JPH062569A - Multipurpose cooling method for gas turbine generating equipment - Google Patents

Multipurpose cooling method for gas turbine generating equipment

Info

Publication number
JPH062569A
JPH062569A JP15777092A JP15777092A JPH062569A JP H062569 A JPH062569 A JP H062569A JP 15777092 A JP15777092 A JP 15777092A JP 15777092 A JP15777092 A JP 15777092A JP H062569 A JPH062569 A JP H062569A
Authority
JP
Japan
Prior art keywords
gas turbine
seawater
heat
room
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15777092A
Other languages
Japanese (ja)
Inventor
Akira Hirano
昭 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP15777092A priority Critical patent/JPH062569A/en
Publication of JPH062569A publication Critical patent/JPH062569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve performance of a plant total unit by guiding an outlet heat medium water pipe of a carburetor, which vaporizes liquefied fuel gas, to a gas turbine lubricating oil cooler, so that accessories of a gas turbine generating equipment are reduced to decrease power consumption. CONSTITUTION:Seawater 1 is sucked up by a water pump 3, to first remove refuse by a strainer. The seawater pressurized by the water pump is guided by a water pump outlet pipe 4 and heat exchanged with liquefied fuel gas delivered from a liquefied fuel gas tank 5 in a carburetor 6, to decrease a temperature. Vaporized gas is fed to a gas turbine 11 and burned. A carburetor outlet seawater pipe 7 branches to advance into a gas turbine lubricating oil cooler 12, to here perform heat exchange with lubricating oil circulated in the gas turbine by a lubricating oil pump 13. The gas turbine 11 and a generator 21 are cooled by heat medium water of liquefied fuel gas. Thus by eliminating power consumption of the pump and a radiator fan, plant performance is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液化燃料ガスを気化さ
せる気化器と、本気化器を通過するポンプで加圧された
熱媒体水の配管を接続した液化燃料ガス気化設備に係
り、特に、液化燃料ガスの気化潜熱を有効に利用し、発
電プラントの消費動力の低減を図るガスタービン発電設
備の多目的冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vaporizer for vaporizing a liquefied fuel gas and a liquefied fuel gas vaporization facility in which a heat medium water pipe pressurized by a pump passing through the vaporizer is connected. The present invention relates to a multi-purpose cooling method for gas turbine power generation equipment, which effectively utilizes latent heat of vaporization of liquefied fuel gas to reduce power consumption of a power plant.

【0002】[0002]

【従来の技術】ガスタービンが液化燃料ガスを使用する
種類にはLNGやLPGが有り、いずれも燃料ノズルに
入る前に気化器で気化させる。この加熱媒体として海岸
に近い設備では海水をポンプで気化器に送り、熱交換に
より海水は冷却されて海へ放水する。内陸に設備した設
備では川水や井戸水をよく用い、小規模な設備では大気
を加熱媒体として用いるが、従来はすべて冷熱を無駄に
廃棄している。
2. Description of the Related Art LNG and LPG are types of gas turbines that use liquefied fuel gas, both of which are vaporized by a vaporizer before entering a fuel nozzle. In equipment near the coast as this heating medium, seawater is sent to a vaporizer by a pump, and the seawater is cooled by heat exchange and discharged to the sea. River water and well water are often used in inland facilities, and the atmosphere is used as a heating medium in small-scale facilities, but all cold heat is wasted in the past.

【0003】一方、ガスタービン発電設備には熱を発生
する要素が多く、ガスタービンでは軸受の摩擦熱で潤滑
油温度が上昇し、発電機ではコイルの発熱による冷却空
気の温度上昇、同様に制御盤も電気損失により電気導線
部が熱を持つ。運転員が居る室では室外から太陽熱が入
って室温が上昇し、ガスタービンと発電機を設置する室
ではそれぞれの機器から熱が発散して室温が上昇する。
これらの機器および室の冷却方法はそれぞれ独自にラジ
エータファンで大気と熱交換したり、室にクーラを設置
又はファンで外気を室に入れ換気を行ったりする。
On the other hand, the gas turbine power generation equipment has many elements that generate heat. In the gas turbine, the lubricating oil temperature rises due to the frictional heat of the bearings, and in the generator the temperature rise of the cooling air due to the heat generation of the coil, the same control is performed. The board also has heat in the electrical conductors due to electrical loss. In the room where the operator is, solar heat enters from the outside and the room temperature rises, and in the room where the gas turbine and the generator are installed, heat is dissipated from each equipment and the room temperature rises.
As for the cooling method of these devices and rooms, heat is exchanged with the atmosphere by a radiator fan, or a cooler is installed in the room or outside air is introduced into the room by a fan for ventilation.

【0004】以上の各冷却ファンやクーラの動力源はガ
スタービンが駆動する発電機の電気出力の一部であり、
この消費補機動力が多いと有効利用電力が減るので、プ
ラント熱効率が下がる。
The power source of each cooling fan and cooler described above is a part of the electric output of the generator driven by the gas turbine,
If the consumed auxiliary machinery power is large, the effective power consumption is reduced, so that the plant thermal efficiency is reduced.

