸水10は、水−水熱交
換器7,ガス−水熱交換器9で加熱され排熱ボイラ1に
供給される。Na−S電池2加熱系は、ガスタービン6
等の内燃機関の高温排ガス11を出口部分で分岐し断熱
配管で恒温槽8に導きNa−S電池2を加熱し一定温度
に保持する。恒温槽8からの排ガスは、ガス−水熱交換
器9で吸水系に熱を伝へ低温となり流量調節弁12を経
由して外気に放出される。つまり、Na−S電池2を一
定温度に保持する目的で分配した高温ガスの目的を達成
した後の排ガスも有効利用するシステム構成であり、熱
効率が高いシステムとなる。このような系統により、加
熱された吸水10は、排熱ボイラ1で再度加熱され温水
又は蒸気となり、ヘッダ13を経由して熱負荷14に供
給される。このようなシステムで負荷に供給される熱が
不足する場合、ボイラ3で補われる。電力供給系統は、
発電機4から系統連係制御盤15を経由してスイッチ1
6aで直接負荷に供給される系統、商用電力系統から系
統連係制御盤15を経由してスイッチ16bで直接負荷
17に供給される系統、Na−S電池2からDC/AC
双方向変換器18を通り交流に変換されスイッチ16
c,16aを経由して負荷に供給される系統がある。こ
こで、Na−S電池2は、夜間等に多く発生する余剰電
力を充電し、必要に応じて放電して電力を供給する。こ
の電力供給時の運用法としては、以下の三つがある。
FIG. 1 shows an embodiment of the present invention. The cogeneration system according to the present invention is roughly divided into a heat supply system, a water absorption heating system of an exhaust heat boiler 1, a Na-S battery 2 heating system, a heat supply system of a boiler 3, a generator 4 as a power supply system, and a Na-S battery. 2, there is a commercial system 5. Here, the structure of the water absorption heating system which is one of the heat supply systems is the gas turbine 6
Water-water heat exchanger 7, Na-S for cooling bearing cooling water such as
It consists of a gas-water heat exchanger 9 installed in an exhaust system of a constant temperature bath 8 that keeps the battery 2 at a constant temperature, and the water absorption 10 is heated by the water-water heat exchanger 7 and the gas-water heat exchanger 9 to exhaust heat. It is supplied to the boiler 1. The Na-S battery 2 heating system is a gas turbine 6
The high temperature exhaust gas 11 of the internal combustion engine, such as the above, is branched at the outlet portion and introduced into the thermostatic bath 8 through the heat insulating pipe to heat the Na—S battery 2 and maintain it at a constant temperature. The exhaust gas from the constant temperature bath 8 transfers heat to the water absorption system in the gas-water heat exchanger 9 to become a low temperature, and is released to the outside air via the flow rate control valve 12. In other words, the system configuration has a high thermal efficiency because it has a system configuration in which the exhaust gas after achieving the purpose of the high temperature gas distributed for the purpose of keeping the Na-S battery 2 at a constant temperature is also effectively used. With such a system, the heated water absorption 10 is heated again by the exhaust heat boiler 1 to become hot water or steam, and is supplied to the heat load 14 via the header 13. When the heat supplied to the load is insufficient in such a system, it is supplemented by the boiler 3. The power supply system is
Switch 1 from generator 4 via system linkage control panel 15
6a, the system directly supplied to the load, the system supplied from the commercial power system to the load 17 directly by the switch 16b via the system coordination control panel 15, the Na-S battery 2 to the DC / AC
Switch 16 converted to AC through bidirectional converter 18
There is a system that is supplied to the load via c, 16a. Here, the Na-S battery 2 is charged with surplus electric power that is often generated at night and the like, and is discharged as necessary to supply electric power. There are the following three operation methods when supplying power.

【0022】(1)商用系統への売電 昼間の負荷電力が発電機の発電電力で賄える場合、夜間
充電した余剰電力を放電して、商用系統に売電する。
(1) Power sale to the commercial system When the daytime load power can be covered by the power generated by the generator, the surplus power charged at night is discharged and sold to the commercial system.

