JP3246540B2 - Solid electrolytic capacitors - Google Patents

Solid electrolytic capacitors

Info

Publication number
JP3246540B2
JP3246540B2 JP02733794A JP2733794A JP3246540B2 JP 3246540 B2 JP3246540 B2 JP 3246540B2 JP 02733794 A JP02733794 A JP 02733794A JP 2733794 A JP2733794 A JP 2733794A JP 3246540 B2 JP3246540 B2 JP 3246540B2
Authority
JP
Japan
Prior art keywords
curvature
side surfaces
sintered body
anode
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02733794A
Other languages
Japanese (ja)
Other versions
JPH07220984A (en
Inventor
孝史 富澤
敦司 山本
智則 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP02733794A priority Critical patent/JP3246540B2/en
Publication of JPH07220984A publication Critical patent/JPH07220984A/en
Application granted granted Critical
Publication of JP3246540B2 publication Critical patent/JP3246540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサに関
し、さらに詳しく言えば、熱的ストレスや機械的ストレ
スにより固体電解質が損傷を受け難くした形状の陽極焼
結体を有する固体電解コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor, and more particularly, to a solid electrolytic capacitor having an anode sintered body in which a solid electrolyte is hardly damaged by thermal stress or mechanical stress. is there.

【0002】[0002]

【従来の技術】タンタル固体電解コンデンサについてそ
の製造方法を説明すると、まず、タンタル粉末に適当な
バインダーを混合して例えば所定の大きさの直方体状ま
たは円柱状に成形し、陽極リードを植設したうえで、焼
結してタンタルの焼結ペレット(陽極焼結体)を得る。
2. Description of the Related Art A method of manufacturing a tantalum solid electrolytic capacitor will be described. First, an appropriate binder is mixed with a tantalum powder and molded into, for example, a rectangular parallelepiped or a column having a predetermined size, and an anode lead is implanted. Then, sintering is performed to obtain a sintered pellet of tantalum (anode sintered body).

【0003】そして、同焼結ペレットに誘電体としての
酸化皮膜を形成する。通常、この酸化皮膜はリン酸水溶
液もしくは硝酸水溶液による単独化成処理、または硝酸
水溶液による化成を行なった後に、リン酸水溶液による
化成を行なう二段化成処理によって形成される。
An oxide film as a dielectric is formed on the sintered pellet. Usually, this oxide film is formed by a single chemical conversion treatment with a phosphoric acid aqueous solution or a nitric acid aqueous solution, or a two-stage chemical conversion treatment in which a chemical conversion with a nitric acid aqueous solution is performed, followed by a chemical conversion with a phosphoric acid aqueous solution.

【0004】次に、焼結ペレットに二酸化マンガンから
なる固体電解質を形成する。すなわち、同焼結ペレット
を硝酸マンガン水溶液中に浸漬して硝酸マンガンを含浸
させ、引き上げて熱分解を行なう。硝酸マンガンの濃度
を順次高めて数回これを繰り返すとともに、熱分解工程
により損傷した酸化皮膜を修復する目的で再化成を数回
繰り返す。
Next, a solid electrolyte composed of manganese dioxide is formed on the sintered pellet. That is, the sintered pellet is immersed in an aqueous solution of manganese nitrate to be impregnated with manganese nitrate, pulled up, and thermally decomposed. This is repeated several times while sequentially increasing the concentration of manganese nitrate, and re-chemical formation is repeated several times in order to repair the oxide film damaged by the thermal decomposition process.

【0005】しかる後、固体電解質上に陰極導電層とし
てのカーボン層および銀層を形成し、リードフレームに
装着したうえで、最終的に樹脂モールドにより樹脂外装
体が形成される。
After that, a carbon layer and a silver layer as a cathode conductive layer are formed on the solid electrolyte, mounted on a lead frame, and finally a resin outer package is formed by resin molding.

【0006】[0006]

【発明が解決しようとする課題】ところで、この種の焼
結ペレットは、通常、円筒体もしくは角柱体に形成され
るが、機器の小形化に対応するため、焼結ペレットを円
筒体から角柱体にすることにより、体積効率を上げるよ
うにしている。
By the way, this kind of sintered pellet is usually formed into a cylindrical body or a prismatic body, but in order to cope with miniaturization of equipment, the sintered pellet is converted from the cylindrical body into a prismatic body. By doing so, the volume efficiency is increased.