【0005】本液化燃料ガスの冷熱利用に関する発明
は、特開平1−142219 号公報でガスタービン圧縮機の取
入空気の冷却を行う方法が有るが、熱交換する部分での
取入空気の圧力損失が生じて圧縮機効率が悪くなり、冷
却効果が発揮出来ない欠点がある。
An invention relating to the utilization of cold heat of the liquefied fuel gas is disclosed in JP-A-1-142219, which has a method of cooling the intake air of a gas turbine compressor. There is a drawback that the efficiency of the compressor is deteriorated due to loss and the cooling effect cannot be exhibited.

【0006】ガスタービンの潤滑油を燃料ガスで冷却す
る発明として特開昭58−13342 号公報が有るが、ガス状
の燃料では比熱が小さいので潤滑油を満足に冷却出来な
いので空気と熱交換させるラジエータが必要であり、も
しLNGで潤滑油を冷却させるならば加熱容量が不足し
て完全に気化しない。
Japanese Patent Application Laid-Open No. 58-13342 discloses an invention for cooling lubricating oil of a gas turbine with fuel gas. However, since the specific heat of a gaseous fuel is small, the lubricating oil cannot be cooled satisfactorily, so that heat exchange with air occurs. It is necessary to use a radiator that allows the LNG to cool the lubricating oil, and the heating capacity is insufficient to completely evaporate the lubricating oil.

【0007】又、発電機をLNGで冷却する発明として
特開昭63−131833号公報が有るが、同様に熱量が不足す
るので別の加熱方法を取らざるを得ない。
Further, as an invention for cooling a generator with LNG, there is Japanese Patent Laid-Open No. 63-131833. However, since the amount of heat is insufficient, another heating method has to be adopted.

【0008】[0008]

【発明が解決しようとする課題】液化燃料ガスのLNG
は、1kgあたり127kcal の気化潜熱があり、単機出
力が10万KWクラスのガスタービンは、1時間で約
3.2×106kcalの加熱量を必要とする。これを海水又
は川水で加熱すると気化器出口は、入口温度より10℃
あまりさげられるので、これを元の海や川に放水すると
魚貝類に悪影響を与えるし、せっかく熱媒体水として利
用出来るように処理,加熱された冷却水を無駄に捨てる
のは、発電プラントエネルギの損失である。
[Problems to be Solved by the Invention] LNG of liquefied fuel gas
Has a latent heat of vaporization of 127 kcal per kg, and a gas turbine with a unit output of 100,000 KW requires a heating amount of about 3.2 x 10 6 kcal per hour. When this is heated with seawater or river water, the carburetor outlet will be 10 ° C below the inlet temperature.
Since it is too much reduced, it will adversely affect the fish and shellfish if it is discharged to the original sea or river, and it is necessary to process the heat water so that it can be used as heat carrier water and to waste the heated cooling water in vain. It is a loss.

【0009】この冷却水を有効に利用する手段として、
ガスタービンの潤滑油や発電機の冷却空気を冷すのみで
は、約半分の冷却器を利用するのみにとどまる。ガスタ
ービン発電設備の発熱源には上記の他に、制御盤を室内
に設置した室の冷房や、運転員室を快適に居住するため
にも冷房が不可欠である。又、ガスタービン本体や発電
機本体は分解、点検時に機器や保守員が風雨にさらされ
ないよう室に収納し、天井部にクレーンを設置する。こ
の室内に収納した機器が運転すると多量の熱を機器表面
から出すので、壁の下方部の何ケ所かに空気取入孔と天
井屋根部の何ケ所かにファンを設け、外気を室内に流入
させ換気で大巾な温度上昇を防ぐ手段をとる。しかし、
外気温度が高い地域では最高55℃の外気が流入してく
るので、ファンを多数設置しても天井クレーン付近は約
70℃となり問題を生じる。これらのように発電プラン
トには熱発生源が多数有り、従来は各個別に冷却手段を
採用していたが、豊富な液化燃料ガスの気化潜熱を熱媒
体水に移し、熱発生源に供給する。
As means for effectively using this cooling water,
Cooling the lubricating oil of the gas turbine and the cooling air of the generator only uses about half of the cooler. In addition to the above, as the heat source of the gas turbine power generation equipment, cooling is indispensable for cooling the room in which the control panel is installed indoors and for comfortably living in the operator's room. In addition, the gas turbine body and the generator body will be stored in a room so that the equipment and maintenance personnel will not be exposed to the weather during disassembly and inspection, and a crane will be installed on the ceiling. Since a large amount of heat is generated from the surface of the equipment when the equipment stored in this room operates, fans are installed at several places on the lower part of the wall and in the air intake holes and at some places on the ceiling roof to let outside air flow into the room. Then take measures to prevent a large temperature rise by ventilation. But,
In areas where the outside air temperature is high, the maximum outside air temperature is 55 ° C, so even if a large number of fans are installed, there will be a problem of around 70 ° C near the overhead crane. There are many heat generation sources in the power plant like this, and conventionally, each cooling means was adopted individually, but abundant latent heat of vaporization of liquefied fuel gas is transferred to the heat carrier water and supplied to the heat generation source. .

