JP5547592B2 - Intake air temperature control device for gas turbine - Google Patents

Intake air temperature control device for gas turbine Download PDF

Info

Publication number
JP5547592B2
JP5547592B2 JP2010207984A JP2010207984A JP5547592B2 JP 5547592 B2 JP5547592 B2 JP 5547592B2 JP 2010207984 A JP2010207984 A JP 2010207984A JP 2010207984 A JP2010207984 A JP 2010207984A JP 5547592 B2 JP5547592 B2 JP 5547592B2
Authority
JP
Japan
Prior art keywords
gas turbine
cooling water
heat
refrigerator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010207984A
Other languages
Japanese (ja)
Other versions
JP2012062825A (en
Inventor
謙二 假屋
央 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2010207984A priority Critical patent/JP5547592B2/en
Publication of JP2012062825A publication Critical patent/JP2012062825A/en
Application granted granted Critical
Publication of JP5547592B2 publication Critical patent/JP5547592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

本発明は、主として発電用に使用されるガスタービンの吸気を冷却または加熱するガスタービン吸気温度調節装置に関する。   The present invention relates to a gas turbine intake air temperature control device that cools or heats intake air of a gas turbine mainly used for power generation.

従来技術である特開2003−206752号公報の図1、図3、図5及び図7に開示した技術では、ガスタービン圧縮機の入口空気を冷却する場合に、大気温度が高い環境条件下ではガスタービン圧縮機の空気吸入路に設けた熱交換器によってガスタービン圧縮機の入口空気と冷凍機の蒸発器で製造した冷水を熱交換し、ガスタービン圧縮機の入口空気を冷却する構成が開示されている。   In the technology disclosed in FIG. 1, FIG. 3, FIG. 5 and FIG. 7 of Japanese Patent Application Laid-Open No. 2003-206752, which is a prior art, when the inlet air of the gas turbine compressor is cooled, the ambient temperature is high. Disclosed is a configuration in which heat exchange between a gas turbine compressor inlet air and a chiller evaporator heat exchange is performed by a heat exchanger provided in an air intake passage of the gas turbine compressor to cool the gas turbine compressor inlet air. Has been.

前記特開2003−206752号公報の図8及び図9に開示した技術では、ガスタービン圧縮機の入口空気を加熱する場合に、大気温度が低い環境条件下ではガスタービン圧縮機出口の高温圧縮空気の一部を圧縮機入口に還流させる方法や、ガスタービン排ガス、又はガスタービンの排気側に設けた排熱回収ボイラの発生蒸気等を直接的または間接的に前記熱交換器に供給する方法により実施する構成がそれぞれ開示されている。   In the technique disclosed in FIG. 8 and FIG. 9 of Japanese Patent Application Laid-Open No. 2003-206752, when the inlet air of the gas turbine compressor is heated, the hot compressed air at the outlet of the gas turbine compressor under an environmental condition where the atmospheric temperature is low. By a method of recirculating a part of the gas to the compressor inlet, a method of supplying gas turbine exhaust gas, or steam generated from an exhaust heat recovery boiler provided on the exhaust side of the gas turbine directly or indirectly to the heat exchanger Each implementation is disclosed.

前記特開2003−206752号公報に開示した従来の技術では、ガスタービン圧縮機の入口空気の冷却と、ガスタービン圧縮機の加熱とは、全く別の装置やサイクルを使用して行っている。   In the conventional technique disclosed in Japanese Patent Laid-Open No. 2003-206752, the cooling of the inlet air of the gas turbine compressor and the heating of the gas turbine compressor are performed using completely different devices and cycles.

特開2003−206752号公報JP 2003-206752 A

ガスタービンと、ガスタービンの排ガスを熱源とする排熱回収ボイラの発生蒸気を使用する蒸気タービンと、このガスタービン及び蒸気タービンでそれぞれ駆動される発電機で構成される複合発電設備では、大気温度に対する複合発電設備の発電出力と発電効率は、大気温度が低いほど発電出力は増加するが、発電効率は一般的に大気温度15℃から20℃の付近で最高効率を持つ特性を示す。   In a combined power generation facility composed of a gas turbine, a steam turbine that uses steam generated from an exhaust heat recovery boiler that uses exhaust gas from the gas turbine as a heat source, and a generator driven by the gas turbine and the steam turbine, As for the power generation output and power generation efficiency of the combined power generation facility, the power generation output increases as the atmospheric temperature is lower. However, the power generation efficiency generally has the highest efficiency around the atmospheric temperature of 15 ° C to 20 ° C.

これは、ガスタービンは大気温度が低い方が出力は増加し排ガス量も増えるが、効率も向上するので排ガス温度は低下する。その結果、排熱回収ボイラへの排熱量の増加傾向が抑制され、蒸気タービンの出力の増加比率がガスタービンと比べて小さくなることに因る。   This is because the output of the gas turbine increases and the amount of exhaust gas increases when the atmospheric temperature is low, but the efficiency also improves, so the exhaust gas temperature decreases. As a result, the increase tendency of the amount of exhaust heat to the exhaust heat recovery boiler is suppressed, and the increase ratio of the output of the steam turbine is smaller than that of the gas turbine.

ガスタービン圧縮機の入口空気の冷却は、こうした複合発電設備の性能特性を利用して、大規模な売電事業を行っている電力会社では、電力需要が増加する夏季のピーク電力対策として利用し、電力会社から補給電力の供給を受けている自家発電事業者は、買電量が契約電力を超えないように、ガスタービンの出力を増加させるために利用している。   Cooling of the inlet air of a gas turbine compressor is used as a countermeasure for peak power consumption in summer when electric power companies that conduct large-scale power sales business using the performance characteristics of such combined power generation facilities. A private power generation company receiving supply of supplementary power from an electric power company uses it to increase the output of the gas turbine so that the amount of purchased power does not exceed the contracted power.

しかしながら、何れの場合も利用が夏季の一時的な運転に留まり、初期投資に見合う利得を得るのは必ずしも容易ではないという課題がある。   However, in any case, there is a problem that the use is limited to the temporary operation in the summer, and it is not always easy to obtain a gain commensurate with the initial investment.

また、ガスタービン圧縮機の入口空気の冷却運転中は、ガスタービン圧縮機の空気吸入路に設けた熱交換器で用いる冷水を冷凍機の蒸発器で製造するために、冷凍機の凝縮器への冷却水の循環が必要となるが、この冷却水の冷却を一般的に冷却塔で行っており、大気への放熱損失が大きいと共に、冷却水の蒸発分の補給と水質維持のために大量の補給水が必要とされていた。   Also, during the cooling operation of the inlet air of the gas turbine compressor, in order to produce the cold water used in the heat exchanger provided in the air intake passage of the gas turbine compressor with the evaporator of the refrigerator, the refrigerant is supplied to the refrigerator condenser. However, the cooling water is generally cooled by a cooling tower, and the heat dissipation loss to the atmosphere is large. Water was needed.

一方、ガスタービン圧縮機入口空気の加熱は、ガスタービン圧縮機出口の高温圧縮空気の一部を圧縮機入口に還流させる方法と、ガスタービン排ガスの熱エネルギーを利用する方法、例えば排熱回収ボイラの発生蒸気を利用して加熱する方法が採られてきた。   On the other hand, the heating of the gas turbine compressor inlet air is performed by a method in which a part of the high-temperature compressed air at the gas turbine compressor outlet is recirculated to the compressor inlet or a method using the thermal energy of the gas turbine exhaust gas, for example, an exhaust heat recovery boiler. A method of heating using generated steam has been adopted.

