JPH0659748A - Temperature control method of heat storage tank in cogeneration system - Google Patents

Temperature control method of heat storage tank in cogeneration system

Info

Publication number
JPH0659748A
JPH0659748A JP4214167A JP21416792A JPH0659748A JP H0659748 A JPH0659748 A JP H0659748A JP 4214167 A JP4214167 A JP 4214167A JP 21416792 A JP21416792 A JP 21416792A JP H0659748 A JPH0659748 A JP H0659748A
Authority
JP
Japan
Prior art keywords
heat
storage tank
heat storage
cogeneration system
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4214167A
Other languages
Japanese (ja)
Inventor
Masayoshi Sato
政義 佐藤
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
East Japan Railway Co
Original Assignee
Mitsubishi Electric Corp
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, East Japan Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP4214167A priority Critical patent/JPH0659748A/en
Publication of JPH0659748A publication Critical patent/JPH0659748A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To perform the backup of heat reservoir equipment groups by a simple control and to eliminate temperature irregularity in a heat storage tank for also an arbitrary heat reservoir equipment, in a system including a cogeneration system, a heat pump, a boiler and the heat storage tank. CONSTITUTION:The heat load QL side and the heat reservoir equipment groups output side are composed via a heat storage tank ST, a cogeneration system CGS, a heat pump H an a boiler B as heat reservoir equipments are connected with the heat storage tank ST equally and in parallel, feeding water is performed by constant flow rate pumps PH, PB, PC from the tanks of the both ends of a high temperature tank and a low temperature tank, via three way valves VH, VB, VC, on all of the load side and the heat reservoir equipment side, the mixture ratio by the three way valves VH, VB, VC is controlled so that the same return hot water temperature may be on the heat reservoir equipment groups side and the mixture ratio by a three way valve VL can be controlled so that arbitrary supply water temperature may be obtained on the load side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コジェネレーションシ
ステムとヒートポンプ及びボイラの複数の熱源機に蓄熱
槽を組み合わせた熱電併給システムに係り、特にコジェ
ネレーションシステムにおける蓄熱槽の温度制御方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration system and a combined heat and power supply system in which a plurality of heat source units of a heat pump and a boiler are combined with a heat storage tank, and more particularly to a temperature control method for the heat storage tank in the cogeneration system. .

【0002】[0002]

【従来の技術】図3は例えば「コジェネレーション」
(Vol.4,No2,1989,P25〜P30)に
示された従来のコジェネレーション・システムにおける
蓄熱槽の最適運用を示すシステム図であり、図におい
て、DGはディゼルエンジン発電機、REは電動ターボ
冷凍機、RWは温水吸収冷凍機、BAは温水ボイラ、R
Aは油焚冷暖房機、PC,PD,PH,PT,PWは各
種ポンプ、CTは冷却塔、STは蓄熱槽である。
2. Description of the Related Art FIG. 3 shows, for example, "cogeneration".
(Vol. 4, No. 2, 1989, P25 to P30) is a system diagram showing the optimum operation of the heat storage tank in the conventional cogeneration system shown in the figure, in which DG is a diesel engine generator and RE is an electric turbo. Refrigerator, RW is hot water absorption refrigerator, BA is hot water boiler, R
A is an oil-fired air conditioner, PC, PD, PH, PT, PW are various pumps, CT is a cooling tower, and ST is a heat storage tank.

【0003】次に動作について説明する。図3中、二点
鎖線は燃料の流れを示し、A重油はディゼルエンジン発
電機DGと温水ボイラBAと油焚冷暖房機RAとに投入
される。ディゼルエンジン発電機DGで電力を発生し、
排熱が回収されて蓄熱槽STに蓄えられる。蓄熱槽内の
温水を使って温水吸収冷凍機RWで冷水が得られ冷房需
要を賄う。更に蓄熱槽の温水が暖房需要と給湯需要に供
される。それでも余る場合は冷却塔CTで余剰熱は捨て
られる。暖房需要と給湯需要に応じ切れない時は、上記
油焚冷房機RAと温水がボイラBAとから供給される。
更に冷房需要に対しては、上記油焚冷暖房機RAと電動
ターボ冷凍機REにより賄われる。
Next, the operation will be described. In FIG. 3, the chain double-dashed line indicates the flow of fuel, and the heavy fuel oil A is input to the diesel engine generator DG, the hot water boiler BA, and the oil-fired air conditioner RA. Electric power is generated by the diesel engine generator DG,
Exhaust heat is recovered and stored in the heat storage tank ST. The hot water in the heat storage tank is used to obtain cold water by the hot water absorption refrigerator RW to meet the cooling demand. Furthermore, the hot water in the heat storage tank is used for heating and hot water supply. If there is still excess, excess heat is discarded in the cooling tower CT. When the demand for heating and the demand for hot water supply cannot be met, the oil-fired air conditioner RA and hot water are supplied from the boiler BA.
Further, the cooling demand is covered by the oil-fired air conditioner RA and the electric turbo refrigerator RE.