【0010】[0010]

【課題を解決するための手段】液化燃料ガスを気化させ
る気化器に送る熱媒体として海水を用いる場合、ポンプ
で加圧され気化器を通り熱発生機器および室冷房設備に
送られるが、発熱量の大小に応じた海水が流れる設計を
する。発熱量が小さい制御室や運転員室の冷房機器へは
細い配管で分岐し、オリフィスで必要以上流れない手段
をとる。各部屋には気化器で冷された海水と室の暖かい
空気を熱交換させる冷房機器が有り、海水は加熱され
る。ガスタービンの潤滑油冷却器や発電機冷却器に海水
を送る配管は熱交換量が大きいため太い配管とし、熱交
換量に応じた適正海水量を流す流量調節弁を設ける。最
後のガスタービン及び発電機設置室の換気空気取入熱交
換器へは残りの海水全量を送る太い配管で良く、室温の
調節は換気を行わせるファンの運転台数を増減する事で
可能である。
When seawater is used as a heat medium to be sent to a vaporizer for vaporizing liquefied fuel gas, it is pressurized by a pump and sent through a vaporizer to heat-generating equipment and room cooling equipment. Design a seawater flow according to the size of. A thin pipe should be used to branch to the cooling equipment in the control room or operator's room, which generates a small amount of heat, and the orifice should be used to prevent unnecessary flow. Each room has a cooling device that exchanges heat between the seawater cooled by the vaporizer and the warm air in the room, and the seawater is heated. The pipe for sending seawater to the lubricating oil cooler and generator cooler of the gas turbine has a large amount of heat exchange, so it should be a thick pipe, and a flow control valve should be installed to flow an appropriate amount of seawater according to the amount of heat exchange. Thick piping that sends the remaining amount of seawater to the ventilation air intake heat exchanger in the final gas turbine and generator installation room may be used, and the room temperature can be adjusted by increasing or decreasing the number of operating fans that perform ventilation. .

【0011】各冷房器や冷却器を通過し、温度上昇した
海水は1本の配管又は排水溝に集められて海へ戻す。
Seawater which has passed through each of the air conditioners and coolers and has increased in temperature is collected in one pipe or drain and returned to the sea.

【0012】[0012]

【作用】従来は熱媒体である海水や川水が、気化器で取
水温度より数℃以上冷却された水を海や川に戻すのは生
物に悪影響を与えるので、大量の水を数台のポンプで気
化器へ送って温度差があまり生じない設計をしていた
が、冷却後の熱媒体をガスタービン発電設備の発熱冷却
器へ供給し加熱され温度差を縮小する事で、従来の温度
差の2〜3倍は許容出来る事になる。このため、熱媒体
の流量を1/2〜1/3に低減出来る事になり、ポンプ
台数も1/2〜1/3に減らす事が可能である。次に熱
媒体をガスタービン潤滑油冷却器と発電機冷却器に供給
する事で、従来各機器の冷却器毎に海水又は川水をポン
プで供給していた設備が削除出来る。又、制御盤室や運
転員室の冷房設備は、従来チラーユニット等で冷熱を作
り出していたが、気化器出口の熱媒体を供給する事で代
用出来る。最後のガスタービン及び発電機設置室の換気
空気取入熱交換器に熱媒体を通し室に流入する空気を冷
却して、室内の温度上昇を押える働きで、従来天井に多
数取り付けていた換気ファンの台数を減らす事が出来
る。
[Function] Conventionally, when seawater or river water, which is a heat medium, returns water cooled by several degrees or more than the intake temperature in the vaporizer to the sea or river, it has a bad effect on living organisms. It was designed to send a temperature to the carburetor with a pump so that there is not much temperature difference, but by supplying the heat medium after cooling to the exothermic cooler of the gas turbine power generation equipment and heating it to reduce the temperature difference, the conventional temperature 2-3 times the difference will be acceptable. Therefore, the flow rate of the heat medium can be reduced to 1/2 to 1/3, and the number of pumps can also be reduced to 1/2 to 1/3. Next, by supplying the heat medium to the gas turbine lubricating oil cooler and the generator cooler, the equipment that conventionally supplied seawater or river water with a pump for each cooler of each device can be eliminated. Further, the cooling equipment in the control panel room and the operator's room used to produce cold heat with a chiller unit or the like, but it can be replaced by supplying a heat medium at the carburetor outlet. Ventilation air intake in the final gas turbine and generator installation room Cooling air that flows into the room by passing the heat medium through the heat exchanger and suppressing the temperature rise in the room, ventilation fans that were conventionally mounted on the ceiling The number of cars can be reduced.