しかしながら、ガスタービン圧縮機出口の高温圧縮空気の一部を圧縮機入口に還流させる方法では、ガスタービン圧縮機での還流空気量が多くなり、ガスタービン圧縮機の必要駆動動力は増加するが、その一方でガスタービンの燃焼器に送られる空気量が減少するので、燃焼器への燃料量は減少し、ガスタービン出力に占める圧縮機の必要駆動動力の比率が大きくなりガスタービン発電設備や複合発電設備の発電効率は大きく低下する。   However, in the method in which a part of the high-temperature compressed air at the gas turbine compressor outlet is recirculated to the compressor inlet, the amount of recirculated air in the gas turbine compressor increases and the required drive power of the gas turbine compressor increases. On the other hand, since the amount of air sent to the combustor of the gas turbine decreases, the amount of fuel to the combustor decreases, and the ratio of the required drive power of the compressor to the gas turbine output increases, and the gas turbine power generation facility and the complex The power generation efficiency of the power generation facilities is greatly reduced.

また、ガスタービン排ガスの熱エネルギーを利用する方法では、蒸気タービンを駆動するのに使える蒸気の一部分をガスタービン吸気の加熱に利用することから、ガスタービンと蒸気タービンを組み合わせた複合発電設備の発電効率は低下するという課題があった。   In the method of using the thermal energy of the gas turbine exhaust gas, since a part of the steam that can be used to drive the steam turbine is used for heating the gas turbine intake air, the combined power generation facility that combines the gas turbine and the steam turbine generates power. There was a problem that efficiency decreased.

このため、ガスタービン圧縮機入口空気の加熱は、寒冷地設置のガスタービンにおいて、大気温度が−20℃以下となる極寒冷季に、ガスタービン圧縮機がサージング運転域となるのを回避するために加温したり、冬季に大気温度が−5℃から5℃付近の場合に空気中の湿分がガスタービン圧縮機入口で凍結するのを防止するために加熱したり、また、一般に大気温度が5℃付近の発電機出力で決められることが多い認可出力を、より低い大気温度時に超えないようにするために負荷制限を掛けるといった機器保護や出力制限に利用目的が限定されていた。   For this reason, the heating of the gas turbine compressor inlet air is for avoiding the gas turbine compressor from becoming a surging operation region in an extremely cold season when the atmospheric temperature is -20 ° C. or lower in a gas turbine installed in a cold district. In order to prevent moisture in the air from freezing at the inlet of the gas turbine compressor when the ambient temperature is between -5 ° C and 5 ° C in winter, However, the purpose of use was limited to equipment protection and output restrictions such as applying load restrictions to prevent the authorized output often being determined by the generator output near 5 ° C at lower atmospheric temperatures.

本発明の目的は、冷凍機で発生させる冷水及び冷却水の供給を切り替えてガスタービン圧縮機に吸入する空気と熱交換させて前記空気を冷却又は加熱し、吸気空気の冷却運転時にはガスタービンの出力を増加させ、吸気空気の加熱運転時には複合発電プラントの効率を向上させることを可能にしたガスタービンの吸気温度調節装置を提供することにある。   The object of the present invention is to switch the supply of cold water and cooling water generated in a refrigerator and exchange heat with air sucked into the gas turbine compressor to cool or heat the air, and during the cooling operation of the intake air, An object of the present invention is to provide an intake air temperature control device for a gas turbine capable of increasing the output and improving the efficiency of a combined power plant during intake air heating operation.

本発明のガスタービンの吸気温度調節装置は、ガスタービンと、ガスタービンの排ガスを熱源とする排熱回収ボイラの発生蒸気を使用する蒸気タービンと、これらのガスタービン及び蒸気タービンで駆動される発電機で複合発電設備を構成し、前記複合発電設備のガスタービンを構成するガスタービン圧縮機に吸入する空気を冷却または加熱する熱交換器を備え、前記熱交換器の冷却用に熱媒体として冷水及び冷却水をそれぞれ製造する冷凍機を備え、前記冷凍機で製造した冷水を前記熱交換器の冷却用の熱媒体として供給する冷水配管の系統、及び前記冷凍機で製造した冷却水を前記熱交換器の加温用の熱媒体として供給する冷却水配管の系統をそれぞれ備え、前記熱交換器で熱交換された熱媒体の冷水または冷却水を前記冷凍機に戻す冷水戻り配管の系統及び冷却水戻り配管の系統をそれぞれ備え、前記冷水配管と冷却水配管が共に接続されており、前記冷凍機で製造した冷水または冷却水を切り替えて冷水または冷却水のどちらか一方を前記熱交換器に供給する切替調節装置を備え、前記冷水戻り配管と冷却水戻り配管に共に接続されており、前記熱交換器で熱交換された熱媒体の冷水または冷却水のどちらか一方を切り替えて前記冷凍機に戻す切替装置を備え、前記切替調節装置及び前記切替装置の操作を同調させて制御する制御装置を備えて、前記冷凍機は蒸気タービンの抽気蒸気で駆動する吸収式冷凍機であって、熱交換器に冷水を供給しているときは、前記制御装置からの指令信号によって熱交換器で熱交換後の冷水を切替装置によって切り替え操作して冷水戻り配管を通じて吸収式冷凍機内の蒸発器に戻すように構成し、熱交換器に冷却水供給しているときは、前記制御装置からの指令信号によって熱交換器で熱交換後の冷却水を切替装置によって切り替え操作して冷却水戻り配管を通じて吸収式冷凍機内の凝縮器に戻すように構成した。
An intake air temperature control device for a gas turbine according to the present invention includes a gas turbine, a steam turbine using steam generated from an exhaust heat recovery boiler that uses exhaust gas from the gas turbine as a heat source, and power generation driven by the gas turbine and the steam turbine. And a heat exchanger configured to cool or heat air sucked into a gas turbine compressor constituting a gas turbine of the combined power generation facility, and chilled water as a heat medium for cooling the heat exchanger And a cooling machine for producing cooling water, a system of cold water piping for supplying the cold water produced by the refrigerator as a heat medium for cooling the heat exchanger, and the cooling water produced by the refrigerator A cooling water piping system is provided for supplying heat as a heat medium for heating the exchanger, and the cooling water or the cooling water of the heat medium heat-exchanged by the heat exchanger is returned to the refrigerator. A system of return piping and a system of cooling water return piping are provided respectively, and the cold water piping and the cooling water piping are connected together, and either the cold water or the cooling water produced by the refrigerator is switched to either the cold water or the cooling water. Is connected to the cold water return pipe and the cooling water return pipe, and either one of the cold water or the cooling water of the heat medium exchanged with the heat exchanger is provided. An absorptive refrigeration driven by extraction steam of a steam turbine, and a control device for controlling the switching control device and the switching device in synchronism with each other . When the chilled water is supplied to the heat exchanger, the chilled water return distribution is performed by switching the chilled water after the heat exchange with the heat exchanger by the switching device according to the command signal from the control device. When the cooling water is supplied to the heat exchanger, the cooling water after the heat exchange is exchanged by the switching device by the command signal from the control device. It was configured to switch back to the condenser in the absorption chiller through the cooling water return pipe .

本発明によれば、冷凍機で発生させる冷水及び冷却水の供給を切り替えてガスタービン圧縮機に吸入する空気と熱交換させて前記空気を冷却又は加熱し、吸気空気の冷却運転時にはガスタービンの出力を増加させ、吸気空気の加熱運転時には複合発電プラントの効率を向上させることを可能にしたガスタービンの吸気温度調節装置が実現できる。   According to the present invention, the supply of cold water and cooling water generated in the refrigerator is switched to exchange heat with the air sucked into the gas turbine compressor to cool or heat the air, and during the cooling operation of the intake air, It is possible to realize a gas turbine intake air temperature control device that can increase the output and improve the efficiency of the combined power plant during the intake air heating operation.

本発明の実施例であるガスタービンの吸気温度調節装置を具備した複合発電設備の系統図。1 is a system diagram of a combined power generation facility equipped with an intake air temperature control device for a gas turbine according to an embodiment of the present invention.

