JP2007064049A - Waste heat recovery system for gas turbine cogeneration equipment - Google Patents

Waste heat recovery system for gas turbine cogeneration equipment Download PDF

Info

Publication number
JP2007064049A
JP2007064049A JP2005249080A JP2005249080A JP2007064049A JP 2007064049 A JP2007064049 A JP 2007064049A JP 2005249080 A JP2005249080 A JP 2005249080A JP 2005249080 A JP2005249080 A JP 2005249080A JP 2007064049 A JP2007064049 A JP 2007064049A
Authority
JP
Japan
Prior art keywords
water
gas turbine
cooling water
refrigerator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249080A
Other languages
Japanese (ja)
Inventor
Taro Shinkawa
太郎 新川
Hiroshi Arase
央 荒瀬
Kenji Kariya
謙二 假屋
Original Assignee
Hitachi Eng Co Ltd
日立エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Eng Co Ltd, 日立エンジニアリング株式会社 filed Critical Hitachi Eng Co Ltd
Priority to JP2005249080A priority Critical patent/JP2007064049A/en
Publication of JP2007064049A publication Critical patent/JP2007064049A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat recovery system for gas turbine cogeneration equipment, in which waste heat from cooling water of a refrigerator or an auxiliary machine cooling water system can be used for a water supply system of a waste heat recovery boiler as a steam generating device. <P>SOLUTION: The waste heat recovery system for gas turbine cogeneration equipment, comprises: a gas turbine 1 having intake air cooler 5; the waste heat recovery boiler 2 as a steam generating device generating the steam from the exhaust gas of the gas turbine; the steam system 20 supplying the steam generated in the waste heat recovery boiler 2; the refrigerator 6 disposed to the cooling water system 24 of the intake air cooler 5 to cool the cooling water; a cooling water system 26 having a cooling tower 7. The cooling water system 24 of the intake air cooler 5 is connected with the cooling water system 26 of the cooling tower 7 with feeding water connection pipe 31 and a return water connection pipe 32, and control valves 12, 13 mixing all of or a part of the cooling water of the cooling water system 26 are disposed thereto. A control device 15 which uses output of an inlet cooling water thermometer controls to open/close the control valves 12, 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はガスタービンコージェネレーション設備の廃熱回収システムに係り、特に冷凍機により冷却された冷水によりガスタービンの空気圧縮機入口空気を冷却するガスタービンコージェネレーション設備の廃熱回収システムに関する。   The present invention relates to a waste heat recovery system for a gas turbine cogeneration facility, and more particularly to a waste heat recovery system for a gas turbine cogeneration facility that cools the air compressor inlet air of a gas turbine with cold water cooled by a refrigerator.
従来、ガスタービンを利用したコージェネレーション設備では、夏季などの大気温度高温時にガスタービンの空気圧縮機入口の空気密度が低下し、ガスタービンへ供給するガスタービン作動流体となる空気流量(重量流量)が減少するため、ガスタービンの出力が低下することが知られている。夏季の発電量を維持する対策として、ガスタービンの空気圧縮機入口の吸込空気を冷却し、ガスタービンの空気圧縮機入口の空気密度を増加させる対策が講じられており、その一つに冷凍機で冷却した冷水を使用するガスタービンの吸気冷却システムがある。   Conventionally, in a cogeneration facility using a gas turbine, the air flow rate (weight flow rate) that becomes the gas turbine working fluid supplied to the gas turbine when the air density at the air compressor inlet of the gas turbine decreases at high atmospheric temperatures such as in summer. It is known that the output of the gas turbine is reduced due to the decrease. As measures to maintain the amount of power generation in summer, measures have been taken to cool the intake air at the gas compressor air compressor inlet and increase the air density at the gas turbine air compressor inlet. There is a gas turbine intake air cooling system that uses chilled water cooled in the air.
即ち、この吸気冷却システムでは、冷凍機により冷却した冷水を、ガスタービンの空気圧縮機入口に設置した熱交換器である吸気冷却器へ供給し、ガスタービンの空気圧縮機入口の吸込空気から熱交換による吸熱で吸込空気を冷却する一方で、吸込空気から吸熱した熱は、冷凍機の冷却水を通じて外部へ廃熱するようにしている。このようなガスタービンの空気圧縮機入口に吸気冷却器を設け、吸込空気を冷凍機の冷水で冷却することは、例えば特許文献1に記載されている。   That is, in this intake air cooling system, the chilled water cooled by the refrigerator is supplied to the intake air cooler, which is a heat exchanger installed at the inlet of the gas turbine air compressor, and heat is supplied from the intake air at the inlet of the air compressor of the gas turbine. While the intake air is cooled by heat absorption by exchange, the heat absorbed from the intake air is exhausted to the outside through the cooling water of the refrigerator. For example, Patent Document 1 discloses that an intake air cooler is provided at the inlet of an air compressor of such a gas turbine and the intake air is cooled with cold water of a refrigerator.
特開2003−206752号公報JP 2003-206752 A