【0013】[0013]

【実施例】以下、本発明の実施例を図1ないし図4を用
いて詳細に説明する。図1は、本発明による全体構成を
示したものである。海中1は水ポンプ3で吸い上げら
れ、まずストレーナ2でごみを除去する。水ポンプで加
圧された海水は、水ポンプ出口管4で導かれ、液化燃料
ガスタンク5から払い出される液化燃料ガスと気化器6
で熱交換し、温度が下がる。気化したガスはガスタービ
ン11に送られて燃焼する。気化器出口海水配管7は分
岐して、ガスタービン潤滑油冷却器12に入り、ここで
潤滑油ポンプ13でガスタービン内を循環する潤滑油と
熱交換する。潤滑油冷却器を出た潤滑油の温度は、一定
温度に保つ必要が有るので、冷却器出口潤滑油配管14
に温度検出器15を設け、この検出により潤滑油温度調
節弁16で海水の流量を調節する。本例では、気化器出
口海水配管の末端に発電機冷却器22が有り、ここでは
発電機ファン23で発電機21内を循環する冷却空気と
熱交換する。発電機冷却器を出た冷却空気の温度は、一
定に保つ必要があるので、冷却器出口冷却空気配管24
に温度検出器25を設け、この検出により冷却空気温度
調節弁26で海水の流量を調節する。ガスタービンや発
電機は、ガスタービン及び発電機設置室31に収納し、
天井にクレーン81を設けるが、換気が必要なため、室
の天井部に換気ファン40を数個設置し、室の壁下方部
に換気空気取入熱交換器32を何ケ所か備え、これに気
化器出口海水配管を接続する。一方、サービスビル51
の1階の制御盤室52には、発電プラントをコントロー
ルする制御盤53を多数収納するので、電気的ロスによ
る発熱量が発生する。2階の運転員室55では、プラン
トの監視盤56、給湯器57から発熱し、太陽熱も直射
日光や屋根、壁を伝って入って来る。これらの各室に冷
房熱交換器61を取付け、気化器出口海水配管を接続す
る。この冷房熱交換器の熱負荷は、他に比較して小さい
ので海水配管を細くするが、より正確な分配をするため
に、各熱交換器の最大必要海水流量でオリフィス径を決
めてオリフィス54を取り付ける。このように各冷却器
や熱交換器を出た海水は、近くの排水溝60に流し雨水
他といっしょに海へ流す。
Embodiments of the present invention will be described in detail below with reference to FIGS. FIG. 1 shows the overall configuration according to the present invention. The underwater 1 is sucked up by the water pump 3, and the strainer 2 first removes dust. The seawater pressurized by the water pump is guided by the water pump outlet pipe 4, and the liquefied fuel gas discharged from the liquefied fuel gas tank 5 and the vaporizer 6
Heat is exchanged with and the temperature drops. The vaporized gas is sent to the gas turbine 11 and burned. The vaporizer outlet seawater pipe 7 branches to enter the gas turbine lubricating oil cooler 12, where the lubricating oil pump 13 exchanges heat with the lubricating oil circulating in the gas turbine. Since the temperature of the lubricating oil that exits the lubricating oil cooler needs to be maintained at a constant temperature, the cooling oil outlet lubricating oil pipe 14
A temperature detector 15 is provided in the temperature sensor, and the lubricating oil temperature control valve 16 controls the flow rate of seawater based on the detection. In this example, the generator cooler 22 is provided at the end of the vaporizer outlet seawater pipe, and here, the generator fan 23 exchanges heat with the cooling air circulating in the generator 21. Since it is necessary to keep the temperature of the cooling air that has exited the generator cooler constant, the cooler outlet cooling air pipe 24
A temperature detector 25 is provided in the air conditioner, and the flow rate of seawater is adjusted by the cooling air temperature adjusting valve 26 based on this detection. The gas turbine and generator are stored in the gas turbine and generator installation room 31,
A crane 81 is provided on the ceiling, but since ventilation is required, several ventilation fans 40 are installed on the ceiling of the room, and several ventilation air intake heat exchangers 32 are provided below the wall of the room. Connect the carburetor outlet seawater pipe. On the other hand, service building 51
Since a large number of control panels 53 for controlling the power plant are housed in the control panel room 52 on the first floor, heat generation due to electrical loss occurs. In the operator room 55 on the second floor, heat is generated from the monitoring board 56 and the water heater 57 of the plant, and solar heat also comes in through direct sunlight, the roof, and walls. A cooling heat exchanger 61 is attached to each of these chambers, and a vaporizer outlet seawater pipe is connected. Since the heat load of this cooling heat exchanger is smaller than the others, the seawater piping is made thin, but in order to distribute more accurately, the orifice diameter is determined by the maximum required seawater flow rate of each heat exchanger and the orifice 54 Attach. The seawater that has exited each cooler or heat exchanger in this way flows into the nearby drainage groove 60 and flows into the sea along with rainwater and the like.