本発明の実施例であるガスタービンの吸気温度調節装置が適用される複合発電設備では、ガスタービンと、このガスタービンの排ガスを熱源とする排熱回収ボイラの発生蒸気を使用する蒸気タービンで駆動される発電機で複合発電設備を構成しており、冷凍機の蒸発器で製造される冷水でガスタービン圧縮機に吸入する空気を冷却する熱交換器を備え、冷凍機の凝縮器の冷却水を冷却塔等を使用して外部に放熱しているガスタービン吸気冷却設備に対してガスタービン圧縮機への吸気加熱運転にも使用できるように、吸気冷却運転時には冷水を循環させている熱交換器に冷凍機の凝縮器から出る温水の供給循環に切替えられるように構成する。   In a combined power generation facility to which an intake temperature control device for a gas turbine according to an embodiment of the present invention is applied, the gas turbine is driven by a steam turbine that uses steam generated from an exhaust heat recovery boiler that uses exhaust gas from the gas turbine as a heat source. The combined generator facility is composed of a generator to be equipped with a heat exchanger that cools the air sucked into the gas turbine compressor by cold water produced by the evaporator of the refrigerator, and the cooling water of the condenser of the refrigerator Heat exchange in which chilled water is circulated during the intake air cooling operation so that it can be used for the intake air heating operation to the gas turbine compressor for the gas turbine intake air cooling facility that radiates heat to the outside using a cooling tower or the like It is constituted so that it can be switched to supply circulation of the warm water which comes out from the condenser of a refrigerator.

なお、冷凍機の型式は、吸収式冷凍機でも圧縮式冷凍機でも良い。吸収式冷凍機の場合は、駆動蒸気源は発電用蒸気タービンの抽気蒸気や排熱回収ボイラ発生蒸気及び温水が考えられる。圧縮式冷凍機の場合は、圧縮機を蒸気タービンで駆動する場合と電動機で駆動する場合がある。   The refrigerator type may be an absorption refrigerator or a compression refrigerator. In the case of an absorption refrigerator, the driving steam source can be extracted steam of a power generation steam turbine, exhaust heat recovery boiler generated steam, and hot water. In the case of a compression refrigerator, the compressor may be driven by a steam turbine or an electric motor.

蒸気タービンで駆動する場合の蒸気源は吸収式と同じく、発電用蒸気タービンの抽気蒸気や排熱回収ボイラ発生蒸気が考えられるが、発電用蒸気タービンの軸に減速機を介して連結する方式も考えられる。   As with the absorption type, the steam source when driven by a steam turbine can be extracted steam from a steam turbine for power generation or steam generated from an exhaust heat recovery boiler, but it can also be connected to the shaft of the steam turbine for power generation via a speed reducer. Conceivable.

なお、ガスタービン圧縮機への吸気冷却運転、吸気加熱運転それぞれにおいて、以下を実施することにより発電効率の向上量がより大きく得られる。   In each of the intake air cooling operation and the intake air heating operation for the gas turbine compressor, the amount of improvement in power generation efficiency can be increased by performing the following.

まず、ガスタービン圧縮機への吸気冷却運転時においては、冷却塔で大気に放熱している冷凍機凝縮器の冷却水を複合発電設備への入熱となるように、例えばガスタービン燃料と熱交換させるための熱交換器を設置し、冷却水をポンプにより、熱交換器と圧縮機の凝縮器の間を循環させることにより発電効率を向上させ、冷却塔で発生していた排水や補給水をなくすことが可能となる。   First, during the intake air cooling operation to the gas turbine compressor, for example, gas turbine fuel and heat are used so that the cooling water of the refrigerator condenser that radiates heat to the atmosphere in the cooling tower becomes heat input to the combined power generation facility. Install a heat exchanger to exchange, improve the power generation efficiency by circulating cooling water between the heat exchanger and the compressor condenser with a pump, drainage and makeup water generated in the cooling tower Can be eliminated.

なお、冷凍機凝縮器の冷却水の循環先はガスタービンの燃料系統に限るものではなく複合発電設備への入熱となる箇所であれば、復水器出口に設置の排熱回収ボイラ給水ポンプの出口等の箇所でも良く、また、冷凍機の凝縮器から冷却水を複数の熱回収箇所に並列や直列に循環させたり、系統起動の順番に従って回収先を切り替えたり、冷却水の流量比率を変更したりすることも考えられる。   Note that the cooling water circulation destination of the refrigerator condenser is not limited to the fuel system of the gas turbine, but if it is a place where heat is input to the combined power generation facility, an exhaust heat recovery boiler feed water pump installed at the condenser outlet In addition, the cooling water from the condenser of the refrigerator can be circulated in parallel or in series to multiple heat recovery points, the recovery destination can be switched according to the system startup order, and the flow rate of the cooling water can be adjusted. It can be changed.

複合発電設備との熱交換の方法は熱交換器を介する方法に限られるものではなく、排熱回収ボイラへの給水等の流体の組成、圧力及び温度条件が冷凍機の凝縮器に受け入れ可能であれば冷凍機の凝縮器に冷却水として直接流すことも考えられる。   The method of exchanging heat with the combined power generation facility is not limited to the method using a heat exchanger, but the composition, pressure and temperature conditions of the fluid such as feed water to the exhaust heat recovery boiler can be accepted by the condenser of the refrigerator. If there is, it can be considered to flow directly as cooling water to the condenser of the refrigerator.

次に、ガスタービン圧縮機に吸入する空気の加熱運転においては、空気の加熱に冷凍機の凝縮器の冷却水を使用することから、冷凍機の駆動用に用いる蒸気または電力と蒸発器で製造される冷水が外部から得る熱量を加えたのとほぼ等しい熱量が冷凍機の凝縮器の冷却水がガスタービン圧縮機に吸入する空気と交換する熱量となる。   Next, in the heating operation of the air sucked into the gas turbine compressor, since the cooling water of the refrigerator condenser is used for heating the air, it is produced with steam or electric power used for driving the refrigerator and an evaporator. The amount of heat that is almost equal to the amount of heat that the cold water that is obtained from the outside adds is the amount of heat that the cooling water in the condenser of the refrigerator exchanges with the air that is sucked into the gas turbine compressor.

したがって、冷凍機の凝縮器の冷却水を用いることによる利点は、冷凍機で消費する蒸気や電気の持つエネルギー以外に冷凍機の蒸発器で製造される冷水が外部から得る熱量も利用できることである。この、冷凍機の蒸発器で製造される冷水が外部から得る熱量とは、相手側から奪う熱量である。   Therefore, the advantage of using the cooling water of the condenser of the refrigerator is that the amount of heat obtained from the outside by the cold water produced by the evaporator of the refrigerator can be used in addition to the energy consumed by the steam and electricity consumed by the refrigerator. . The amount of heat obtained from the outside by the cold water produced by the evaporator of the refrigerator is the amount of heat taken from the other side.

そこで、冷水を複合発電設備の冷却水と熱交換させ複合発電設備の機器冷却水の冷却に使用する。例えば発電機冷却器への冷却水入口側に熱交換器を設置して熱交換させ、冷水は冷凍機の蒸発器に循環させる。こうして発電機冷却器への冷却水温度を低く保ち、発電機の損失を低減させ、複合発電設備の発電効率が向上する。同様の効果は他の機器に於いても考えられる。   Therefore, the cold water is heat-exchanged with the cooling water of the combined power generation facility and used for cooling the equipment cooling water of the combined power generation facility. For example, a heat exchanger is installed on the cooling water inlet side to the generator cooler to exchange heat, and the cold water is circulated to the evaporator of the refrigerator. Thus, the cooling water temperature to the generator cooler is kept low, the loss of the generator is reduced, and the power generation efficiency of the combined power generation facility is improved. Similar effects can be considered in other devices.