ガスタービンコージェネレーション設備に、冷凍機を使用したガスタービン吸気冷却システムでは、冷凍機が供給可能な冷水温度の下限値から冷凍機が稼動できる期間が夏季などの大気温度高温時に限定されるため、年間を通しての冷凍機稼動時間が短く、経済的でなく、しかも冷凍機の冷却水を通じて廃熱される熱量は、全量がプラント損失となってしまう欠点がある。   In a gas turbine intake cooling system that uses a refrigerator in a gas turbine cogeneration facility, the period during which the refrigerator can operate from the lower limit value of the cold water temperature that can be supplied by the refrigerator is limited to high temperatures in the summer, etc. The operation time of the refrigerator throughout the year is short, not economical, and the amount of heat exhausted through the cooling water of the refrigerator has the disadvantage that the entire amount becomes a plant loss.
また、ガスタービンの吸気冷却システムに導入された冷凍機を、冬季にヒートポンプとして運用するには、冷凍機の入口冷水温度をガスタービンの吸気冷却システム運用時と同等とする必要があるが、一般にガスタービンの吸気冷却用冷水の冷凍機入口温度が15℃前後であるのに対して、ヒートポンプ運用時の流入液体となるプラントの補機冷却水の戻り系統の温度域は30℃から40℃程度と異なるため、温度調整機能が必要となる。   In addition, in order to operate a refrigerator installed in a gas turbine intake cooling system as a heat pump in winter, it is necessary to make the inlet cold water temperature of the refrigerator equal to that during operation of the gas turbine intake cooling system. The temperature range of the return system for auxiliary cooling water in the plant, which is the inflowing liquid during heat pump operation, is around 30 ° C to 40 ° C, while the inlet temperature of the cold water for cooling the intake water of the gas turbine is around 15 ° C. Therefore, a temperature adjustment function is required.
更に、冷凍機をヒートポンプとして利用した場合、冷却水温度(ヒートポンプの運用では廃熱の回収先)の制約から、蒸気発生設備内の廃熱回収先を考慮することが必要となっている。   Furthermore, when the refrigerator is used as a heat pump, it is necessary to consider the waste heat recovery destination in the steam generation facility due to the restriction of the cooling water temperature (the waste heat recovery destination in the operation of the heat pump).
本発明の目的は、ガスタービンの吸気の冷却に用いる冷凍機をヒートポンプとして活用することにより、年間を通じてプラントの損失となっていた冷凍機の冷却水からの廃熱や補機冷却水系統の冷却水からの廃熱を、蒸気発生装置である排熱回収ボイラの給水系統に利用できるガスタービンコージェネレーション設備の廃熱回収システムを提供することにある。   The object of the present invention is to use the refrigerator used for cooling the intake air of the gas turbine as a heat pump, thereby cooling the waste heat from the cooling water of the refrigerator that has been a plant loss throughout the year and the cooling of the auxiliary cooling water system. An object of the present invention is to provide a waste heat recovery system for a gas turbine cogeneration facility that can use waste heat from water for a water supply system of an exhaust heat recovery boiler that is a steam generator.
本発明のガスタービンコージェネレーション設備の廃熱回収システムでは、吸気冷却器を有するガスタービンと、このガスタービンからの排気ガスにより蒸気を発生する蒸気発生装置と、蒸気発生装置で発生した蒸気を供給する蒸気系統と、ガスタービンの吸気冷却器の冷水系統に設けて冷水を冷却する冷凍機と、コージェネレーション設備内の機器を冷却する冷却水系統とを備えて構成する際に、吸気冷却器の冷水系統と冷却塔の冷却水系統とを、給水接続管及び還水接続管にて接続し、これら給水接続管及び還水接続管は、冷却水系統の冷却水の全量又は一部を混入させる調節弁をそれぞれ設け、前記冷凍機は冷却水からの廃熱を前記蒸気発生装置の給水へ回収するヒートポンプとして用いるようにしたものである。   In the waste heat recovery system for a gas turbine cogeneration facility according to the present invention, a gas turbine having an intake air cooler, a steam generator for generating steam by exhaust gas from the gas turbine, and steam generated by the steam generator are supplied. A cooling system that is provided in a chilled water system of the gas turbine intake air cooler and cools the chilled water, and a cooling water system that cools the equipment in the cogeneration facility. The chilled water system and the cooling water system of the cooling tower are connected by a feed water connection pipe and a return water connection pipe, and the feed water connection pipe and the return water connection pipe mix all or part of the cooling water of the cooling water system. A control valve is provided, and the refrigerator is used as a heat pump for recovering waste heat from the cooling water to the feed water of the steam generator.
本発明のようにガスタービンコージェネレーション設備の廃熱回収システムを構成すれば、ガスタービンの吸気冷却用の冷凍機をヒートポンプとして活用することにより、年間を通じてプラントの損失となっていた冷凍機の冷却水からの廃熱や補機冷却水系統の冷却水からの廃熱を、蒸気発生装置である排熱回収ボイラの給水系統に利用できる。したがって、ガスタービンコージェネレーション設備の効率向上を図り、経済性を高めることができる。   If the waste heat recovery system of the gas turbine cogeneration facility is configured as in the present invention, the cooling of the refrigerator that has been a loss of the plant throughout the year by using the refrigerator for cooling the intake air of the gas turbine as a heat pump. Waste heat from water and waste heat from the cooling water of the auxiliary cooling water system can be used for a water supply system of an exhaust heat recovery boiler that is a steam generator. Therefore, the efficiency of the gas turbine cogeneration facility can be improved and the economic efficiency can be improved.
以下、本発明のガスタービンコージェネレーション設備の廃熱回収システムを、図に示す実施例を用いて詳細に説明する。   Hereinafter, a waste heat recovery system for a gas turbine cogeneration facility according to the present invention will be described in detail using an embodiment shown in the drawings.