【0014】次に全体システムの運転であるが、全設備
が停止の状態から起動する場合、サービスビルの冷房分
の海水が必要なので、水ポンプを1台起動する。たとえ
ガスタービンが起動準備運転をしていても、ガスタービ
ン潤滑油冷却器の熱交換量は僅かなので、液化燃料ガス
での冷熱が無くても問題ない。数分後には、ガスタービ
ンが液化燃料ガスを消費するので、冷熱がえられると共
に発熱量の大きいガスタービンが燃焼熱を生じてくる。
気化器を通る液化燃料ガスの流量に応じて水ポンプを順
次起動してガス化させるが、各機器での発熱量は少し時
間が遅れるので、水量が不足することはない。もし、ガ
スタービンが何かの原因で、突然、液化燃料ガスをスト
ップした場合、冷熱は得られないが、海水が流れている
ので一時的に室の温度が上昇するのみで、機器の運転も
停止するので熱量は急激に減り問題ない。
Next, regarding the operation of the entire system, when starting all the equipment from a stopped state, one water pump is started because seawater for cooling the service building is required. Even if the gas turbine is in the preparatory operation for start-up, since the heat exchange amount of the gas turbine lubricating oil cooler is small, there is no problem even if there is no cold heat in the liquefied fuel gas. After a few minutes, the gas turbine consumes the liquefied fuel gas, so that cold heat is generated and the gas turbine, which has a large calorific value, generates combustion heat.
The water pumps are sequentially activated to gasify according to the flow rate of the liquefied fuel gas passing through the vaporizer, but the calorific value of each device is slightly delayed, so the water amount does not become insufficient. If the gas turbine suddenly stops the liquefied fuel gas for some reason, no cold heat will be obtained, but since the seawater is flowing, the room temperature will only rise temporarily and the equipment will not operate. Since it stops, the amount of heat decreases sharply and there is no problem.

【0015】図2は、冷房熱交換器61の断面図を示
す。気化器出口海水配管7は、熱交換器入口水室63に
溶接して海水65を導くが、本水室に入る直前のフラン
ジ62にはさまれたオリフィス54で、流量を制限され
る。海水は約10本程の細いフィンチューブ67の中を
分かれて通過し、熱交換器出口水室64に出てドレン管
66で排水溝に流れる。一方、室内空気70は、ハウジ
ング72に棒状サポー73で固定された電動機68で駆
動されるファン69で吸い込まれる。室内空気は、ま
ず、ハウジング72のトップに取付けられたスクリーン
71でごみを除去された後、フィンチューブに送られ冷
たい海水と熱交換をして、ハウジング下部から室内に送
り出される。室温の調節は、電動機の回転数を変化させ
ファンが送り出す風量を、多くしたり少なくして、室温
を下げたり上げたりする事が出来る。本冷房熱交換は、
サービスビル51の壁の中間高位の位置に穴をあけて取
り付けるのが、室内空気の循環が良好に行なわれる。
FIG. 2 shows a sectional view of the cooling heat exchanger 61. The vaporizer outlet seawater pipe 7 is welded to the heat exchanger inlet water chamber 63 to guide the seawater 65, but the flow rate is limited by the orifice 54 sandwiched by the flange 62 immediately before entering the main water chamber. Seawater passes through the thin fin tubes 67 of about 10 in a divided manner, flows out into the heat exchanger outlet water chamber 64, and flows into the drain groove through the drain pipe 66. On the other hand, the room air 70 is sucked by the fan 69 driven by the electric motor 68 fixed to the housing 72 by the rod-shaped support 73. The room air is first cleaned of dust by the screen 71 attached to the top of the housing 72, and then sent to the fin tube to exchange heat with cold seawater, and then sent out from the lower part of the housing to the room. The room temperature can be adjusted by changing the rotation speed of the electric motor to increase or decrease the amount of air blown by the fan to lower or raise the room temperature. This cooling heat exchange is
It is preferable to make a hole at an intermediate high position on the wall of the service building 51 so that the indoor air can be circulated favorably.