また、冷凍機の蒸発器から供給される冷水との熱交換により冷却効果が高まる分、複合発電設備の機器冷却水ポンプの水量を減らすことによりポンプ動力を低減することも出来る。更に、この機器冷却水ポンプをインバータ制御等の回転数制御可能なポンプモータとすれば、ポンプ動力の低減効果は大きくなる。   In addition, the pump power can be reduced by reducing the amount of water in the equipment cooling water pump of the combined power generation facility, because the cooling effect is enhanced by heat exchange with the cold water supplied from the evaporator of the refrigerator. Furthermore, if this equipment cooling water pump is a pump motor capable of controlling the rotational speed such as inverter control, the effect of reducing pump power is increased.

なお、その他の冷水の熱交換先としては、蒸気タービン復水器の冷却水がある。冷却により復水器内部の圧力を下げれば蒸気タービンの出力が増加し、複合発電設備の発電効率の向上となる。なお、復水器内部の圧力を下げる代わりに冷却水量を減らして得られる復水器冷却水ポンプの動力低減の仕組みは機器冷却水ポンプの場合と同様である。また、複数箇所への並列や直列循環運転等についても冷凍機の凝縮器冷却水の場合と同様の方法が考えられる。   Other cold water heat exchange destinations include cooling water for steam turbine condensers. If the pressure inside the condenser is lowered by cooling, the output of the steam turbine is increased and the power generation efficiency of the combined power generation facility is improved. The mechanism for reducing the power of the condenser cooling water pump obtained by reducing the amount of cooling water instead of lowering the pressure inside the condenser is the same as in the case of the equipment cooling water pump. Moreover, the same method as the case of the condenser cooling water of a refrigerator is also considered about the parallel to a plurality of places, serial circulation operation, etc.

なお、制御装置の中に持つ性能データは、数表として予め持たせるか、複合発電設備の性能シミュレーションをその都度行う方法が考えられる。また、大気温度以外の性能変化要因となる、大気の相対湿度、大気圧力や電力系統の力率等については補正関数を組み込んでおくことが考えられる。   Note that the performance data held in the control device may be previously stored as a numerical table, or the performance simulation of the combined power generation facility may be performed each time. It is also conceivable to incorporate a correction function for the atmospheric relative humidity, atmospheric pressure, power system power factor, and the like, which are performance change factors other than the atmospheric temperature.

本発明の実施例であるガスタービン吸気温度調節装置について図1を用いて詳細に説明する。   A gas turbine intake air temperature control apparatus according to an embodiment of the present invention will be described in detail with reference to FIG.

図1は本発明の実施例であるガスタービン吸気温度調節装置を備えた複合発電設備を示すものであり、蒸気タービン15の抽気蒸気22で駆動する吸収式冷凍機21の蒸発器で製造した冷水でガスタービン圧縮機6の空気吸入路1に設置した熱交換器3でガスタービン圧縮機吸気冷却を行っている場合を示している。   FIG. 1 shows a combined power generation facility equipped with a gas turbine intake air temperature control device according to an embodiment of the present invention, and cold water produced by an evaporator of an absorption chiller 21 driven by extracted steam 22 of a steam turbine 15. The case where the gas turbine compressor intake cooling is performed by the heat exchanger 3 installed in the air intake passage 1 of the gas turbine compressor 6 is shown.

本実施例の複合発電設備は、図1に示したように、ガスタービン発電設備5と、ガスタービン発電設備5の排ガスを熱源とする排熱回収ボイラ12と、排熱回収ボイラ12の発生蒸気で蒸気タービン15を駆動する蒸気タービン発電設備14を備えた複合発電設備である。   As shown in FIG. 1, the combined power generation facility of the present embodiment includes a gas turbine power generation facility 5, an exhaust heat recovery boiler 12 that uses exhaust gas from the gas turbine power generation facility 5 as a heat source, and steam generated by the exhaust heat recovery boiler 12. This is a combined power generation facility including a steam turbine power generation facility 14 that drives the steam turbine 15.

そして、ガスタービン発電設備5には、空気を圧縮するガスタービン圧縮機6と、ガスタービン圧縮機6で圧縮した空気と燃料配管8を通じて供給される燃料とを混合して燃焼させる燃焼器7と、燃焼器7で発生させた高温の燃焼ガスによって駆動するガスタービン9と、ガスタービン9によって回転し発電するガスタービン発電機10を備えている。   The gas turbine power generation facility 5 includes a gas turbine compressor 6 that compresses air, a combustor 7 that mixes and burns the air compressed by the gas turbine compressor 6 and the fuel supplied through the fuel pipe 8. A gas turbine 9 driven by high-temperature combustion gas generated in the combustor 7 and a gas turbine generator 10 that rotates by the gas turbine 9 and generates electric power are provided.

ガスタービン発電設備5のガスタービン圧縮機6の吸気を冷却するために、複合発電設備を構成する蒸気タービン15の抽気蒸気22で駆動する吸収式冷凍機21が設置されており、この吸収式冷凍機21に設けられた蒸発器によって製造した冷水をガスタービン圧縮機6の空気吸入路1に設置した熱交換器3に供給して、ガスタービン圧縮機の吸気冷却を行っている。   In order to cool the intake air of the gas turbine compressor 6 of the gas turbine power generation facility 5, an absorption refrigeration machine 21 driven by the bleed steam 22 of the steam turbine 15 constituting the combined power generation facility is installed. The cold water produced by the evaporator provided in the machine 21 is supplied to the heat exchanger 3 installed in the air suction passage 1 of the gas turbine compressor 6 to perform intake air cooling of the gas turbine compressor.

本実施例であるガスタービン吸気温度調節装置では、ガスタービン圧縮機の吸気冷却装置として、空気吸入路1に設置されている熱交換器3に吸収式冷凍機21の蒸発器で製造した冷水25を供給する系統となる冷水配管26に加えて、前記熱交換器3に吸収式冷凍機21の凝縮器の冷却水34を供給する系統となる冷却水配管33と、吸収式冷凍機21から熱交換器3に供給する流体を、冷水25と冷却水34のどちらか一方の供給に切替える制御を行う制御装置100と、この制御装置100からの指令信号によって冷水25又は冷却水34の供給を切り替え操作される切替調節装置28を設置している。この制御装置100は、切替調節装置28による冷水25又は冷却水34の供給量を調節する機能を備えている。   In the gas turbine intake air temperature control apparatus according to the present embodiment, cold water 25 produced by the evaporator of the absorption refrigeration machine 21 in the heat exchanger 3 installed in the air intake passage 1 as an intake air cooling apparatus of the gas turbine compressor. In addition to the chilled water pipe 26 serving as a system for supplying heat, the cooling water pipe 33 serving as a system for supplying cooling water 34 for the condenser of the absorption chiller 21 to the heat exchanger 3 and heat from the absorption chiller 21. The control device 100 that performs control to switch the fluid supplied to the exchanger 3 to one of the cold water 25 and the cooling water 34, and the supply of the cold water 25 or the cooling water 34 is switched by a command signal from the control device 100. A switching adjustment device 28 to be operated is installed. The control device 100 has a function of adjusting the supply amount of the cold water 25 or the cooling water 34 by the switching adjustment device 28.

このため、前記切替調節装置28には前記冷水配管26と冷却水配管33の双方が接続され、制御装置100からの操作信号によって該切替調節装置28を切り替えて、冷水25と冷却水34のどちらか一方の流体が熱交換器3に供給されるように構成されている。   For this reason, both the cold water pipe 26 and the cooling water pipe 33 are connected to the switching adjustment device 28, and the switching adjustment device 28 is switched by an operation signal from the control device 100 to determine which of the cold water 25 and the cooling water 34. One of the fluids is configured to be supplied to the heat exchanger 3.