【0023】(2)予備電源 電力負荷が発電電力と商用系統の契約電力を加算した電
力を越えた場合、放電して、その越えた電力分を補う。
(2) Standby power supply When the electric power load exceeds the electric power obtained by adding the generated electric power and the contract electric power of the commercial system, the electric power is discharged to compensate for the surplus electric power.

【0024】商用系統が停電の時、発電機出力と電池か
らの放電電力で負荷電力を賄う。
When the commercial system is out of power, the load power is supplied by the generator output and the discharge power from the battery.

【0025】(3)非常用電源 商用系統並びに発電機からの電力供給が停止した場合、
電池から放電し、短時間主要機器へ電力を供給する。
(3) Emergency power supply When the power supply from the commercial system and the generator is stopped,
Discharges from the battery and supplies power to main equipment for a short time.

【0026】つまり、コジェネレーションシステムに電
力貯蔵設備を併用することで、余剰電力の有効活用がで
き、さらなる高効率なシステム運用が可能になる。さら
に、電力貯蔵設備としてNa−S電池を使用した場合、
予熱用熱源として、高温排ガスを使用できるため従来使
用していた電気ヒータ等の設備費並びにヒータ電力の倹
約にもなる。
That is, by using the electric power storage facility together with the cogeneration system, the surplus electric power can be effectively utilized, and the system can be operated with higher efficiency. Furthermore, when using a Na-S battery as power storage equipment,
Since high-temperature exhaust gas can be used as a heat source for preheating, the cost of equipment such as an electric heater which has been conventionally used and the heater power can be saved.

【0027】[0027]

【発明の効果】本発明では、発電電力の有効利用を図る
べく余剰電力を充電し、必要に応じて放電する電力貯蔵
設備を設置したため、高温状態を維持する必要がある高
温作動型電池(Na−S電池等)の熱源として、既に存
在する高温排ガスを使用するため、従来使用していた加
熱用電気ヒータ等の設備費並びにヒータ電力の倹約にな
る。
According to the present invention, since the electric power storage facility for charging the surplus electric power and discharging the electric power as necessary is installed in order to effectively utilize the generated electric power, the high temperature operation type battery (Na Since the existing high-temperature exhaust gas is used as a heat source for the (-S battery, etc.), the facility cost of the conventionally used electric heater for heating and the heater power are saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電力貯蔵型熱電併給システムのブ
ロック図。
FIG. 1 is a block diagram of a power storage type combined heat and power supply system according to the present invention.

【図2】従来の電力貯蔵型熱電併給システムのブロック
図。
FIG. 2 is a block diagram of a conventional power storage type combined heat and power supply system.

【符号の説明】[Explanation of symbols]