【0004】[0004]

【発明が解決しようとする課題】従来のコジェネレーシ
ョン・システムにおける蓄熱槽の運転方法は、以上のよ
うに構成されているので、負荷側と熱源側のつなぎとし
ての機能を果たしているのではなく、コジェネレーショ
ンシステムのみの緩衝機能しかありえず、他の熱源機を
も含めた熱源機群の選択と制御に寄与してないという欠
点があり、更に故障時などのバックアップ体制が考慮さ
れていないので、制御が複雑で信頼性に乏しく、蓄熱槽
との制御の組合せが明確でないという問題点があった。
Since the conventional method of operating the heat storage tank in the cogeneration system is configured as described above, it does not function as a joint between the load side and the heat source side, There is a drawback that it can only have a buffer function of the cogeneration system and does not contribute to the selection and control of the heat source machine group including other heat source machines, and since the backup system at the time of failure is not considered, There was a problem that the control was complicated and the reliability was poor, and the combination of control with the heat storage tank was not clear.

【0005】本発明は、上記のような問題点を解消する
ためになされたもので、負荷側と熱源側の中間に蓄熱槽
を配し、両者のつなぎとしての機能を果たし、熱源機群
全体の能力制御を実行でき、熱源機種の選択、故障時の
バックアップ等簡単な制御で負荷側の需要に応ずること
が可能であり、かつ、蓄熱槽内の温度管理が簡単に可能
となるコジェネレーションシステムにおける蓄熱槽の温
度制御方法を提供することを目的としている。
The present invention has been made in order to solve the above problems, and a heat storage tank is arranged between the load side and the heat source side to serve as a joint between the two, and the entire heat source unit group is provided. Cogeneration system that can control the capacity of the heat storage tank, can easily meet the demand on the load side by simple control such as heat source model selection and backup at the time of failure, and can easily control the temperature in the heat storage tank. An object of the present invention is to provide a method for controlling the temperature of a heat storage tank.

【0006】[0006]

【課題を解決するための手段】本発明に係るコジェネレ
ーションシステムにおける蓄熱槽の温度制御方法は、コ
ジェネレーションシステムとヒートポンプ及びボイラの
複数の熱源を備えた熱電併給システムにおいて、蓄熱槽
を介して、熱源側は、低温槽から冷水を、高温槽側から
温水をそれぞれ三方弁を介して吸い上げて、出力温水温
度がすべての熱源機が同一になるように各熱源機を並列
に接続し、負荷側は、高温槽側から温水を、低温槽側か
ら冷水をそれぞれ三方弁を介して混合して任意の温度で
供給するものである。
A method for controlling the temperature of a heat storage tank in a cogeneration system according to the present invention is a cogeneration system, a heat pump, and a combined heat and power system including a plurality of heat sources of a boiler, via a heat storage tank, The heat source side sucks cold water from the low temperature tank and hot water from the high temperature tank through the three-way valve, and connects the heat source devices in parallel so that all the heat source devices have the same output hot water temperature, and the load side. Is to supply hot water from the high temperature tank side and cold water from the low temperature tank side through a three-way valve, respectively, and supply them at an arbitrary temperature.

【0007】[0007]

【作用】本発明においては、コジェネレーションシステ
ムとヒートポンプ及びボイラの複数の熱源を備えた熱源
供給システムにおいて、蓄熱槽を介して負荷側と熱源機
側に分離し、負荷側も複数の熱源機側もすべて高温槽と
低温槽との両端の槽から三方弁を介して定流量ポンプで
送水し、熱源機群側は同一戻り温水温度になるように三
方弁による混合比を制御し、負荷側は任意の供給水温が
得られるように三方弁による混合比を変化させる。
According to the present invention, in a heat source supply system including a cogeneration system and a plurality of heat sources of a heat pump and a boiler, a heat storage tank separates a load side and a heat source machine side, and the load side also has a plurality of heat source machine sides. All of the high temperature tank and the low temperature tank are supplied with water from the tanks at both ends via a three-way valve with a constant flow pump, the heat source machine group side controls the mixing ratio by the three-way valve so that the return hot water temperature is the same, and the load side The mixing ratio by the three-way valve is changed so that an arbitrary supply water temperature can be obtained.