図1に示す本発明の一実施例は、ガスタービンと蒸気タービンを組合せた発電プラントであって、ガスタービン1は吸気系統25より吸込んだ大気と、燃料系統(図示せず)から供給される燃料を、混合し燃焼させて燃焼エネルギーを動力へ変換する。ガスタービン1より排出される排気ガスは、排気ダクト19を経由して蒸気発生装置である排熱回収ボイラ2へ送られ、排熱回収ボイラで排気ガスの廃熱を熱源として、排熱回収ボイラ2の給水系統22より供給された給水を蒸気に変換し、発生した蒸気を蒸気系統20から蒸気タービン3へ送気する。蒸気タービン3では供給された蒸気を動力へ変換し、仕事を終えた蒸気タービン3の排気蒸気は、排気管21から復水器4に至り、この復水器4で凝縮された後、給水ポンプ9により給水系統22から再び排熱回収ボイラ2へ送られる一連の熱サイクルを構成している。   An embodiment of the present invention shown in FIG. 1 is a power plant that combines a gas turbine and a steam turbine, and the gas turbine 1 is supplied from an air sucked from an intake system 25 and a fuel system (not shown). Fuel is mixed and burned to convert combustion energy into power. Exhaust gas discharged from the gas turbine 1 is sent to an exhaust heat recovery boiler 2 that is a steam generator via an exhaust duct 19, and the exhaust heat recovery boiler uses the waste heat of the exhaust gas as a heat source in the exhaust heat recovery boiler. The feed water supplied from the second feed water system 22 is converted into steam, and the generated steam is sent from the steam system 20 to the steam turbine 3. In the steam turbine 3, the supplied steam is converted into power, and the exhaust steam of the steam turbine 3 that has finished its work reaches the condenser 4 from the exhaust pipe 21, and is condensed in the condenser 4, and then the feed water pump 9 constitutes a series of heat cycles sent from the water supply system 22 to the exhaust heat recovery boiler 2 again.
ガスタービン1の吸気系統25には、従来と同様に吸気冷却器5が設置されており、夏季などの外気温度の高温時には、冷凍機6で作り出された冷水を冷水ポンプ10により吸気冷却器5の冷水系統24から供給し、ガスタービン1の吸込空気と熱交換させ、ガスタービン1の吸込み空気を冷却し、空気の重量流量を増加させることでガスタービン出力増加を図っている。通常、吸気冷却器5の冷水系統24は、冷凍機6を定格運転とした上で閉サイクルとしての運転を行い、吸気冷却器5での熱交換以外の熱授受は行わず、冷凍機6はガスタービン1の吸気冷却用として使用する。   An intake air cooler 5 is installed in the intake system 25 of the gas turbine 1 as in the conventional case. When the outside air temperature is high, such as in summer, the cold water produced by the refrigerator 6 is cooled by the cold water pump 10 with the intake air cooler 5. Is supplied from the chilled water system 24 to exchange heat with the intake air of the gas turbine 1, the intake air of the gas turbine 1 is cooled, and the weight flow rate of the air is increased to increase the output of the gas turbine. Normally, the chilled water system 24 of the intake air cooler 5 operates as a closed cycle after setting the refrigerator 6 to a rated operation, does not transfer heat other than heat exchange in the intake air cooler 5, and the refrigerator 6 Used for cooling the intake of the gas turbine 1.
冷凍機6の熱源には、蒸気タービン3の抽気系統23を利用し、冷水系統24の冷水を冷却し、冷凍機6の冷却用冷却水には排熱回収ボイラ2の給水系統22を利用するガスタービン吸気冷却システムとしている。排熱回収ボイラ2の給水は、冷凍機6の冷却水流量調節弁27にて流量を制御され、その全量又は一部を冷凍機6の冷却水として用い、冷凍機6の廃熱で加温された後に排熱回収ボイラ2へ送られるから、排熱回収ボイラ2の効率向上に貢献できる。プラントの損失とならぬようにするため、熱源となる蒸気タービン3の抽気蒸気は、冷凍機6で放熱し凝縮した後、復水器4へ回収する。   The extraction system 23 of the steam turbine 3 is used for the heat source of the refrigerator 6, the cold water of the cold water system 24 is cooled, and the water supply system 22 of the exhaust heat recovery boiler 2 is used for the cooling water of the refrigerator 6. It is a gas turbine intake cooling system. The water supply to the exhaust heat recovery boiler 2 is controlled in flow rate by a cooling water flow rate adjustment valve 27 of the refrigerator 6, and the whole or a part thereof is used as cooling water for the refrigerator 6 and is heated by waste heat of the refrigerator 6. Since it is sent to the exhaust heat recovery boiler 2 after being done, it can contribute to improving the efficiency of the exhaust heat recovery boiler 2. In order not to cause a loss of the plant, the extracted steam of the steam turbine 3 serving as a heat source dissipates heat in the refrigerator 6 and condenses, and then is recovered to the condenser 4.
一方、プラントの補機冷却器8には、冷却塔7で冷却された冷却水を、冷却水ポンプ11で冷却水系統26から供給し、各補機を冷却する。吸気冷却器5の冷水系統24には、冷水入口弁16及び冷水出口弁17を設けると共に冷却水を冷水系統24の途中からバイパスさせるバイパス弁18を設けている。これらは、冬季などの吸気冷却運転が不要な場合に活用して冷水入口弁16及び冷水出口弁17を全閉し、逆にバイパス弁18を全開して吸気冷却器5をバイパスする系統を構成して、冷却水を冷凍機側に循環させる。   On the other hand, the cooling water cooled by the cooling tower 7 is supplied from the cooling water system 26 to the auxiliary cooler 8 of the plant by the cooling water pump 11 to cool each auxiliary machine. The chilled water system 24 of the intake air cooler 5 is provided with a chilled water inlet valve 16 and a chilled water outlet valve 17, and a bypass valve 18 for bypassing the coolant from the middle of the chilled water system 24. These are utilized when the intake air cooling operation is unnecessary in winter, etc., and the cold water inlet valve 16 and the cold water outlet valve 17 are fully closed, and conversely, the bypass valve 18 is fully opened to bypass the intake air cooler 5. Then, the cooling water is circulated to the refrigerator side.