【0007】図3には、角柱体状とした焼結ペレット1
の平面図が示されており、これによれば、同焼結ペレッ
ト1とそれに内接する円筒体状の焼結ペレット1Aの断
面での面積比は1:0.785であり、角柱状とするこ
とにより、その分体積効率を上げることができる。
FIG. 3 shows a sintered pellet 1 having a prismatic shape.
According to this, the area ratio of the cross section of the sintered pellet 1 and the cylindrical sintered pellet 1A inscribed therein is 1: 0.785, which is a prismatic shape. Thereby, the volumetric efficiency can be increased accordingly.

【0008】しかしながら、角柱体焼結ペレット1の場
合、図4に示されているように、その周りに二酸化マン
ガンからなる固体電解質2を形成させる工程で、その角
部に二酸化マンガンの突起2Aが生成される。
However, in the case of the prismatic sintered pellet 1, as shown in FIG. 4, a step 2 A of manganese dioxide is formed at the corner in the step of forming a solid electrolyte 2 made of manganese dioxide around the pellet. Generated.

【0009】この突起2Aには、熱的ストレスや機械的
ストレス、とりわけ樹脂外装体との熱膨脹差による歪み
が集中する。このため、同部分が損傷し易く、漏れ電流
不良を引き起こす原因となり、歩留り率を低下させてい
た。
[0009] Thermal stress and mechanical stress, particularly strain due to a difference in thermal expansion with the resin outer package, are concentrated on the projection 2A. For this reason, the same portion is easily damaged, causing a leakage current defect, and lowering the yield.

【0010】[0010]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、その構成上の特徴は、タ
ンタル、ニオブなどの弁作用金属粉末を焼結してなり、
頂面に陽極リードが植設された陽極焼結体を有し、同陽
極焼結体に化成皮膜、二酸化マンガンからなる固体電解
質および陰極用導電層を順次形成してなる固体電解コン
デンサにおいて、上記陽極焼結体が四角柱状体であっ
て、上記頂面と直交する側面の内、少なくとも対向する
一対の側面が外側に向けて膨らむ円弧面に形成されて
り、上記円弧面の頂点間の距離をRとするとき、同円弧
面の曲率は、隣接する他の側面と交叉する部分(以下、
単に交叉面ともいう)においては0.2R〜0.4R、
また、その交叉面間の曲率は0.8R以上であることを
特徴としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its structural feature is that a valve action metal powder such as tantalum or niobium is sintered,
A solid electrolytic capacitor having an anode sintered body having an anode lead implanted on a top surface, a conversion film, a solid electrolyte made of manganese dioxide, and a cathode conductive layer formed in this order on the anode sintered body, a anode sintered body quadrangular form, of the sides perpendicular to the top surface, contact is formed in an arc face a pair of side surfaces at least opposed bulges toward the outer side
Where R is the distance between the vertices of the arc surface,
The curvature of a surface is determined by the intersection with another adjacent side surface (hereinafter,
0.2R-0.4R,
Also, the curvature between the intersecting planes is 0.8R or more.
Features.

【0011】なわち、交叉面の曲率が0.2R以下で
は、二酸化マンガン(固体電解質)の形成時にその突起
の生成を抑えることが難しく、他方、0.4R以上とす
ると、円筒体に対する体積効率の利点が少なくなる。ま
た、交叉面間の円弧面の曲率が0.8R以下では、同様
に円筒体に対する体積効率の利点が少なくなる。さらに
は、上記陽極焼結体の頂面と側面および底面と側面との
角部にも所定曲率の曲面が形成されてもよい。
[0011] ie, the curvature of the crossover plane below 0.2R, it is difficult to suppress the generation of the protrusion during formation of the manganese dioxide (solid electrolyte), while when the above 0.4R, volume to the cylinder Efficiency benefits are reduced. When the curvature of the arc surface between the intersecting surfaces is 0.8R or less, the advantage of the volumetric efficiency with respect to the cylindrical body similarly decreases. Further, a curved surface having a predetermined curvature may be formed at the corners between the top and side surfaces and the bottom and side surfaces of the anode sintered body.

【0012】[0012]

【作用】上記の構成によれば、陽極焼結体が角柱状であ
っても、相対する一対の側面が円弧面に形成されること
により、同円弧面とそれに隣接する側面との境界部分が
曲面状とされるため、二酸化マンガンの形成時に極端な
突起は生成されない。したがって、角柱体の利点である
体積効率の良さを損なうことなく、製品の歩留り率を向
上させることができる。
According to the above construction, even when the anode sintered body is prismatic, a pair of opposing side surfaces are formed in an arc surface, so that a boundary portion between the arc surface and the adjacent side surface is formed. Since the manganese dioxide is formed, no extreme projection is generated because the manganese dioxide is formed. Therefore, the product yield can be improved without impairing the volumetric efficiency, which is an advantage of the prismatic body.