1…排熱ボイラ、2…蓄電池(Na−S電池)、7…水
−水熱交換器、8…恒温槽、9…ガス−水熱交換器、1
2…流量調節弁、15…系統連係制御盤、18…AC/
DC双方向変換器。
1 ... Exhaust heat boiler, 2 ... Storage battery (Na-S battery), 7 ... Water-water heat exchanger, 8 ... Constant temperature bath, 9 ... Gas-water heat exchanger, 1
2 ... Flow control valve, 15 ... System linkage control panel, 18 ... AC /
DC bidirectional converter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高温の排熱を有する熱電併給システムにお
いて、前記排熱の一部で電力貯蔵設備を加熱し、前記電
力貯蔵設備を作動状態に維持することを特徴とする電力
貯蔵型熱電併給システム。
1. A combined heat and power system having a high temperature exhaust heat, wherein a part of the exhaust heat heats an electric power storage facility to maintain the electric power storage facility in an operating state. system.
【請求項2】電力貯蔵設備を加熱した後の高温排ガスで
熱負荷供給水の加熱を行うことを特徴とする電力貯蔵型
熱電併給システム。
2. A power storage type combined heat and power supply system, characterized in that the heat load supply water is heated by the high temperature exhaust gas after heating the power storage equipment.
【請求項3】余剰電力を充電する電力貯蔵設備の運用法
として、昼間の負荷電力が発電機の発電電力で賄える場
合、夜間充電した余剰電力を放電して、商品系統に売電
する運用、電力負荷が発電電力と商用系統の契約電力を
加算した電力を越えた場合、放電して、その越えた電力
分を補う運用、商品系統が停電の場合、発電機出力と電
池からの放電電力で負荷電力を賄う運用、商用系統並び
に発電機からの電力供給が停止した場合、電池から放電
し、短時間主要機器へ電力を供給することを特徴とする
電力貯蔵型熱電併給システム。
3. As an operation method of an electric power storage facility for charging surplus electric power, when the daytime load electric power can be covered by the electric power generated by the generator, the surplus electric power charged at night is discharged to sell the electric power to a product system, When the power load exceeds the power generated by adding the generated power and the contract power of the commercial system, discharge the power to compensate for the excess power.If the product system has a power failure, the generator output and the discharged power from the battery An electric power storage type combined heat and power supply system characterized by discharging the battery and supplying electric power to main equipment for a short time when the operation of supplying load electric power, the supply of electric power from a commercial system and a generator is stopped.
JP4326416A 1992-12-07 1992-12-07 Power storage type heat-electricity combined supply system Pending JPH06176792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4326416A JPH06176792A (en) 1992-12-07 1992-12-07 Power storage type heat-electricity combined supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4326416A JPH06176792A (en) 1992-12-07 1992-12-07 Power storage type heat-electricity combined supply system

Publications (1)

Publication Number Publication Date
JPH06176792A true JPH06176792A (en) 1994-06-24

Family

ID=18187550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4326416A Pending JPH06176792A (en) 1992-12-07 1992-12-07 Power storage type heat-electricity combined supply system

Country Status (1)