本発明では、ガスタービン1の吸気冷却器5の冷水系統24と補機冷却器8の冷却水系統26とは、給水接続管31と還水接続管32によって接続している。なお、この冷却水系統26における給水接続管31と還水接続管32の接続点は、任意の点を選択することが可能である。そして、この給水接続管31の接続点には、冷水供給調節弁12を、還水接続管32の接続点には、入口冷水温度調節弁13を設けている。   In the present invention, the cooling water system 24 of the intake air cooler 5 of the gas turbine 1 and the cooling water system 26 of the auxiliary machine cooler 8 are connected by a water supply connection pipe 31 and a return water connection pipe 32. An arbitrary point can be selected as the connection point between the water supply connection pipe 31 and the return water connection pipe 32 in the cooling water system 26. The cold water supply control valve 12 is provided at the connection point of the water supply connection pipe 31, and the inlet cold water temperature control valve 13 is provided at the connection point of the return water connection pipe 32.
これら冷水供給調節弁12及び入口冷水温度調節弁13は、その開閉操作を適切に行うことによって、冷凍機6を定格負荷で運用できない中間期には、ガスタービンの吸気冷却システムと補機冷却水からのヒートポンプ廃熱回収システムの併用が行える。図の例では、冷水供給調節弁12及び入口冷水温度調節弁13に、三方弁を示しているが、通常の二方向弁を組合せて使用することもできる。   The chilled water supply control valve 12 and the inlet chilled water temperature control valve 13 are appropriately opened and closed, so that in the intermediate period when the refrigerator 6 cannot be operated at the rated load, the intake cooling system of the gas turbine and the auxiliary cooling water are used. The heat pump waste heat recovery system from can be used together. In the example shown in the figure, a three-way valve is shown as the cold water supply control valve 12 and the inlet cold water temperature control valve 13, but a normal two-way valve may be used in combination.
冷水供給流量調節弁12及び入口冷水温度調節弁13は、入口冷水温度計14の出力を用いる制御装置15で開閉制御し、入口冷水温度を一定となるように冷却水系統26から冷却水の全量又は一部を冷水系統24に混入させ、プラント補機より排出された廃熱を汲み上げるヒートポンプとして冷凍機6を利用する。   The chilled water supply flow rate control valve 12 and the inlet chilled water temperature control valve 13 are controlled to open and close by a control device 15 using the output of the inlet chilled water thermometer 14, and the total amount of cooling water from the cooling water system 26 so that the inlet chilled water temperature becomes constant. Or the refrigerator 6 is utilized as a heat pump which mixes a part in the cold water system | strain 24 and pumps up the waste heat discharged | emitted from the plant auxiliary machine.
即ち、冬期は図4に示す如く冷水系統24では、冷凍機冷水出口からプラント補機の冷却水混入点までは一定温度であり、プラントの補機冷却水混入点で夏季の冷凍機冷水入口の温度と同等となるように、コージェネレーション設備内の機器を冷却する冷却水系統におけるプラント補機の冷却水と混合させる。このように冷水系統24に混入させる冷却水の流量を調整することで、冷凍機冷水入口温度を一定に保ち、ガスタービンの吸気冷却システムに導入された冷凍機を、プラントの冷却水系統から廃熱を汲み上げるヒートポンプとして運用する。   That is, in the cold water system 24, as shown in FIG. 4, the temperature from the chiller cold water outlet to the plant auxiliary water mixing point is a constant temperature in the winter season. It is mixed with the cooling water of the plant auxiliary equipment in the cooling water system for cooling the equipment in the cogeneration facility so as to be equal to the temperature. By adjusting the flow rate of the cooling water mixed into the chilled water system 24 in this manner, the chiller chilled water inlet temperature is kept constant, and the chiller introduced into the intake cooling system of the gas turbine is discarded from the cooling water system of the plant. Operate as a heat pump that pumps up heat.
一方、冷凍機冷却水となる排熱回収ボイラ2の給水系統22は、ヒートポンプ運用時の廃熱回収先となるが、廃熱回収後の冷凍機6の出口冷却水温度に上限があるから、冷却水の給水系統22からの取出し及び戻し点を考慮する。   On the other hand, the water supply system 22 of the exhaust heat recovery boiler 2 serving as the refrigerator cooling water is a waste heat recovery destination during heat pump operation, but there is an upper limit on the outlet cooling water temperature of the refrigerator 6 after the waste heat recovery. Consider the removal and return points from the cooling water supply system 22.