【0016】図3はガスタービン及び発電設置室の冷房
を行う詳細図を示す。気化器出口海水配管7は、換気空
気取入熱交換器32の熱交換器入口水室33に溶接し
て、海水65をフィンチューブ34に導く。フィンチュ
ープは細くして数本備えるが、各断面積の合計は気化器
出口海水配管の断面積と同じか少し大きくして、海水が
充分流れる設計とする。フィンチューブを通過した海水
は、熱交換器出口水室35で集められ、本出口水室に溶
接接続したドレン管66で、排水溝60に放出する。一
方、外気37は室の屋根を貫通して取り付けられた換気
ファン40を回転させ天井部に上昇してくる室内空気を
室外に出す事で、換気空気取入熱交換器に流入してくる
が、雨を除くためにフード36を備け外気を下方から導
く設計とする。熱帯地域では、外気温度は55℃になる
事もあるが、フィンチューブで冷たい海水で冷却される
事により、40℃以下で室内に入ってくる。ガスタービ
ン11と発電機21は直列に組合せると、室の長手方向
は約50Mとなるので、換気空気取入熱交換は4ないし
6個設置して室内の対流がある程度均一になる配置を決
める。換気空気取入熱交換器はガスタービン及び発電機
設置室31の壁の下部に穴をあけて取り付けるが、通常
機器をはさむように反対側の壁下部にも取り付けるのが
効果的である。室の天井付近にはクレーン81を設ける
が、機器が運転しても60℃以下の空気温度に押さえら
れるので、電動機82や制御機器83に悪影響を与えな
い。室内で温まった外気はファンで室外に排出される
が、機器の発熱量と太陽熱が壁を伝って入ってくる熱量
を考慮して、ファンの員数を決定する。もし本発明の換
気空気取入熱交換器を設置しなければ、高温の外気がそ
のまま流入してくるので、ファンが大きくなり員数も増
え、運転中の消費動力が多くなる。
FIG. 3 is a detailed view for cooling the gas turbine and the power generation installation room. The vaporizer outlet seawater pipe 7 is welded to the heat exchanger inlet water chamber 33 of the ventilation air intake heat exchanger 32 to guide the seawater 65 to the fin tubes 34. The fin tubes are made thin and provided, but the total cross-sectional area should be the same as or slightly larger than the cross-sectional area of the carburetor outlet seawater pipe, so that seawater can flow sufficiently. The seawater that has passed through the fin tube is collected in the heat exchanger outlet water chamber 35, and is discharged to the drain groove 60 by the drain pipe 66 welded to the main outlet water chamber. On the other hand, the outside air 37 flows into the ventilation air intake heat exchanger by rotating the ventilation fan 40 attached through the roof of the room and rotating the indoor air rising to the ceiling to the outside. A hood 36 is provided to remove rain, and the outside air is guided from below. In the tropical region, the outside air temperature may reach 55 ° C, but the temperature will drop below 40 ° C and enter the room by being cooled by cold seawater in the fin tube. If the gas turbine 11 and the generator 21 are combined in series, the lengthwise direction of the room will be about 50 M, so 4 to 6 ventilation air intake heat exchanges will be installed to determine an arrangement where the convection in the room will be uniform to some extent. . The ventilation air intake heat exchanger is attached to the lower part of the wall of the gas turbine / generator installation chamber 31 by making a hole, but it is effective to also attach it to the lower part of the opposite wall so as to sandwich the device. Although the crane 81 is provided near the ceiling of the room, the air temperature of 60 ° C. or lower can be maintained even when the equipment is operated, so that the electric motor 82 and the control equipment 83 are not adversely affected. The outside air heated in the room is exhausted to the outside by the fan, but the number of fans is decided by considering the heat value of the equipment and the heat quantity that the solar heat enters through the wall. If the ventilation air intake heat exchanger of the present invention is not installed, high-temperature outside air flows in as it is, so that the fan becomes large, the number of members increases, and the power consumption during operation increases.

【0017】図4は、図1の全体構成に密閉循環多目的
冷却水系統を追加した応用実施例で、気化器を通過した
海水は気化器出口海水配管が海中に延びるまでの途中に
設置した循環冷却器水熱交換器90に入り、循環水と熱
交換する。冷却された循環水は、熱交換器出口の冷却水
配管91に取り付けられた循環水温度検出器92により
温度を測定され、予め設定した温度より冷え過ぎていれ
ば、循環水戻り制御弁93を閉じて、循環水ポンプ94
で吐出した循環水を現在より多く循環冷却水熱交換器へ
流し温度を上昇させる。もし測定した温度が高くなって
いれば、循環水戻り制御弁が作動し循環水戻り配管95
に多く流し、その結果、循環冷却水熱交換器を通過する
循環水の流量を減らし温度を下げる。温度制御を行って
所定の温度に冷却された循環水は、図1で説明した各熱
交換器に送られ熱交換の後、温度が上昇して、循環水ポ
ンプ入口管96に集まり、ポンプストレーナ97及び循
環水ポンプに入る。ポンプは2段階の流量制限を行なわ
せるため2台設置し、流量が大きいのでポンプストレー
ナと1対1の組合せとする。本応用実施例は、特に海水
を好まない機器が多い場合に採用される。
FIG. 4 is an application example in which a closed circulation multi-purpose cooling water system is added to the entire configuration of FIG. 1, and the seawater that has passed through the carburetor is circulated while the carburetor outlet seawater pipe extends in the sea. It enters the cooler water heat exchanger 90 and exchanges heat with the circulating water. The temperature of the cooled circulating water is measured by the circulating water temperature detector 92 attached to the cooling water pipe 91 at the outlet of the heat exchanger, and if the temperature is too lower than the preset temperature, the circulating water return control valve 93 is set. Close the circulating water pump 94
The circulating water discharged in step 2 is made to flow to the circulating cooling water heat exchanger to raise the temperature. If the measured temperature is high, the circulating water return control valve is activated and the circulating water return pipe 95
The flow rate of circulating water through the circulating cooling water heat exchanger is reduced and the temperature is lowered. The circulating water cooled to a predetermined temperature by controlling the temperature is sent to each heat exchanger described in FIG. 1, and after heat exchange, the temperature rises and collects in the circulating water pump inlet pipe 96, and the pump strainer. Enter 97 and circulating water pump. Two pumps are installed to limit the flow rate in two stages. Since the flow rate is high, a pump strainer and a one-to-one combination are required. This application example is adopted particularly when there are many devices that do not like seawater.