【0008】[0008]

【実施例】以下、本発明の一実施例を図について説明す
る。図1において、CGSはコジェネレーション・シス
テム、Bはボイラ、Hはヒートポンプ、QL は熱負荷、
STは蓄熱槽、θSTは蓄熱槽内温度レベル、PC ,P
H ,PL ,PB はそれぞれポンプ、VC ,VH ,VL
B はそれぞれ三方弁である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In Figure 1, CGS cogeneration system, B is the boiler, H is the heat pump, Q L is the thermal load,
ST is the heat storage tank, θ ST is the temperature level inside the heat storage tank, and P C and P
H, P L, respectively P B pump, V C, V H, V L,
Each V B is a three-way valve.

【0009】また、図2はエンジン駆動コジェネレーシ
ョンシステムのCGSの熱電発生図であり、横軸Qh
熱発生量、縦軸Wは電力発生量、aは熱電発生直線、X
1 ,X2 は熱電負荷需要点、Y1 ,Y2 ’はコジェネレ
ーションシステムのそれぞれの運転点を示す。QST1
発生熱が余ることを示し、QST2 は蓄熱槽からの採取熱
量を示している。
FIG. 2 is a thermoelectric generation diagram of the CGS of the engine-driven cogeneration system. The horizontal axis Q h is the heat generation amount, the vertical axis W is the power generation amount, a is the thermoelectric generation line, and X is
1 and X 2 are thermoelectric load demand points, and Y 1 and Y 2 'are operating points of the cogeneration system. Q ST1 indicates that excess heat is generated, and Q ST2 indicates the amount of heat collected from the heat storage tank.

【0010】図1に示すように、蓄熱槽STを介して、
負荷側と熱源機群側とに分離されて構成される。蓄熱槽
ST内は左端が高温槽で右端が低温槽になるように構成
されている。熱負荷QL 側には定流量ポンプPL に三方
弁VL を介して任意の温水が作れるようになっている。
熱源機側はコジェネレーションシステムCGSとヒート
ポンプHとボイラBが並列に接続されており、それぞれ
定流量ポンプPC ,PH ,PB が各々三方弁VC ,V
H ,VB を介して接続され、出口水温が一定の高温にな
るように制御されている。
As shown in FIG. 1, through the heat storage tank ST,
It is configured by being separated into a load side and a heat source machine group side. In the heat storage tank ST, the left end is a high temperature tank and the right end is a low temperature tank. The heat load Q L side so make any hot water through the three-way valve V L to the constant flow rate pump P L.
On the heat source side, a cogeneration system CGS, a heat pump H, and a boiler B are connected in parallel, and constant flow pumps P C , P H , and P B are three-way valves V C and V, respectively.
It is connected via H and V B , and the outlet water temperature is controlled to be a constant high temperature.

【0011】従って、図2の熱電負荷比の小さいX1
需要に対し、コジェネレーションシステムCGSは電力
負荷WL に追従したY1 で運転し、余剰熱QST1 は蓄熱
槽内STに蓄えられる。一方、熱電負荷比の大きいX2
=QL /WL の時は、熱負荷の一部QST2 を蓄熱槽ST
からの放熱で賄うため、コジェネレーションシステムに
必要とされるみなし熱需要量はQh ’となり、必要な熱
電需要点はX2 ’となる。熱電需要点X2 ’を通り傾き
が1/COPとなる直線lと熱電発生直線aとの交点Y
2 ’がコジェネレーションシステムの運転点である。な
お、図1におけるコジェネレーションシステムはディー
ゼルエンジンでもガスエンジン駆動でもガスタービン駆
動システムでも同様であり、燃料電池コジェネシステム
でも同様である。
Therefore, in response to the demand for X 1 having a small thermoelectric load ratio in FIG. 2, the cogeneration system CGS operates at Y 1 following the power load W L , and the surplus heat Q ST1 is stored in the heat storage tank ST. . On the other hand, X 2 with a large thermoelectric load ratio
= Q L / W L , part of the heat load Q ST2 is stored in the heat storage tank ST
Since the heat is radiated from the heat source, the deemed heat demand required for the cogeneration system is Q h 'and the necessary thermoelectric demand point is X 2 '. An intersection Y between a thermoelectric generation line a and a straight line 1 passing through the thermoelectric demand point X 2 'and having a slope of 1 / COP
2 'is the operating point of the cogeneration system. The cogeneration system in FIG. 1 is the same for a diesel engine, a gas engine drive, and a gas turbine drive system, and the fuel cell cogeneration system is also the same.