給水系統22からの取出し点は図5に示す如く、蒸気タービン3におけるグランド蒸気復水器30の40℃程度の排熱回収ボイラ2の給水系統22とし、また戻し点は冷凍機6に吸収式冷凍機を使用の場合には、冷凍機出口の冷却水温度が上限90℃以下の給水系統22とし、機械式冷凍機を使用の場合は、同様に冷凍機出口の冷却水温度が上限50℃以下の給水系統22とする。何れの場合にも、冷凍機出口冷却水の上限温度に見合う低圧給水加熱器群(図示せず)の中間又は出口となる。なお、給水加熱器群を持たないプラントにおいては、この限りではない。このように、排熱回収ボイラの給水を冷凍機冷却水として利用することで、給水加熱器の負荷を減少させプラント効率の向上に貢献できる。   As shown in FIG. 5, the extraction point from the water supply system 22 is the water supply system 22 of the exhaust heat recovery boiler 2 of about 40 ° C. of the ground steam condenser 30 in the steam turbine 3, and the return point is absorbed by the refrigerator 6. In the case of using a refrigerator, the cooling water temperature at the refrigerator outlet is set to a water supply system 22 having an upper limit of 90 ° C. or less. In the case of using a mechanical refrigerator, the cooling water temperature at the refrigerator outlet is similarly set to an upper limit of 50 ° C. The following water supply system 22 is used. In either case, it is the middle or outlet of a low-pressure feed water heater group (not shown) commensurate with the upper limit temperature of the refrigerator outlet cooling water. Note that this is not the case in plants that do not have a feed water heater group. Thus, by using the feed water of the exhaust heat recovery boiler as the refrigerator cooling water, the load of the feed water heater can be reduced and the plant efficiency can be improved.
図4の一点鎖線で示すように、中間期にはガスタービン1の吸気冷却器5での熱交換量が減少するため、夏季に比べて吸気冷却器出口の冷水温度が低下する。従って、冷凍機入口の冷水温度を夏季と同等とするため、入口冷水温度調節弁13を切換え、冷却水系統26の冷却水を混入することによって、冷凍機冷水入口の温度を調整し、冷却水系統26からの廃熱回収を行うことができる。
また、冬季及び中間期何れの運用においても、冷凍機6の入口冷水流量は一定とする必要があるから、余剰となる冷水を冷水供給流量調節弁12の切換えにより冷却水系統26へ供給し、冷却水系統26の温度を低下させることにより冷却塔7の動力を軽減することができる。
As indicated by the alternate long and short dash line in FIG. 4, the amount of heat exchange in the intake air cooler 5 of the gas turbine 1 decreases in the intermediate period, so the chilled water temperature at the intake air cooler outlet decreases compared to the summer. Therefore, in order to make the cold water temperature at the refrigerator inlet equal to that in the summer, the inlet cold water temperature control valve 13 is switched, and the cooling water of the cooling water system 26 is mixed to adjust the temperature of the refrigerator cold water inlet. Waste heat recovery from the system 26 can be performed.
Moreover, since it is necessary to make the inlet chilled water flow rate of the refrigerator 6 constant in both winter and intermediate period operations, surplus chilled water is supplied to the cooling water system 26 by switching the chilled water supply flow rate control valve 12, The power of the cooling tower 7 can be reduced by lowering the temperature of the cooling water system 26.
図1の例では、熱源として蒸気発生装置である排熱回収ボイラ2からの抽気蒸気を利用する冷凍機6で説明したが、都市ガスなどの燃料を利用している冷凍機、更には熱源を必要とせず、電気等を動力として用いるような機械式冷凍機を利用することもできる。   In the example of FIG. 1, the description has been given of the refrigerator 6 that uses the extracted steam from the exhaust heat recovery boiler 2 that is a steam generator as a heat source. However, the refrigerator that uses fuel such as city gas, and further the heat source A mechanical refrigerator that uses electricity or the like as power can also be used.
また図3に示すように、復水器4の復水器冷却水系統28が冷却塔7による冷却及び復水器冷却水ポンプ29による循環系統である場合には、図1中の冷却水系統26を復水器冷却水系統28に置き換えることで、上述と同様の効果を得ることできる。   As shown in FIG. 3, when the condenser cooling water system 28 of the condenser 4 is a cooling system by the cooling tower 7 and a circulation system by the condenser cooling water pump 29, the cooling water system in FIG. By replacing 26 with the condenser cooling water system 28, the same effect as described above can be obtained.
更に、ガスタービン1の吸気冷却運転中も冷凍機6の廃熱を、排熱回収ボイラ2の給水系統22に回収しているが、従来のように冷凍機冷6の冷却水を、冷却塔7の冷却水として外部へ廃熱し、冷凍機をヒートポンプとして利用する期間のみ冷凍機6の冷却水を排熱回収ボイラ2の給水系統22に切換える運用とすることもできる。   Further, the waste heat of the refrigerator 6 is recovered in the water supply system 22 of the exhaust heat recovery boiler 2 during the intake air cooling operation of the gas turbine 1. The cooling water of the refrigeration machine 6 can be switched to the water supply system 22 of the exhaust heat recovery boiler 2 only during a period when the refrigeration machine is used as a heat pump.
本発明の他の実施例を示す図2は、本実施例はガスタービン1と排熱回収ボイラ2、補機冷却器8を冷却する冷却水冷却用の冷却塔7から構成されるコージェネレーション設備であって、排熱回収ボイラ2で発生した蒸気をプロセス蒸気として蒸気需要設備(図示せず)へ供給する構成で、しかも冷凍機6の熱源の蒸気は、蒸気系統20から抽出する抽気系統23より供給したものである。   FIG. 2 showing another embodiment of the present invention is a cogeneration facility comprising a cooling tower 7 for cooling water that cools the gas turbine 1, the exhaust heat recovery boiler 2, and the auxiliary cooler 8. The steam generated in the exhaust heat recovery boiler 2 is supplied to a steam demand facility (not shown) as process steam, and the steam of the heat source of the refrigerator 6 is extracted from the steam system 20. More supplied.
この例においても、ガスタービン1の吸気冷却器5の吸気冷却器冷却系統24と補機冷却器8の冷却水系統26とは、給水接続管31と還水接続管32により接続しており、この給水接続管31の接続点には冷水供給調節弁12を、また還水接続管32の接続点には入口冷水温度調節弁13を設け、制御装置15によって上記と同様な開閉操作を行うようにしており、その他の点は図1と同様に構成している。   Also in this example, the intake air cooler cooling system 24 of the intake air cooler 5 of the gas turbine 1 and the cooling water system 26 of the auxiliary machine cooler 8 are connected by a water supply connection pipe 31 and a return water connection pipe 32. A chilled water supply control valve 12 is provided at the connection point of the water supply connection pipe 31, and an inlet chilled water temperature control valve 13 is provided at the connection point of the return water connection pipe 32 so that the control device 15 performs the same opening / closing operation as described above. The other points are the same as in FIG.