【0013】[0013]

【実施例】図1には、本発明の実施例にかかる焼結ペレ
ット10が示されている。同焼結ペレット10は、タン
タルやニオブなどの弁作用金属粉末に適当なバインダー
を混合して角柱体状に成形し、その頂面10aに陽極リ
ード11を植設したうえで、焼結することにより得られ
る。
FIG. 1 shows a sintered pellet 10 according to an embodiment of the present invention. The sintered pellet 10 is formed by mixing a valve metal powder such as tantalum or niobium with an appropriate binder, molding the prism into a prismatic shape, implanting an anode lead 11 on the top surface 10a, and sintering the pellet. Is obtained by

【0014】本発明によると、頂面10aと直交する4
つの側面10b〜10eの内、少なくとも相対する一対
の側面、例えば10cと10eは、所定の曲率をもって
外側に向けて膨らむ円弧面に形成されている。なお、他
の側面10b,10dは平坦面である。
According to the present invention, 4
At least a pair of opposing side surfaces, for example, 10c and 10e, of the one side surfaces 10b to 10e are formed as arcuate surfaces which bulge outward with a predetermined curvature. The other side surfaces 10b and 10d are flat surfaces.

【0015】図2には、図1のA−A線に沿った焼結ペ
レット10の横断面が示されており、この実施例におい
ては、対向する側面10b,10d間の距離と、対向す
る側面10c,10eの頂点間の距離がともに等しくさ
れている。すなわち、同焼結ペレット10の原形は、例
えば側面10b(10d)の頂面10aと平行な一辺の
長さがRの断面正四角の角柱体である。
FIG. 2 shows a cross section of the sintered pellet 10 taken along the line AA in FIG. 1. In this embodiment, the distance between the opposing side surfaces 10b and 10d and the opposing side surfaces 10b and 10d are shown. The distance between the vertices of the side surfaces 10c and 10e is equal. That is, the original shape of the sintered pellet 10 is, for example, a prism having a square R-shaped cross section with one side parallel to the top surface 10a of the side surface 10b (10d).

【0016】この一辺の長さRで側面10cおよび10
eの円弧面の曲率を表すと、これらの側面10c,10
eと隣接する他の側面10b,10dとの各交叉面12
aの曲率は0.2R〜0.4Rの範囲であり、また、そ
の交叉面12a,12a間に位置する同側面10c,1
0eの主たる円弧面12bの曲率は0.8R以上である
ことが好ましく、これによれば、平坦な側面10b,1
0dと円弧状の側面10c,10eとの交叉部分が緩や
かな曲面とされるため、図2に想像線で示されているよ
うに、焼結ペレット10の周りに二酸化マンガンよりな
る固体電解質2がその全面にわたってほぼ均等な厚みを
もって形成される。
With the length R of one side, the side surfaces 10c and 10c
If the curvature of the arc surface of e is expressed, these side surfaces 10c, 10c
e and each intersecting surface 12 between the adjacent other side surfaces 10b and 10d
a has a curvature in the range of 0.2R to 0.4R, and has the same side face 10c, 1 located between its crossing faces 12a, 12a.
It is preferable that the curvature of the main arc surface 12b of 0e is 0.8R or more, and according to this, the flat side surfaces 10b, 1
Since the intersection between 0d and the arc-shaped side surfaces 10c and 10e is formed as a gentle curved surface, as shown by the imaginary line in FIG. It is formed with a substantially uniform thickness over the entire surface.

【0017】なお、交叉面12aの曲率が0.2R以下
では、二酸化マンガン(固体電解質)の形成時にその突
起の生成を抑えることが難しく、他方、0.4R以上と
すると、円筒体に対する体積効率の利点が少なくなる。
If the curvature of the intersecting surface 12a is 0.2R or less, it is difficult to suppress the formation of projections when manganese dioxide (solid electrolyte) is formed. The advantage of is reduced.

【0018】この実施例では、4つの側面10b〜10
eの内、対向する1組の側面10c,10eの主たる部
分を曲率0.8R以上の円弧面とすることにより、各側
面間の交叉面12aを0.2〜0.4Rの曲面としてい
るが、これに加えて頂面10aと各側面10b〜10e
間の角部および頂面10aと対向する底面10fと各側
面10b〜10e間の角部にも、所定曲率の曲面を設け
てもよいことはもちろんである。
In this embodiment, four side surfaces 10b to 10b
e, the main part of the pair of opposed side surfaces 10c and 10e is formed as an arc surface having a curvature of 0.8R or more, so that the intersection surface 12a between the side surfaces is a curved surface of 0.2 to 0.4R. , In addition to this, the top surface 10a and each side surface 10b to 10e
It is a matter of course that a curved surface having a predetermined curvature may be provided also at a corner between the bottom surface 10f facing the top surface 10a and each of the side surfaces 10b to 10e.