【0012】従って、上記実施例によれば、熱源機側の
種類を問わず、一定の高温槽が獲られ、その高温と低温
槽内の冷水との任意の混合比によって、急激な負荷変動
に対応でき、蓄熱槽内温度むらの少ない蓄熱量予測が可
能な制御性のよい、信頼性のある温度制御方法を提供で
きる。
Therefore, according to the above embodiment, regardless of the type of the heat source machine, a constant high temperature tank is caught, and a sudden load change is caused by an arbitrary mixing ratio of the high temperature and the cold water in the low temperature tank. It is possible to provide a reliable temperature control method that can cope with the above problem and can predict the amount of stored heat with little temperature variation in the heat storage tank.

【0013】[0013]

【発明の効果】以上のように、本発明によれば、負荷側
と熱源機群側とを蓄熱槽を介して構成し、負荷側も熱源
機側もすべて高温槽と低温槽の両端の槽から三方弁を介
して定流量ポンプで送水し、熱源機群側は同一戻り温水
温度になるように三方弁による混合比を制御するので、
熱源危機側の種類によらず、一定の高温槽が得られ、蓄
熱槽内温度むらが少なく蓄熱量予測が可能な制御性のよ
い信頼性が高いものとなる。
As described above, according to the present invention, the load side and the heat source machine group side are constituted by the heat storage tanks, and both the load side and the heat source machine side are tanks at both ends of the high temperature tank and the low temperature tank. From the three-way valve through a constant flow pump, and the heat source machine group side controls the mixing ratio by the three-way valve so that the same return hot water temperature is obtained.
Regardless of the type of heat source crisis side, a constant high temperature tank can be obtained, the temperature inside the heat storage tank is less uneven, and the amount of heat storage can be predicted with good controllability and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるコジェネレーションシ
ステムとヒートポンプとボイラと蓄熱槽の構成図であ
る。
FIG. 1 is a configuration diagram of a cogeneration system, a heat pump, a boiler, and a heat storage tank according to an embodiment of the present invention.

【図2】エンジン駆動型コジェネレーションシステムの
熱電発生図である。
FIG. 2 is a thermoelectric generation diagram of an engine-driven cogeneration system.

【図3】従来のコジェネレーションシステムにおける蓄
熱槽を含むシステムの構成図である。
FIG. 3 is a configuration diagram of a system including a heat storage tank in a conventional cogeneration system.

【符号の説明】[Explanation of symbols]

CGS エンジン駆動コジェネレーションシステム ST 蓄熱槽 H ヒートポンプ COP 成績係数 B ボイラ θ 熱負荷 X1 ,X2 熱電(負荷)需要点 Y1 ,Y2 ’ コジェネレーション運転点 QST1 余剰熱 QST2 蓄熱槽からの利用熱量 a 熱電発生直線 PH ,PB ,PC ,PL ポンプ VH ,VB ,VC ,VL 三方弁CGS engine driven cogeneration system ST heat storage tank H heat pump COP coefficient of performance B boiler θ heat load X 1 , X 2 thermoelectric (load) demand point Y 1 , Y 2 'cogeneration operation point Q ST1 surplus heat Q ST2 from heat storage tank use heat a thermoelectric generator linear P H, P B, P C , P L pump V H, V B, V C , V L three-way valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02J 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H02J 11/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コジェネレーションシステムとヒートポ
ンプ及びボイラの複数の熱源を備えた熱電併給システム
において、蓄熱槽を介して、熱源側は、低温槽から冷水
を、高温槽側から温水をそれぞれ三方弁を介して吸い上
げて、出力温水温度がすべての熱源機が同一になるよう
に各熱源機を並列に接続し、負荷側は、高温槽側から温
水を、低温槽側から冷水をそれぞれ三方弁を介して混合
して任意の温度で供給することを特徴とするコジェネレ
ーションシステムにおける蓄熱槽の温度制御方法。
1. A cogeneration system comprising a cogeneration system and a plurality of heat sources of a heat pump and a boiler, wherein a heat source side has a three-way valve for supplying cold water from a low temperature tank and hot water from a high temperature tank through a heat storage tank. The heat source units are connected in parallel so that all the heat source units have the same output hot water temperature.On the load side, hot water is supplied from the high temperature tank side and cold water is supplied from the low temperature tank side via three-way valves. A method for controlling the temperature of a heat storage tank in a cogeneration system, which comprises mixing and supplying the mixture at an arbitrary temperature.
JP4214167A 1992-08-11 1992-08-11 Temperature control method of heat storage tank in cogeneration system Pending JPH0659748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4214167A JPH0659748A (en) 1992-08-11 1992-08-11 Temperature control method of heat storage tank in cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4214167A JPH0659748A (en) 1992-08-11 1992-08-11 Temperature control method of heat storage tank in cogeneration system