この設備構成では、蒸気タービンを持たないため、冷凍機6の熱源の蒸気は、蒸気系統20から抽出する抽気系統23により供給を受け、冷凍機6で放熱した後の凝縮水はプラントの凝縮水回収設備(図示せず)へ送られる。排熱回収ボイラ2への給水は、凝縮水回収設備(図示せず)及び補給水供給設備(図示せず)より供給され、その全量又は一部を冷却水流量調節弁27から冷凍機6の冷却水として使用し、夏季における吸気冷却器5の運転時の冷凍機冷却水及び冬季のヒートポンプ運転時の冷却水系統からの廃熱回収先としている。   In this equipment configuration, since there is no steam turbine, the steam of the heat source of the refrigerator 6 is supplied by the extraction system 23 extracted from the steam system 20, and the condensed water after radiating heat in the refrigerator 6 is the condensed water of the plant. It is sent to a recovery facility (not shown). The water supply to the exhaust heat recovery boiler 2 is supplied from a condensed water recovery facility (not shown) and a makeup water supply facility (not shown), and all or a part thereof is supplied from the cooling water flow rate adjustment valve 27 to the refrigerator 6. It is used as cooling water and serves as a waste heat recovery destination from the refrigerator cooling water during operation of the intake air cooler 5 in summer and from the cooling water system during heat pump operation in winter.
この図2の例では、冷凍機6の熱源の蒸気は、蒸気系統20から直接抽出しているが、プラント内部に加熱条件に合致する補助蒸気系統を持つような場合、又は加熱条件に合致する蒸気ヘッダを持つような場合には、該当の設備より冷凍機6の熱源の蒸気を供給することもできる。   In the example of FIG. 2, the steam of the heat source of the refrigerator 6 is extracted directly from the steam system 20. However, when the auxiliary steam system that matches the heating condition is provided inside the plant, or the heating condition is met. In the case of having a steam header, the steam of the heat source of the refrigerator 6 can be supplied from the corresponding equipment.
また冷凍機冷却水の取出し点及び戻し点は、蒸気タービン及びグランド蒸気復水器も有しないため、取出し点は排熱回収ボイラ2の給水系統22や補給水系統(図示せず)の任意の点とすることが可能であるが、戻し点は図1と同様に冷凍機出口の冷却水の上限温度に見合う低圧給水加熱器群(図示せず)の中間又は出口となる。   Further, the extraction point and the return point of the refrigerator cooling water do not have a steam turbine or a ground steam condenser, and therefore the extraction point is an arbitrary one of the water supply system 22 and the makeup water system (not shown) of the exhaust heat recovery boiler 2. Although the point can be a point, the return point is the middle or outlet of a low-pressure feed water heater group (not shown) corresponding to the upper limit temperature of the cooling water at the outlet of the refrigerator as in FIG.
本発明の一実施例であるガスタービンコージェネレーション設備の廃熱回収システムの構成図である。It is a block diagram of the waste heat recovery system of the gas turbine cogeneration facility which is one Example of this invention. 本発明の他の実施例であるガスタービンコージェネレーション設備の廃熱回収システムの構成図である。It is a block diagram of the waste heat recovery system of the gas turbine cogeneration equipment which is the other Example of this invention. 復水器冷却水を冷却塔の冷却に用いた場合の構成図である。It is a block diagram at the time of using condenser cooling water for cooling of a cooling tower. 夏季と冬季及び中間期の吸気冷却水系統の温度推移を示す図である。It is a figure which shows the temperature transition of the intake-air-cooling-water system | strain of the summer, winter, and a middle period. 冷凍機冷却水系統の詳細を示す構成図である。It is a block diagram which shows the detail of a refrigerator cooling water system | strain.
符号の説明Explanation of symbols
1…ガスタービン、2…排熱回収ボイラ、3…蒸気タービン、4…復水器、5…吸気冷却器、6…冷凍機、7…冷却塔、8…補機冷却器、9…給水ポンプ、10…冷水ポンプ、11、29…冷却水ポンプ、12…冷水供給流量調節弁、13…入口冷水温度調節弁、14…入口冷水温度計、15…制御装置、16…冷水入口弁、17…冷水入口弁、18…バイパス弁、19…排気ダクト、20…蒸気系統、21…排気管、22…給水系統、23…抽気系統、24…冷水系統、25…吸気系統、26…冷却水系統、27…冷却水流量調節弁、28…冷却水系統、30…グランド蒸気復水器、31…給水接続管、32…還水接続管。
DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 2 ... Waste heat recovery boiler, 3 ... Steam turbine, 4 ... Condenser, 5 ... Intake cooler, 6 ... Refrigerator, 7 ... Cooling tower, 8 ... Auxiliary equipment cooler, 9 ... Feed water pump DESCRIPTION OF SYMBOLS 10 ... Cold water pump 11, 29 ... Cooling water pump, 12 ... Cold water supply flow rate control valve, 13 ... Inlet cold water temperature control valve, 14 ... Inlet cold water thermometer, 15 ... Control apparatus, 16 ... Cold water inlet valve, 17 ... Cold water inlet valve, 18 ... Bypass valve, 19 ... Exhaust duct, 20 ... Steam system, 21 ... Exhaust pipe, 22 ... Water supply system, 23 ... Extraction system, 24 ... Cold water system, 25 ... Intake system, 26 ... Cooling water system, 27 ... Cooling water flow rate control valve, 28 ... Cooling water system, 30 ... Grand steam condenser, 31 ... Supply water connection pipe, 32 ... Return water connection pipe.