ここで、冷水25と冷却水34とでは温度レベルが異なるため、熱交換器3で熱交換後の冷水25と冷却水34を混合したり、吸収式冷凍機21内のそれぞれの製造箇所とは異なる箇所に還水したりすると、吸収式冷凍機21内で吸収液と冷媒液の量的バランスが崩れて冷凍サイクルの異常を招いたり、冷凍機21の効率が低下したりする。   Here, since the temperature levels of the cold water 25 and the cooling water 34 are different, the cold water 25 and the cooling water 34 after heat exchange in the heat exchanger 3 are mixed, or the respective production locations in the absorption refrigerator 21 are If the water is returned to a different location, the quantitative balance between the absorption liquid and the refrigerant liquid is lost in the absorption refrigeration machine 21 to cause an abnormality in the refrigeration cycle, or the efficiency of the refrigeration machine 21 is reduced.

つまり、熱交換器3に冷水25を供給しているときは熱交換後の冷水25は吸収式冷凍機21内の冷水製造箇所へ、熱交換器3に冷却水34を供給しているときは熱交換後の冷却水34は吸収式冷凍機21内の冷却水製造箇所へ戻す必要があり、このため、前記制御装置100からの指令信号によって、前記した様に切替調節装置28の切り替え操作を行うと共に、熱交換器3から熱交換後の冷水25又は冷却水34の返水先の切替えをこの切替調節装置28と連動して行う切替装置29を設置している。   That is, when the cold water 25 is supplied to the heat exchanger 3, the cold water 25 after the heat exchange is supplied to the cold water production location in the absorption chiller 21 and when the cooling water 34 is supplied to the heat exchanger 3. It is necessary to return the cooling water 34 after the heat exchange to the cooling water production location in the absorption chiller 21. For this reason, the switching operation of the switching adjusting device 28 is performed as described above by the command signal from the control device 100. In addition, a switching device 29 is provided for switching the destination of the cold water 25 or the cooling water 34 after heat exchange from the heat exchanger 3 in conjunction with the switching adjustment device 28.

そして、熱交換器3に冷水25を供給しているときは、前記制御装置100からの指令信号によって熱交換器3で熱交換後の冷水25を切替装置29によって切り替え操作して冷水戻り配管30を通じて吸収式冷凍機21内の蒸発器に戻すように構成し、また、熱交換器3に冷却水34を供給しているときは、前記制御装置100からの指令信号によって熱交換器3で熱交換後の冷却水34を切替装置29によって切り替え操作して冷却水戻り配管35を通じて吸収式冷凍機21内の凝縮器に戻すように構成している。   When the cold water 25 is supplied to the heat exchanger 3, the cold water 25 after the heat exchange in the heat exchanger 3 is switched by the switching device 29 by the command signal from the control device 100, and the cold water return pipe 30 is switched. When the cooling water 34 is supplied to the heat exchanger 3, the heat exchanger 3 generates heat in response to a command signal from the control device 100. The replacement cooling water 34 is switched by the switching device 29 and returned to the condenser in the absorption refrigerator 21 through the cooling water return pipe 35.

また、本実施例のガスタービン吸気温度調節装置では、従来の吸気冷却装置によくある冷凍機21の凝縮器廃熱を外部へ放熱するための冷却塔等の外部放熱設備は設置していない。これは、冷却塔水は、冷却塔にて冷却塔水の一部蒸発により冷却を行っているため不純物濃度が高いこと、冷却塔水中に微生物が発生するのを抑制するための薬品が注入されていることなどの理由により水質が非常に悪いことから、冷却水側の汚れが冷水側へ流れ込んだときの冷凍機21の効率低下を避けるためである。   Further, in the gas turbine intake air temperature control apparatus of the present embodiment, no external heat dissipating equipment such as a cooling tower for dissipating the waste heat of the condenser of the refrigerator 21 which is common in the conventional intake air cooling apparatus to the outside is installed. This is because the cooling tower water is cooled by partial evaporation of the cooling tower water in the cooling tower, so that the impurity concentration is high, and chemicals for suppressing the generation of microorganisms in the cooling tower water are injected. This is for avoiding a decrease in efficiency of the refrigerator 21 when the contamination on the cooling water side flows into the cold water side because the water quality is very poor due to the reasons such as

さらに、本実施例のガスタービン吸気温度調節装置発明では、従来の吸気冷却装置では廃熱として外部に放出されていた前記冷凍機21の廃熱を、複合発電設備の発電効率向上のために有効に利用している。   Further, in the invention of the gas turbine intake air temperature control device of the present embodiment, the waste heat of the refrigerator 21 that has been released to the outside as waste heat in the conventional intake air cooling device is effective for improving the power generation efficiency of the combined power generation facility. It is used for.

本実施例のガスタービン吸気温度調節装置を使用して、ガスタービン発電設備5のガスタービン圧縮機6の吸気を冷却するときは、ガスタービン圧縮機6の空気吸入路1に設置した熱交換器3の出口側に設置してある温度検知器4で検出した吸気温度と設定温度が一致するように、温度検出器4で検出した吸気温度の検出値に基づいて前記制御装置100で演算した指令信号によって切替調節装置28を操作し、吸収式冷凍機21の蒸発器で製造した冷水25を切替調節装置28を介して熱交換器3に供給する。   When cooling the intake air of the gas turbine compressor 6 of the gas turbine power generation facility 5 using the gas turbine intake air temperature control device of the present embodiment, the heat exchanger installed in the air intake path 1 of the gas turbine compressor 6 The command calculated by the control device 100 based on the detected value of the intake air temperature detected by the temperature detector 4 so that the intake air temperature detected by the temperature detector 4 installed on the outlet side 3 matches the set temperature. The switching control device 28 is operated by the signal, and the cold water 25 produced by the evaporator of the absorption chiller 21 is supplied to the heat exchanger 3 through the switching control device 28.

このとき、切替調節装置28は制御装置100からの指令信号によって冷水25を熱交換器3に供給する操作を行っているので、制御装置100からの指令信号によって切替装置29の操作を前記切替調節装置28の操作に同調させて行なうことで、熱交換器3から吸収式冷凍機21の蒸発器に戻る流路は切替装置29の切り替えによって冷水側に切り替わる。   At this time, since the switching adjustment device 28 performs an operation of supplying the cold water 25 to the heat exchanger 3 by a command signal from the control device 100, the operation of the switching device 29 is switched by the command signal from the control device 100. By performing in synchronization with the operation of the device 28, the flow path from the heat exchanger 3 to the evaporator of the absorption refrigerator 21 is switched to the cold water side by switching the switching device 29.

制御装置100からの指令信号による前記切替調節装置28及び切替装置29の同調した操作によって、熱交換器3でガスタービン圧縮機6の吸気をガスタービン吸気を冷却したあとの冷水25は、吸収式冷凍機21の冷水製造箇所に返水される。   The chilled water 25 after the intake of the gas turbine compressor 6 is cooled by the heat exchanger 3 by the synchronized operation of the switching adjustment device 28 and the switching device 29 by the command signal from the control device 100 is an absorption type. Water is returned to the cold water production site of the refrigerator 21.

ここで、熱交換器3で使用できず余剰した冷水25は、制御装置100からの指令信号によって前記冷水配管26から分岐してガスタービン発電機10を冷却する冷却器32に至る分岐配管に設置された調節弁31を操作してガスタービン発電機10の冷却水冷却器32に供給するようにして、ガスタービン発電機10の効率向上を図ることが可能となる。   Here, excess chilled water 25 that cannot be used in the heat exchanger 3 is installed in a branch pipe that branches from the chilled water pipe 26 according to a command signal from the control device 100 and reaches a cooler 32 that cools the gas turbine generator 10. The efficiency of the gas turbine generator 10 can be improved by operating the control valve 31 thus supplied to the cooling water cooler 32 of the gas turbine generator 10.