Publications (1)

Publication Number Publication Date
JPH0659748A true JPH0659748A (en) 1994-03-04

Family

ID=16651347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4214167A Pending JPH0659748A (en) 1992-08-11 1992-08-11 Temperature control method of heat storage tank in cogeneration system

Country Status (1)

Country Link
JP (1) JPH0659748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008737A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Energy supply system
KR100812496B1 (en) * 2007-11-02 2008-03-11 지에스건설 주식회사 Energy saving type cogeneration system
CN104214760A (en) * 2014-08-26 2014-12-17 福建省鸿山热电有限责任公司 Control method for 600MW supercritical extraction condensing generating heat supply unit to realize no heat supply cutoff through combined starting of electric pump after single steam pump trips out

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008737A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Energy supply system
JP4633889B2 (en) * 2000-06-23 2011-02-16 三菱重工業株式会社 Energy supply system
KR100812496B1 (en) * 2007-11-02 2008-03-11 지에스건설 주식회사 Energy saving type cogeneration system
CN104214760A (en) * 2014-08-26 2014-12-17 福建省鸿山热电有限责任公司 Control method for 600MW supercritical extraction condensing generating heat supply unit to realize no heat supply cutoff through combined starting of electric pump after single steam pump trips out
CN104214760B (en) * 2014-08-26 2015-12-09 福建省鸿山热电有限责任公司 The overcritical condensation power generation thermal power plant unit separate unit heat pump tripping operation electric pump connection of taking out of 600MW opens the control method of not cutting heat supply

Similar Documents

Publication Publication Date Title
CN101135512B (en) Air-conditioning and electric power generating system and control method for the same
JP4496587B2 (en) Cogeneration plant operation method and apparatus
US20080083220A1 (en) Space heating and cooling system having a co-generator drive a geothermal, connected heat pump
KR102295325B1 (en) Residential complex energy system using solar energy and geothermal energy
US4589262A (en) Absorption type air conditioning system
JPH0659748A (en) Temperature control method of heat storage tank in cogeneration system
JP3653256B2 (en) Hybrid energy system
JP3258998B2 (en) Operation control method for cogeneration system
CN107387259B (en) Heating system, refrigerating system and combined cooling heating and power system
JP3616826B2 (en) Gas turbine system and operation method thereof
JP3301784B2 (en) Control method of heat storage tank in combined heat and power system
JP3624275B2 (en) Cold and hot water generation method that does not require external power supply
JPH11351056A (en) Small-sized energy plant device
JP4749161B2 (en) FUEL SUPPLY APPARATUS AND METHOD FOR OPERATING MOTOR WITH THE FUEL SUPPLY
JPH0658692A (en) Control system of heat storage tank for cogeneration system
JPS6046251B2 (en) Heating and cooling system with emergency power generator
CN210512243U (en) Multi-energy complementary type centralized energy supply system
JPH0814104A (en) Cogeneration system
US20060059911A1 (en) Space heating and cooling system having a co-generator drive a geothermal connected heat pump
JPH0329523Y2 (en)
JP2695210B2 (en) Air conditioning
JPH0666110A (en) Control method of heat pump in heat and electric power double supplying system
CN205641665U (en) Expressway service area cool and thermal power trigeminy energy supply system
JPH0117010Y2 (en)
JPH03285520A (en) Optimum control method for cogeneration system