Country Link
JP (1) JPH06176792A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808083A (en) * 1987-02-04 1989-02-28 Toyota Jidoshokki Seisakusho Kabushiki Kaisha Variable capacity type vane compressor
US4844703A (en) * 1987-08-04 1989-07-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement vane compressor
KR20010000614A (en) * 2000-10-09 2001-01-05 구동회 Cogeneration system of hydraulic speed changing control and multi stage turbine
JP2001229961A (en) * 2000-02-17 2001-08-24 Electric Power Dev Co Ltd Power generation system
JP2004032993A (en) * 2000-03-17 2004-01-29 Tongrae Cho Thermoelectric joint supply system provided wtth accumulator device
WO2013039022A1 (en) 2011-09-15 2013-03-21 Honda Motor Co., Ltd. Fuel cell system
JP2013122239A (en) * 2011-11-07 2013-06-20 Osaka Gas Co Ltd Cogeneration system
WO2013131953A1 (en) * 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Gas turbine-heated high-temperature battery
JP2015061358A (en) * 2013-09-17 2015-03-30 株式会社Ihi Waste heat power generation system
JP2017028999A (en) * 2015-12-31 2017-02-02 佐藤 創一 Electro-thermal cogeneration system with power storage device
JP2017028992A (en) * 2013-10-18 2017-02-02 佐藤 創一 Thermoelectric cogeneration system including power storage device
JP2021139325A (en) * 2020-03-04 2021-09-16 本田技研工業株式会社 Power generation system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808083A (en) * 1987-02-04 1989-02-28 Toyota Jidoshokki Seisakusho Kabushiki Kaisha Variable capacity type vane compressor
US4844703A (en) * 1987-08-04 1989-07-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement vane compressor
JP2001229961A (en) * 2000-02-17 2001-08-24 Electric Power Dev Co Ltd Power generation system
JP2013118815A (en) * 2000-03-17 2013-06-13 Soichi Sato Electro-thermal cogeneration system with power storage device
JP2013138605A (en) * 2000-03-17 2013-07-11 Soichi Sato Combined heat and power supplying system including storage device
JP2011211902A (en) * 2000-03-17 2011-10-20 Soichi Sato Heat and electricity cogeneration system equipped with power storage device
JP2014180211A (en) * 2000-03-17 2014-09-25 Soichi Sato Electro-thermal cogeneration system with power storage device
JP2016105689A (en) * 2000-03-17 2016-06-09 佐藤 創一 Electro-thermal cogeneration system with power storage device
JP2014223016A (en) * 2000-03-17 2014-11-27 佐藤 創一 Electro-thermal cogeneration system with power storage device
JP2016042787A (en) * 2000-03-17 2016-03-31 佐藤 創一 Electro-thermal cogeneration system with power storage device
JP2004032993A (en) * 2000-03-17 2004-01-29 Tongrae Cho Thermoelectric joint supply system provided wtth accumulator device
JP2015213427A (en) * 2000-03-17 2015-11-26 佐藤 創一 Electro-thermal cogeneration system with power storage device
JP2014027879A (en) * 2000-03-17 2014-02-06 Soichi Sato Heat and electricity cogeneration system with power storage device
JP2014030354A (en) * 2000-03-17 2014-02-13 Soichi Sato Cogeneration system having power storage device
JP2014064455A (en) * 2000-03-17 2014-04-10 Soichi Sato Heat and electricity cogeneration system equipped with power storage device
JP2014180212A (en) * 2000-03-17 2014-09-25 Soichi Sato Electro-thermal cogeneration system with power storage device
KR20010000614A (en) * 2000-10-09 2001-01-05 구동회 Cogeneration system of hydraulic speed changing control and multi stage turbine
WO2013039022A1 (en) 2011-09-15 2013-03-21 Honda Motor Co., Ltd. Fuel cell system
JP2013062216A (en) * 2011-09-15 2013-04-04 Honda Motor Co Ltd Fuel cell system
US9537193B2 (en) 2011-09-15 2017-01-03 Honda Motor Co., Ltd. Fuel cell system
JP2013122239A (en) * 2011-11-07 2013-06-20 Osaka Gas Co Ltd Cogeneration system
WO2013131953A1 (en) * 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Gas turbine-heated high-temperature battery
US10141617B2 (en) 2012-03-08 2018-11-27 Siemens Aktiengesellschaft Gas turbine-heated high-temperature battery
JP2015061358A (en) * 2013-09-17 2015-03-30 株式会社Ihi Waste heat power generation system
JP2017028992A (en) * 2013-10-18 2017-02-02 佐藤 創一 Thermoelectric cogeneration system including power storage device
JP2017028999A (en) * 2015-12-31 2017-02-02 佐藤 創一 Electro-thermal cogeneration system with power storage device
JP2021139325A (en) * 2020-03-04 2021-09-16 本田技研工業株式会社 Power generation system

Similar Documents

Publication Publication Date Title
JP2888717B2 (en) Energy supply system
EP2284382B1 (en) Power supply system
US6883328B2 (en) Hybrid power system for continuous reliable power at remote locations
US4510756A (en) Cogeneration
JPH06176792A (en) Power storage type heat-electricity combined supply system
JP2821760B2 (en) Optimal control method for cogeneration system
JP3674790B2 (en) Cogeneration system
JPH1042472A (en) Private power generation system
JP2003199254A (en) Cogeneration system and program therefor
JP2009074744A (en) Gas heat pump cogeneration apparatus
JP3624275B2 (en) Cold and hot water generation method that does not require external power supply
JP3675070B2 (en) Cogeneration system
JP3821574B2 (en) Self-contained combined heat and power system
JP7117094B2 (en) power generation system
JPH11351057A (en) Hybrid energy supply system
JPH11351056A (en) Small-sized energy plant device
Okamoto Saving energy in a hospital utilizing CCHP technology
JP2628218B2 (en) Optimal control method for cogeneration system
KR200303224Y1 (en) A hybrid solar system for generating power and heat
JP3821572B2 (en) Self-contained cogeneration system
JPH08186927A (en) Co-generation system
Ryan Economics of cogeneration
JPH08186935A (en) Power supply system
JPH08186936A (en) Power supply system
JPH09287482A (en) Cogeneration system