【0018】[0018]

【発明の効果】本発明による効果を下記に列挙する。The effects of the present invention are listed below.

【0019】(1)ガスタービンと発電機の冷却を、従来
はそれぞれ独立してラジエータ又は海水で行なっていた
が、液化燃料ガスの熱媒体水で行なう事により設備費の
低減なる。又ポンプ、ラジエータファンの消費動力が無
くなるので、プラント性能効率が向上する。
(1) Conventionally, the cooling of the gas turbine and the generator was independently performed by the radiator or seawater, but by using the heat medium water of the liquefied fuel gas, the equipment cost can be reduced. Moreover, the power consumption of the pump and the radiator fan is eliminated, so that the plant performance efficiency is improved.

【0020】(2)制御盤設置室や運転員室の冷房用チラ
ーユニットが不必要となるので設備費の低減となる。
又、チラーユニットで消費していた動力がなくなるの
で、プラン性能効率が向上する。
(2) Since the chiller unit for cooling the control panel installation room and the operator's room is unnecessary, the equipment cost can be reduced.
In addition, the power consumed by the chiller unit is eliminated, so the plan performance efficiency is improved.

【0021】(3)ガスタービン及び発電機設置室の換気
ファンの員数が減るので消費動力が減り、プラント性能
効率が向上する。
(3) Since the number of ventilation fans in the gas turbine and the generator installation room is reduced, power consumption is reduced and plant performance efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】冷房熱交換器の断面図。FIG. 2 is a sectional view of a cooling heat exchanger.

【図3】ガスタービン及び発電機設置室の冷却を行う説
明図。
FIG. 3 is an explanatory view for cooling a gas turbine and a generator installation room.

【図4】本発明の他の実施例の系統図。FIG. 4 is a system diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…海中、2…ストレーナ、3…水ポンプ、4…水ポン
プ出口管、5…液化燃料ガスタンク、6…気化器、7…
気化器出口海水配管、11…ガスタービン、12…ガス
タービン潤滑油冷却器、13…潤滑油ポンプ、14…冷
却器出口潤滑油配管、15…温度検出器、16…潤滑油
温度調節弁、21…発電機、22…発電機冷却器、23
…発電機ファン、24…冷却器出口冷却空気配管、25
…温度検出器、26…冷却空気温度調節弁、31…ガス
タービン及び発電機設置室、32…換気空気取入熱交換
器、51…サービスビル、52…制御盤室、53…制御
盤、54…オリフィス、55…運転員室、56…監視
盤、57…給湯器、60…排水溝、61…冷房熱交換
器。
1 ... In the sea, 2 ... Strainer, 3 ... Water pump, 4 ... Water pump outlet pipe, 5 ... Liquefied fuel gas tank, 6 ... Vaporizer, 7 ...
Vaporizer outlet seawater pipe, 11 ... Gas turbine, 12 ... Gas turbine lubricating oil cooler, 13 ... Lubricating oil pump, 14 ... Cooler outlet lubricating oil pipe, 15 ... Temperature detector, 16 ... Lubricating oil temperature control valve, 21 … Generator, 22… Generator cooler, 23
… Generator fan, 24… Cooler outlet cooling air piping, 25
... Temperature detector, 26 ... Cooling air temperature control valve, 31 ... Gas turbine and generator installation room, 32 ... Ventilation air intake heat exchanger, 51 ... Service building, 52 ... Control panel room, 53 ... Control panel, 54 ... Orifice, 55 ... Operator's room, 56 ... Monitoring panel, 57 ... Water heater, 60 ... Drain, 61 ... Cooling heat exchanger.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】液化燃料ガスを気化させる気化器と、前記
気化器を通過するポンプで加圧された熱媒体水の配管を
接続した液化燃料ガス気化設備において、前記気化器の
出口熱媒体水配管をガスタービン潤滑油冷却器に導くこ
とを特徴とするガスタービン発電設備の多目的冷却方
法。
1. A liquefied fuel gas vaporization facility in which a vaporizer for vaporizing a liquefied fuel gas and a pipe for a heat medium water pressurized by a pump passing through the vaporizer are connected to each other, and an outlet heat medium water for the vaporizer is provided. A multipurpose cooling method for a gas turbine power generation facility, characterized in that the pipe is led to a gas turbine lubricating oil cooler.
【請求項2】請求項1に記載の前記気化器の前記出口熱
媒体水配管を発電機冷却器に導くガスタービン発電設備
の多目的冷却方法。
2. A multipurpose cooling method for a gas turbine power generation facility, which introduces the outlet heat medium water pipe of the vaporizer according to claim 1 to a generator cooler.
【請求項3】請求項1に記載の前記気化器の前記出口熱
媒体水配管を制御盤室の冷房熱交換器に導くガスタービ
ン発電設備の多目的冷却方法。
3. A multipurpose cooling method for a gas turbine power generation facility, wherein the outlet heat medium water pipe of the vaporizer according to claim 1 is introduced to a cooling heat exchanger in a control panel room.
【請求項4】請求項1に記載の前記気化器の前記出口熱
媒体水配管を運転員室の冷房熱交換器に導くガスタービ
ン発電設備の多目的冷却方法。
4. A multi-purpose cooling method for gas turbine power generation equipment, wherein said outlet heat medium water pipe of said vaporizer according to claim 1 is led to a cooling heat exchanger in an operator's room.
【請求項5】請求項1に記載の気化器の前記出口熱媒体
水配管をガスタービン及び発電機設備室の換気空気取入
熱交換器に導くガスタービン発電設備の多目的冷却方
法。
5. A multi-purpose cooling method for gas turbine power generation equipment, wherein said outlet heat medium water piping of the vaporizer according to claim 1 is introduced to a ventilation air intake heat exchanger of a gas turbine and a generator equipment room.
JP15777092A 1992-06-17 1992-06-17 Multipurpose cooling method for gas turbine generating equipment Pending JPH062569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15777092A JPH062569A (en) 1992-06-17 1992-06-17 Multipurpose cooling method for gas turbine generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15777092A JPH062569A (en) 1992-06-17 1992-06-17 Multipurpose cooling method for gas turbine generating equipment