さらに、ガスタービン圧縮機6の吸気を冷却しているときは、吸収式冷凍機21凝縮器出口の冷却水34は熱交換器3で使用されないので、前記冷却水34は制御装置100からの指令信号によって前記冷却水配管33から分岐して燃料加熱器38に至る分岐配管に設置された調節弁37を操作して冷却水34を前記燃料加熱器38に供給するようにして、燃料加熱器38に供給された燃料8を加熱して燃料温度を上昇させることでガスタービン発電設備5の効率向上を図ることが可能となる。   Further, when the intake air of the gas turbine compressor 6 is being cooled, the cooling water 34 at the outlet of the absorption refrigeration machine 21 is not used in the heat exchanger 3, so that the cooling water 34 is a command from the control device 100. By operating a control valve 37 installed in a branch pipe branched from the cooling water pipe 33 to the fuel heater 38 according to a signal, the cooling water 34 is supplied to the fuel heater 38, and the fuel heater 38 It is possible to improve the efficiency of the gas turbine power generation facility 5 by heating the fuel 8 supplied to the fuel and raising the fuel temperature.

同様に、ガスタービン圧縮機6の吸気を冷却しているときは、吸収式冷凍機21凝縮器出口の冷却水34は熱交換器3で使用されないので、前記冷却水34は前記冷却水配管33から分岐して、蒸気タービン15から抽気蒸気22を吸収式冷凍機21に導く抽気蒸気の配管に設置された熱交換器43に至る分岐配管に設置された調節弁45を、制御装置100からの指令信号によって操作して吸収式冷凍機21で製造された冷却水34の一部を前記熱交換器43に供給し、復水器17から廃熱回収ボイラ12に供給される給水を加熱して給水温度を上昇させることで蒸気タービン発電設備14の効率向上を図ることが可能となる。   Similarly, when cooling the intake air of the gas turbine compressor 6, the cooling water 34 at the outlet of the absorption refrigeration machine 21 is not used in the heat exchanger 3, so that the cooling water 34 is the cooling water pipe 33. The control valve 45 installed in the branch pipe leading to the heat exchanger 43 installed in the extraction steam pipe for branching from the steam turbine 15 and leading the extraction steam 22 from the steam turbine 15 to the absorption refrigerator 21 is supplied from the control device 100. A part of the cooling water 34 manufactured by the absorption refrigerator 21 by operating according to the command signal is supplied to the heat exchanger 43, and the water supplied to the waste heat recovery boiler 12 from the condenser 17 is heated. By increasing the feed water temperature, it is possible to improve the efficiency of the steam turbine power generation facility 14.

前記冷却水冷却器32で熱交換したあとの冷水25は冷水戻り配管30を通じて吸収式冷凍機21の冷水製造箇所に、また、前記燃料加熱器38で熱交換したあとの冷却水34、及び前記熱交換器43で熱交換したあとの冷却水34は吸収式冷凍機21の冷却水製造箇所に、それぞれ返水される。   The cold water 25 after heat exchange with the cooling water cooler 32 passes through the cold water return pipe 30 to the cold water production site of the absorption chiller 21, the cooling water 34 after heat exchange with the fuel heater 38, and the The cooling water 34 after heat exchange in the heat exchanger 43 is returned to the cooling water production location of the absorption refrigerator 21.

一方、本実施例のガスタービン吸気温度調節装置を使用して、ガスタービンのガスタービン圧縮機6の吸気を加熱するときは、温度検知器4で検出した吸気温度と設定温度が一致するよう、前記制御装置100からの指令信号によって吸収式冷凍機21の冷却水34を切替調節装置28を介して熱交換器3に供給する。   On the other hand, when the intake air of the gas turbine compressor 6 of the gas turbine is heated using the gas turbine intake air temperature adjusting device of the present embodiment, the intake air temperature detected by the temperature detector 4 and the set temperature are matched. In response to a command signal from the control device 100, the cooling water 34 of the absorption refrigeration machine 21 is supplied to the heat exchanger 3 via the switching adjustment device 28.

このとき、切替調節装置28は冷却水供給となっているので、この切替調節装置28の操作に同調して切替装置29も操作され、熱交換器3から吸収式冷凍機21に戻る冷却水34の流路は冷却水側に切り替わる。   At this time, since the switching adjustment device 28 is supplied with cooling water, the switching device 29 is also operated in synchronization with the operation of the switching adjustment device 28, and the cooling water 34 that returns from the heat exchanger 3 to the absorption chiller 21. The flow path is switched to the cooling water side.

これにより、熱交換器3でガスタービンのガスタービン圧縮機6の吸気を加熱したあとの冷却水34は、切替装置29を経由し、冷却水戻り配管35を通じて吸収式冷凍機21の冷却水製造箇所に返水される。   As a result, the cooling water 34 after the intake air of the gas turbine compressor 6 of the gas turbine is heated by the heat exchanger 3 passes through the switching device 29 and is supplied to the absorption chiller 21 through the cooling water return pipe 35. Water is returned to the location.

ここで、本実施例によるガスタービン吸気温度調節装置を使用して、ガスタービンのガスタービン圧縮機6の吸気を加熱するときの、メリットについて説明する。   Here, the merit at the time of heating the intake air of the gas turbine compressor 6 of the gas turbine using the gas turbine intake air temperature control device according to the present embodiment will be described.

本実施例によるガスタービン吸気温度調節装置では、ガスタービンのガスタービン圧縮機6の吸気を加熱するときの熱源として、冷凍機の凝縮器の冷却水を使用している。蒸気や温水や電気などの冷凍機への投入熱量に対する冷凍機の凝縮器の冷却水出熱量の比率は、蒸気吸収式冷凍機の場合、単効用のもので1.6〜1.7、二重効用のもので2.0〜2.1、さらに圧縮式冷凍機では6程度である。   In the gas turbine intake air temperature control device according to the present embodiment, the cooling water of the condenser of the refrigerator is used as a heat source when heating the intake air of the gas turbine compressor 6 of the gas turbine. The ratio of the cooling water heat output of the condenser condenser to the heat input to the refrigerator such as steam, hot water, electricity, etc. is 1.6 to 1.7 in the case of a vapor absorption type refrigerator, and 2 It is 2.0 to 2.1 for heavy effects, and about 6 for a compression refrigerator.

一方、従来技術による吸気加熱方法では、熱源となる蒸気や温水等は冷凍機を介せず、直接的または間接的に、ガスタービンの空気流入路に設置してある熱交換器に供給しているので、投入熱量に対する出熱量の比率は最大でも1を超えることはない。   On the other hand, in the intake air heating method according to the prior art, steam or hot water serving as a heat source is supplied directly or indirectly to a heat exchanger installed in the air inlet passage of the gas turbine without passing through a refrigerator. Therefore, the ratio of the heat output to the input heat does not exceed 1 at the maximum.

つまり、本実施例によるガスタービン吸気温度調節装置を使用して、ガスタービンのガスタービン圧縮機6の吸気を加熱するときは、従来技術による吸気加熱方法に対して、蒸気や温水や電気などの投入熱量を2分の1以下とすることが可能であることから、発電設備から吸気加熱のためのエネルギーロスによる発電効率の低下を最小限に抑えることができる。   That is, when the intake air of the gas turbine compressor 6 of the gas turbine is heated using the gas turbine intake air temperature control device according to the present embodiment, steam, hot water, electricity, etc. Since the amount of input heat can be reduced to half or less, it is possible to minimize a decrease in power generation efficiency due to energy loss due to intake air heating from the power generation facility.

以上のことから、本実施例によるガスタービン吸気温度調節装置を使用すれば、ガスタービンの吸気の加熱もしくは冷却に使用されていない冷水と冷却水を、複合発電設備内で有効に利用することで、発電効率の向上を図ることが可能となる。   From the above, if the gas turbine intake air temperature control device according to the present embodiment is used, cold water and cooling water that are not used for heating or cooling the intake of the gas turbine can be effectively used in the combined power generation facility. Thus, it is possible to improve the power generation efficiency.