Claims (3)

  1. 吸気冷却器を有するガスタービンと、前記ガスタービンからの排気ガスにより蒸気を発生する蒸気発生装置と、前記蒸気発生装置で発生した蒸気を供給する蒸気系統と、前記吸気冷却器の冷水系統に設けて冷水を冷却する冷凍機と、コージェネレーション設備内の機器を冷却する冷却水系統とを備えたガスタービンコージェネレーション設備において、前記吸気冷却器の冷水系統と冷却塔の冷却水系統とを、給水接続管及び還水接続管にて接続すると共に、冷却水系統の冷却水の全量又は一部を混入させる調節弁を設け、前記冷凍機は冷却水からの廃熱を前記蒸気発生装置の給水へ回収するヒートポンプとして用いるように構成したことを特徴とするガスタービンコージェネレーション設備の廃熱回収システム。   Provided in a gas turbine having an intake air cooler, a steam generator for generating steam by exhaust gas from the gas turbine, a steam system for supplying steam generated by the steam generator, and a chilled water system for the intake air cooler In a gas turbine cogeneration facility comprising a refrigerator that cools chilled water and a cooling water system that cools equipment in the cogeneration facility, water is supplied to the chilled water system of the intake air cooler and the cooling water system of the cooling tower. In addition to connecting with a connecting pipe and a return water connecting pipe, a control valve is provided for mixing all or part of the cooling water in the cooling water system, and the refrigerator supplies waste heat from the cooling water to the water supply to the steam generator. A waste heat recovery system for a gas turbine cogeneration facility, which is configured to be used as a heat pump for recovery.
  2. 第1項において、前記各調節弁は冷凍機の入口冷水温度計の出力を用いる制御装置により開閉制御することを特徴とするガスタービンコージェネレーション設備の廃熱回収システム。   2. The waste heat recovery system for a gas turbine cogeneration facility according to claim 1, wherein each of the control valves is controlled to be opened and closed by a control device using an output of an inlet cold water thermometer of the refrigerator.
  3. 第1項又は2項において、前記吸気冷却器の冷水系統には、冷水入口弁と冷水出口弁を設けると共に、前記冷水入口弁と冷水出口弁の閉鎖時に開いて冷却水を冷凍機側に循環させるバイパス弁を設けたことを特徴とするガスタービンコージェネレーション設備の廃熱回収システム。