Publications (1)

Publication Number Publication Date
JPH062569A true JPH062569A (en) 1994-01-11

Family

ID=15656929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15777092A Pending JPH062569A (en) 1992-06-17 1992-06-17 Multipurpose cooling method for gas turbine generating equipment

Country Status (1)

Country Link
JP (1) JPH062569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107192A (en) * 2008-10-28 2010-05-13 Siemens Ag Cooling apparatus for electrical machine
JP2017227212A (en) * 2016-06-06 2017-12-28 ゼネラル・エレクトリック・カンパニイ System and method for cooling compartmentalized and ducted electrical enclosure
CN110107404A (en) * 2019-05-09 2019-08-09 成都航天科工微电子系统研究院有限公司 A kind of vehicle-mounted fuel engine power generation system multimedium composite heat dissipation device
KR20210079110A (en) * 2019-12-19 2021-06-29 주식회사 디이앤씨 Distributed generation system using cold heat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107192A (en) * 2008-10-28 2010-05-13 Siemens Ag Cooling apparatus for electrical machine
JP2017227212A (en) * 2016-06-06 2017-12-28 ゼネラル・エレクトリック・カンパニイ System and method for cooling compartmentalized and ducted electrical enclosure
CN110107404A (en) * 2019-05-09 2019-08-09 成都航天科工微电子系统研究院有限公司 A kind of vehicle-mounted fuel engine power generation system multimedium composite heat dissipation device
KR20210079110A (en) * 2019-12-19 2021-06-29 주식회사 디이앤씨 Distributed generation system using cold heat

Similar Documents

Publication Publication Date Title
US4065055A (en) Complete system for a home air heating and cooling, hot and cold water, and electric power
JP2851794B2 (en) Combustion air precooling system for gas turbine
JPWO2007069308A1 (en) Micro gas turbine system
JP5547592B2 (en) Intake air temperature control device for gas turbine
US6434937B2 (en) Multi-energy system
CA2112354C (en) Combined heat and power system
JP2007064049A (en) Waste heat recovery system for gas turbine cogeneration equipment
ITMI941519A1 (en) METHOD AND APPARATUS FOR INCREASING THE POWER PRODUCED BY GAS TURBINE
JPH10115229A (en) Gas turbine and operation method thereof
JP2009074744A (en) Gas heat pump cogeneration apparatus
JPH062569A (en) Multipurpose cooling method for gas turbine generating equipment
JP3653256B2 (en) Hybrid energy system
KR100421090B1 (en) Air conditioner using Gas Heat Pump
CN102116215A (en) Self-electricity consumption reduction combined cooling heat and power system
JP4535451B2 (en) Cold and hot water system
JPH10238813A (en) Air conditioning system device
CN215908010U (en) Cooling device of wind driven generator
KR102620928B1 (en) Heating and cooling carbonic acid fertilization system applied to smart greenhouse
JP2005241079A (en) Solar power generator
JPH06281289A (en) Cogeneration apparatus
RU2216640C2 (en) Co-generative modular heat power station with internal combustion engine and additional burner assembly
JP2003194373A (en) Heating equipment and ventilation structure for the same
JPH0474531B2 (en)
JP2005147658A (en) Hybrid energy system
JPS623635Y2 (en)