さらに、ガスタービンの吸気を加熱するときの投入熱量を最小限にできるため、吸気加熱のための熱抽出に伴う発電効率の低下を最小限に抑えることができる。また、冷凍機をガスタービンの吸気と冷却に使用するので、年間を通じての設備利用率を高めることができることから、初期投資に見合う利得を得やすくなる。   Furthermore, since the amount of input heat when the intake air of the gas turbine is heated can be minimized, a decrease in power generation efficiency associated with heat extraction for intake air heating can be minimized. In addition, since the refrigerator is used for intake and cooling of the gas turbine, it is possible to increase the facility utilization rate throughout the year, so that it is easy to obtain a gain commensurate with the initial investment.

本実施例によれば、冷凍機で発生させる冷水及び冷却水の供給を切り替えてガスタービン圧縮機に吸入する空気と熱交換させて前記空気を冷却又は加熱し、吸気空気の冷却運転時にはガスタービンの出力を増加させ、吸気空気の加熱運転時には複合発電プラントの効率を向上させることを可能にしたガスタービンの吸気温度調節装置が実現できる。   According to the present embodiment, the supply of cold water and cooling water generated in the refrigerator is switched to exchange heat with the air sucked into the gas turbine compressor to cool or heat the air, and during the cooling operation of the intake air, the gas turbine And an intake air temperature control device for a gas turbine that can improve the efficiency of the combined power plant during the intake air heating operation.

本発明は、ガスタービンの吸気温度調節装置に適用可能である。   The present invention is applicable to an intake air temperature adjusting device for a gas turbine.

1:空気流入路、2:温度検知器、3:熱交換器、4:温度検知器、5:ガスタービン発電設備、6:ガスタービン圧縮機、7:燃焼器、8:燃料配管、9:ガスタービン、10:ガスタービン発電機、11:排気排出路、12:排熱回収ボイラ、13:蒸気配管、14:蒸気タービン発電設備、15:蒸気タービン、16:蒸気タービン発電機、17:復水器、18:給水ポンプ、19:復水器入口冷却水、20:復水器出口冷却水、21:吸収式冷凍機、22:抽気蒸気、23:調節弁、24:冷水循環ポンプ、25:冷水、26:冷水配管、27:温度検知器、28:切替調節装置、29:切替装置、30:冷水戻り配管、31:調節弁、32:ガスタービン発電機冷却水冷却器、33:冷却水配管、34:冷却水、35:冷却水戻り配管、36:冷却水循環ポンプ、37:調節弁、38:燃料加熱器、39:三方温調弁、40:冷却塔、41:空気流量調節弁、43:熱交換器、45:調節弁、100:制御装置。   1: Air inflow path, 2: Temperature detector, 3: Heat exchanger, 4: Temperature detector, 5: Gas turbine power generation equipment, 6: Gas turbine compressor, 7: Combustor, 8: Fuel piping, 9: Gas turbine, 10: Gas turbine generator, 11: Exhaust exhaust path, 12: Exhaust heat recovery boiler, 13: Steam piping, 14: Steam turbine power generation equipment, 15: Steam turbine, 16: Steam turbine generator, 17: Recovery Water supply, 18: Water supply pump, 19: Condenser inlet cooling water, 20: Condenser outlet cooling water, 21: Absorption refrigerator, 22: Extraction steam, 23: Control valve, 24: Cold water circulation pump, 25 : Cold water, 26: cold water piping, 27: temperature detector, 28: switching control device, 29: switching device, 30: cold water return piping, 31: control valve, 32: gas turbine generator cooling water cooler, 33: cooling Water piping, 34: Cooling water, 35: Cooling water return Pipe: 36: Cooling water circulation pump, 37: Control valve, 38: Fuel heater, 39: Three-way temperature control valve, 40: Cooling tower, 41: Air flow control valve, 43: Heat exchanger, 45: Control valve, 100 :Control device.

Claims (3)

ガスタービンと、ガスタービンの排ガスを熱源とする排熱回収ボイラの発生蒸気を使用する蒸気タービンと、これらのガスタービン及び蒸気タービンで駆動される発電機で複合発電設備を構成し、
前記複合発電設備のガスタービンを構成するガスタービン圧縮機に吸入する空気を冷却または加熱する熱交換器を備え、
前記熱交換器の冷却用に熱媒体として冷水及び冷却水をそれぞれ製造する冷凍機を備え、
前記冷凍機で製造した冷水を前記熱交換器の冷却用の熱媒体として供給する冷水配管の系統、及び前記冷凍機で製造した冷却水を前記熱交換器の加温用の熱媒体として供給する冷却水配管の系統をそれぞれ備え、
前記熱交換器で熱交換された熱媒体の冷水または冷却水を前記冷凍機に戻す冷水戻り配管の系統及び冷却水戻り配管の系統をそれぞれ備え、
前記冷水配管と冷却水配管が共に接続されており、前記冷凍機で製造した冷水または冷却水を切り替えて冷水または冷却水のどちらか一方を前記熱交換器に供給する切替調節装置を備え、
前記冷水戻り配管と冷却水戻り配管に共に接続されており、前記熱交換器で熱交換された熱媒体の冷水または冷却水のどちらか一方を切り替えて前記冷凍機に戻す切替装置を備え、
前記切替調節装置及び前記切替装置の操作を同調させて制御する制御装置を備えて、前記冷凍機は蒸気タービンの抽気蒸気で駆動する吸収式冷凍機であって、熱交換器に冷水を供給しているときは、前記制御装置からの指令信号によって熱交換器で熱交換後の冷水を切替装置によって切り替え操作して冷水戻り配管を通じて吸収式冷凍機内の蒸発器に戻すように構成し、熱交換器に冷却水供給しているときは、前記制御装置からの指令信号によって熱交換器で熱交換後の冷却水を切替装置によって切り替え操作して冷却水戻り配管を通じて吸収式冷凍機内の凝縮器に戻すように構成したことを特徴とするガスタービンの吸気温度調節装置。
A combined power generation facility is constituted by a gas turbine, a steam turbine that uses steam generated from an exhaust heat recovery boiler that uses exhaust gas from the gas turbine as a heat source, and a generator driven by these gas turbine and steam turbine,
A heat exchanger for cooling or heating air sucked into a gas turbine compressor constituting the gas turbine of the combined power generation facility,
A refrigerator that produces cold water and cooling water as a heat medium for cooling the heat exchanger,
A system of chilled water piping for supplying cold water produced by the refrigerator as a heat medium for cooling the heat exchanger, and supplying cooling water produced by the refrigerator as a heat medium for heating the heat exchanger. Each has a cooling water piping system,
A cooling water return piping system and a cooling water return piping system each for returning cold water or cooling water of the heat medium heat-exchanged in the heat exchanger to the refrigerator;
The cold water pipe and the cooling water pipe are connected together, and includes a switching adjustment device that switches the cold water or the cooling water produced by the refrigerator and supplies either the cold water or the cooling water to the heat exchanger,
It is connected to both the cold water return pipe and the cooling water return pipe, and includes a switching device for switching either the cold water or the cooling water of the heat medium heat-exchanged by the heat exchanger and returning it to the refrigerator.
The refrigerating machine is an absorption refrigerating machine driven by steam extracted from a steam turbine, and supplies cold water to the heat exchanger. Is configured to switch the chilled water after heat exchange with the heat exchanger by the switching device according to the command signal from the control device and return it to the evaporator in the absorption refrigeration machine through the chilled water return pipe. When the cooling water is supplied to the cooler, the cooling water after the heat exchange is switched by the switching device by the switching device according to the command signal from the control device, and the cooling water is returned to the condenser in the absorption refrigerator through the cooling water return pipe. An intake air temperature control device for a gas turbine, characterized in that it is configured to return .
請求項1に記載のガスタービンの吸気温度調節装置おいて、
ガスタービン圧縮機に吸入する空気を冷却または加熱する前記熱交換器に前記冷凍機の蒸発器で製造した冷水を供給してガスタービン圧縮機に吸入する空気を冷却している場合に、前記冷凍機の凝縮器で製造された冷却水の一部を前記冷却水配管から分岐してガスタービンの燃焼器に供給する燃料の系統に設置した燃料加熱器、または復水器から排熱回収ボイラに給水を供給する給水の系統に設置した別の熱交換器に供給してガスタービンの燃料または排熱回収ボイラの給水の加熱に使用し、前記燃料加熱器または別の熱交換器で熱交換した冷却水を前記冷却水戻り配管を通じて前記冷凍機の蒸発器に戻すようにしたことを特徴とするガスタービンの吸気温度調節装置。
In the intake temperature control device for a gas turbine according to claim 1,
When the cold water produced by the evaporator of the refrigerator is supplied to the heat exchanger that cools or heats the air sucked into the gas turbine compressor to cool the air sucked into the gas turbine compressor, the refrigeration A part of the cooling water produced by the condenser of the machine is branched from the cooling water pipe and supplied to the fuel system of the fuel supplied to the combustor of the gas turbine, or from the condenser to the exhaust heat recovery boiler It is supplied to another heat exchanger installed in the water supply system that supplies the feed water, and is used to heat the feed water of the fuel of the gas turbine or the exhaust heat recovery boiler, and heat is exchanged by the fuel heater or another heat exchanger. An intake air temperature adjusting device for a gas turbine, wherein the cooling water is returned to the evaporator of the refrigerator through the cooling water return pipe.
請求項1に記載のガスタービンの吸気温度調節装置おいて、
ガスタービン圧縮機に吸入する空気を冷却または加熱する前記熱交換器に前記冷凍機の凝縮器で製造した冷却水を供給してガスタービン圧縮機に吸入する空気を加熱している場合に、前記冷凍機の凝縮器で製造された冷水の一部を前記冷水配管から分岐してガスタービンの発電機を冷却する冷却器に供給してガスタービンの発電機の冷却水の冷却に使用し、前記冷却器で熱交換した冷水を前記冷水戻り配管を通じて前記冷凍機の蒸発器に戻すように構成したことを特徴とするガスタービンの吸気温度調節装置。
In the intake temperature control device for a gas turbine according to claim 1,
When the cooling water produced by the condenser of the refrigerator is supplied to the heat exchanger that cools or heats the air sucked into the gas turbine compressor and the air sucked into the gas turbine compressor is heated, A part of the cold water produced by the condenser of the refrigerator is branched from the cold water pipe and supplied to the cooler for cooling the generator of the gas turbine, and used for cooling the cooling water of the generator of the gas turbine, An intake air temperature control device for a gas turbine, wherein the cold water heat-exchanged by a cooler is returned to the evaporator of the refrigerator through the cold water return pipe.
JP2010207984A 2010-09-16 2010-09-16 Intake air temperature control device for gas turbine Active JP5547592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207984A JP5547592B2 (en) 2010-09-16 2010-09-16 Intake air temperature control device for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207984A JP5547592B2 (en) 2010-09-16 2010-09-16 Intake air temperature control device for gas turbine