    3. In the first or second aspect, the chilled water system of the intake air cooler is provided with a chilled water inlet valve and a chilled water outlet valve, and opens when the chilled water inlet valve and the chilled water outlet valve are closed to circulate the cooling water to the refrigerator side. A waste heat recovery system for a gas turbine cogeneration facility, characterized in that a bypass valve is provided.

JP2005249080A 2005-08-30 2005-08-30 Waste heat recovery system for gas turbine cogeneration equipment Pending JP2007064049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249080A JP2007064049A (en) 2005-08-30 2005-08-30 Waste heat recovery system for gas turbine cogeneration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249080A JP2007064049A (en) 2005-08-30 2005-08-30 Waste heat recovery system for gas turbine cogeneration equipment

Publications (1)

Publication Number Publication Date
JP2007064049A true JP2007064049A (en) 2007-03-15

Family

ID=37926542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249080A Pending JP2007064049A (en) 2005-08-30 2005-08-30 Waste heat recovery system for gas turbine cogeneration equipment

Country Status (1)

Country Link
JP (1) JP2007064049A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386179B1 (en) * 2013-02-06 2014-04-21 한국지역난방공사 District heating water supply system for increasing gas turbin output by using heat pump
JP2014092158A (en) * 2012-11-05 2014-05-19 General Electric Co <Ge> Combined cycle power plant with absorption heat transformer
JP2014199004A (en) * 2013-03-29 2014-10-23 千代田化工建設株式会社 Steam processing equipment and steam processing method
CN104964577A (en) * 2015-06-30 2015-10-07 国网山东省电力公司电力科学研究院 Auxiliary cooling device applied in direct air cooling system and control method thereof
WO2016148008A1 (en) * 2015-03-17 2016-09-22 三菱重工業株式会社 Intake air cooling method, intake air cooling device executing said method, and waste heat recovery facility and gas turbine plant each comprising said intake air cooling device
JP2016194381A (en) * 2015-03-31 2016-11-17 国立研究開発法人 海上・港湾・航空技術研究所 Thermoacoustic engine cold water manufacturing device and ship with thermoacoustic engine cold water manufacturing device
CN106765042A (en) * 2016-12-05 2017-05-31 中国华能集团清洁能源技术研究院有限公司 The coal fired power plant broad sense heat regenerative system and method for a kind of combination nature draught cooling tower
WO2017169590A1 (en) * 2016-03-30 2017-10-05 三菱重工業株式会社 Plant and operation method therefor
WO2017169594A1 (en) * 2016-03-29 2017-10-05 三菱重工業株式会社 Gas turbine plant and operation method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117713A (en) * 1997-10-09 1999-04-27 Chubu Electric Power Co Inc Chemical heat-accumulating type intake air cooling device
JPH11270352A (en) * 1998-03-24 1999-10-05 Mitsubishi Heavy Ind Ltd Intake air cooling type gas turbine power generating equipment and generation power plant using the power generating equipment
JPH11341740A (en) * 1998-05-21 1999-12-10 Toshiba Corp Cooling apparatus and method for power plant
JP2000097047A (en) * 1998-09-18 2000-04-04 Toshiba Corp Heat and electricity combination supply system and heat- accumulation quantity controlling method of heat- accumulator applied thereto
JP2000282895A (en) * 1999-03-30 2000-10-10 Toshiba Corp Intake air cooling device and method for gas turbine
JP2003074374A (en) * 2001-08-31 2003-03-12 Hitachi Ltd Cogeneration system
JP2003206752A (en) * 2002-01-17 2003-07-25 Mitsubishi Heavy Ind Ltd Gas turbine equipment
JP2005098552A (en) * 2003-09-22 2005-04-14 Minoru Morita High-moisture waste incineration system with gas turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117713A (en) * 1997-10-09 1999-04-27 Chubu Electric Power Co Inc Chemical heat-accumulating type intake air cooling device
JPH11270352A (en) * 1998-03-24 1999-10-05 Mitsubishi Heavy Ind Ltd Intake air cooling type gas turbine power generating equipment and generation power plant using the power generating equipment
JPH11341740A (en) * 1998-05-21 1999-12-10 Toshiba Corp Cooling apparatus and method for power plant
JP2000097047A (en) * 1998-09-18 2000-04-04 Toshiba Corp Heat and electricity combination supply system and heat- accumulation quantity controlling method of heat- accumulator applied thereto
JP2000282895A (en) * 1999-03-30 2000-10-10 Toshiba Corp Intake air cooling device and method for gas turbine
JP2003074374A (en) * 2001-08-31 2003-03-12 Hitachi Ltd Cogeneration system
JP2003206752A (en) * 2002-01-17 2003-07-25 Mitsubishi Heavy Ind Ltd Gas turbine equipment
JP2005098552A (en) * 2003-09-22 2005-04-14 Minoru Morita High-moisture waste incineration system with gas turbine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092158A (en) * 2012-11-05 2014-05-19 General Electric Co <Ge> Combined cycle power plant with absorption heat transformer
KR101386179B1 (en) * 2013-02-06 2014-04-21 한국지역난방공사 District heating water supply system for increasing gas turbin output by using heat pump
JP2014199004A (en) * 2013-03-29 2014-10-23 千代田化工建設株式会社 Steam processing equipment and steam processing method
WO2016148008A1 (en) * 2015-03-17 2016-09-22 三菱重工業株式会社 Intake air cooling method, intake air cooling device executing said method, and waste heat recovery facility and gas turbine plant each comprising said intake air cooling device
US10927713B2 (en) 2015-03-17 2021-02-23 Mitsubishi Heavy Industries, Ltd. Intake air cooling method, intake air cooling device executing said method, and waste heat recovery facility and gas turbine plant each comprising said intake air cooling device
JPWO2016148008A1 (en) * 2015-03-17 2018-01-11 三菱重工業株式会社 Intake air cooling method, intake air cooling device for executing the method, exhaust heat recovery equipment including the same, and gas turbine plant
JP2016194381A (en) * 2015-03-31 2016-11-17 国立研究開発法人 海上・港湾・航空技術研究所 Thermoacoustic engine cold water manufacturing device and ship with thermoacoustic engine cold water manufacturing device
CN104964577A (en) * 2015-06-30 2015-10-07 国网山东省电力公司电力科学研究院 Auxiliary cooling device applied in direct air cooling system and control method thereof
WO2017169594A1 (en) * 2016-03-29 2017-10-05 三菱重工業株式会社 Gas turbine plant and operation method therefor
KR102165976B1 (en) * 2016-03-29 2020-10-15 미츠비시 쥬고교 가부시키가이샤 Gas turbine plant and its operating method
KR20180114184A (en) * 2016-03-29 2018-10-17 미츠비시 쥬고교 가부시키가이샤 Gas turbine plant, and method of operating the same
CN108884728A (en) * 2016-03-29 2018-11-23 三菱重工业株式会社 Gas turbine complete equipment and its method of operation
CN108884727A (en) * 2016-03-30 2018-11-23 三菱重工业株式会社 Complete set of equipments and its method of operation
WO2017169590A1 (en) * 2016-03-30 2017-10-05 三菱重工業株式会社 Plant and operation method therefor
US11078808B2 (en) 2016-03-30 2021-08-03 Mitsubishi Power, Ltd. Plant and operation method therefor
CN106765042A (en) * 2016-12-05 2017-05-31 中国华能集团清洁能源技术研究院有限公司 The coal fired power plant broad sense heat regenerative system and method for a kind of combination nature draught cooling tower

Similar Documents

Publication Publication Date Title
JP2007064049A (en) Waste heat recovery system for gas turbine cogeneration equipment
US5609029A (en) Thermal power engine and its operating method
KR101328401B1 (en) Energy saving system of ship by using waste heat
US20110239650A1 (en) Power plant comprising a turbine unit and a generator
JP2005315127A (en) Gas turbine
JP5456525B2 (en) Waste heat recovery device
JPH10115229A (en) Gas turbine and operation method thereof
EP2369145A1 (en) Power generation system and method
US20180087408A1 (en) Hybrid type power generation system
JP2001012211A (en) Method to operate steam electric power station and steak electric power station to carry out this method
JP5547592B2 (en) Intake air temperature control device for gas turbine
JP2009097389A (en) Decompression installation provided with energy recovery function
KR101628619B1 (en) generation system having temperature control device for heat exchanger
KR100976226B1 (en) Microturbine CHP heating and cooling system including microturbine inlet air cooling equipment
JP4936966B2 (en) Condensate heat exchange system and condensate heat exchanger control method
KR20170075097A (en) Generation system using supercritical carbon dioxide and method of driving the same by heat sink temperature
JPH0688538A (en) Gas turbine plant
US10935287B2 (en) Heat pump system
CN209539413U (en) A kind of low parameter heat recovery system
KR101797435B1 (en) Supercritical CO2 generation system applying recuperator per each heat source
US20180340453A1 (en) Combined cycle power plant
CN104929710B (en) A kind of energy-efficient power generation system of UTILIZATION OF VESIDUAL HEAT IN
JP2017116185A (en) Cogeneration system
Bezrodny et al. THERMODYNAMIC EFFICIENCY OF COMBINED HEAT PUMP SYSTEM OF HEATING AND VENTILATION WITH USE OF HEAT OF VENTILATING EMISSIONS AND WASTEWATER
CN109763870A (en) A kind of low parameter heat recovery system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420