Publications (2)

Publication Number Publication Date
JP2012062825A JP2012062825A (en) 2012-03-29
JP5547592B2 true JP5547592B2 (en) 2014-07-16

Family

ID=46058785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207984A Active JP5547592B2 (en) 2010-09-16 2010-09-16 Intake air temperature control device for gas turbine

Country Status (1)

Country Link
JP (1) JP5547592B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675517B2 (en) * 2011-07-01 2015-02-25 三菱重工業株式会社 Gas turbine power generation equipment
WO2016148008A1 (en) * 2015-03-17 2016-09-22 三菱重工業株式会社 Intake air cooling method, intake air cooling device executing said method, and waste heat recovery facility and gas turbine plant each comprising said intake air cooling device
KR102117826B1 (en) * 2016-03-30 2020-06-02 미츠비시 쥬고교 가부시키가이샤 Plant and driving method
CN105971736A (en) * 2016-07-01 2016-09-28 陈梦娜 Air inlet temperature adjusting system for gas turbine
CN106765045A (en) * 2016-12-16 2017-05-31 中电投电力工程有限公司 A kind of gas turbine flue gas residual heat using device and method
CN109611210B (en) * 2019-02-13 2024-03-15 国能南京电力试验研究有限公司 Gas turbine inlet air temperature control system
CN112302807A (en) * 2020-11-21 2021-02-02 西安热工研究院有限公司 Gas turbine air inlet double-loop cooling system and method utilizing cooling capacity allowance of refrigerating station
CN114635797A (en) * 2020-12-15 2022-06-17 华能北京热电有限责任公司 Control system for inlet air temperature of gas turbine
CN113266471B (en) * 2021-05-27 2022-04-08 国电环境保护研究院有限公司 Gas turbine inlet air temperature control system based on ground source heat pump and control method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158814A (en) * 1994-11-30 1996-06-18 Toshiba Corp Intake air cooling system for combined cycle plant
JP2899247B2 (en) * 1996-05-28 1999-06-02 川崎重工業株式会社 Gas turbine inlet heating and cooling system
JP3754206B2 (en) * 1998-03-27 2006-03-08 三洋電機株式会社 Single double-effect absorption chiller / heater
JPH11341740A (en) * 1998-05-21 1999-12-10 Toshiba Corp Cooling apparatus and method for power plant
JP2003206752A (en) * 2002-01-17 2003-07-25 Mitsubishi Heavy Ind Ltd Gas turbine equipment
JP4184196B2 (en) * 2003-09-02 2008-11-19 リンナイ株式会社 Hybrid absorption heat pump system
JP4281564B2 (en) * 2004-02-02 2009-06-17 株式会社デンソー Air conditioner for vehicles
JP2005315127A (en) * 2004-04-27 2005-11-10 Mitsubishi Heavy Ind Ltd Gas turbine

Also Published As

Publication number Publication date
JP2012062825A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5547592B2 (en) Intake air temperature control device for gas turbine
JP5927694B2 (en) HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD
JP2007064049A (en) Waste heat recovery system for gas turbine cogeneration equipment
KR20130032225A (en) Energy saving system of ship by using waste heat
US20130269334A1 (en) Power plant with closed brayton cycle
KR102207200B1 (en) Power generation efficiency improvement system through temperature control of intake air of turbine
CN102281742A (en) Closed cabinet body cooling system and wind generating set
US10935287B2 (en) Heat pump system
JP2001324240A (en) Multi-energy system
US10344626B2 (en) Hybrid power generation system
KR100624816B1 (en) Steam supply and power generation system
US10731515B2 (en) Hybrid type power generation system
KR101864983B1 (en) Supercritical CO2 power generating system
KR100644829B1 (en) Cogeneration system
CN103195577B (en) Gas turbine air inlet temperature regulating system
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
CN211082000U (en) Organic Rankine and reverse Carnot cycle coupled waste heat recovery system
JP4986537B2 (en) Gas turbine built-in absorption refrigerator
JP5959861B2 (en) Gas turbine power generation equipment
CN108638794B (en) Comprehensive system for utilizing waste heat of automobile exhaust
KR100976226B1 (en) Microturbine CHP heating and cooling system including microturbine inlet air cooling equipment
CN105041394A (en) Power generation system and running method thereof
WO2013136606A1 (en) Steam generating system
KR101628619B1 (en) generation system having temperature control device for heat exchanger
US11815021B2 (en) Boosting CCHP gas turbine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent or registration of utility model

Ref document number: 5547592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150