【0019】その場合の曲率は、上記の好ましい範囲
(0.2R〜0.4R)を基準にして設定することがで
きる。本発明は焼結ペレット10の横断面が必ずしも正
四角に限定されるものでなく、長辺と短辺とを有する矩
形状であってもよく、また、陽極リード11の植設方向
に沿う高さは任意に設定される。
In this case, the curvature can be set based on the preferable range (0.2R to 0.4R) described above. In the present invention, the cross section of the sintered pellet 10 is not necessarily limited to a regular square, but may be a rectangular shape having a long side and a short side. Is set arbitrarily.

【0020】《実施例1》ペレットサイズ横幅0.9×
縦幅0.9×高さ1.0(mm)で相対する一対の側面
を曲率0.8Rの円弧面とし、他の側面との交叉面を
0.2Rの円弧面としたタンタル焼結ペレットを0.0
5%リン酸水溶液中において25Vの直流電圧を印加し
て酸化皮膜を形成した。
Example 1 Pellet size width 0.9 ×
Tantalum sintered pellets with a pair of side surfaces opposing each other with a vertical width of 0.9 × height of 1.0 (mm) and an arc surface with a curvature of 0.8R and an intersection surface with the other side surface with an arc surface of 0.2R. 0.0
An oxide film was formed by applying a DC voltage of 25 V in a 5% phosphoric acid aqueous solution.

【0021】次に、同タンタル焼結ペレットを硝酸マン
ガン水溶液中に浸漬して硝酸マンガンを含浸させ、引き
上げて熱分解を行ない、同タンタル焼結ペレットに二酸
化マンガンよりなる固体電解質を形成した。
Next, the tantalum sintered pellet was immersed in an aqueous solution of manganese nitrate to be impregnated with manganese nitrate, pulled up and thermally decomposed to form a solid electrolyte made of manganese dioxide on the tantalum sintered pellet.

【0022】この場合、硝酸マンガンの濃度を20%,
40%,70%,100%と順次高めて10回熱分解を
繰り返すとともに、熱分解工程により損傷した酸化皮膜
を修復する目的でリン酸水溶液にて再化成を5回繰り返
した。
In this case, the concentration of manganese nitrate is 20%,
The thermal decomposition was repeated 10 times with increasing sequentially to 40%, 70%, and 100%, and the re-chemical formation was repeated 5 times with a phosphoric acid aqueous solution for the purpose of repairing the oxide film damaged by the thermal decomposition step.

【0023】しかる後、この固体電解質上にカーボン層
と銀層とを順次形成し、リードフレームへの取り付けを
経て、樹脂モールド法により樹脂外装体を形成し、製品
サイズ3.2×1.6×1.6(mm)で定格6.3V
3.3μFのタンタル固体電解コンデンサを30000
個作製した。
Thereafter, a carbon layer and a silver layer are sequentially formed on the solid electrolyte, and after attaching to a lead frame, a resin outer package is formed by a resin molding method, and the product size is 3.2 × 1.6. × 1.6 (mm) and rated 6.3V
3.3 μF tantalum solid electrolytic capacitor
This was produced.

【0024】これによると、製品の歩留り率は98.0
%で、漏れ電流(LC)不良および損失角の正接(ta
nδ)不良の双方を含む特性不良率は1.0%であっ
た。そして、その他の原因による不良が1.0%であっ
た。
According to this, the product yield rate is 98.0.
%, The leakage current (LC) defect and the tangent of the loss angle (ta)
nδ) The characteristic failure rate including both failures was 1.0%. And the defect due to other causes was 1.0%.

【0025】また、製品20個をランダムにピックアッ
プし、これについて次の電気的測定を行なった。その結
果、120Hz時の静電容量は最大3.09μF、最小
2.94μF、平均値3.03μFであった。120H
z時のtanδは最大1.9%、最小1.4%、平均値
で1.6%であった。100KHz時のインピーダンス
は最大0.7Ω、最小0.4Ω、平均値で0.6Ωであ
った。また、漏れ電流(LC)については最大0.01
4μA、最小0.008μA、平均値0.010μAで
あった。
Further, 20 products were randomly picked up, and the following electrical measurements were made on them. As a result, the capacitance at 120 Hz was 3.09 μF at the maximum, 2.94 μF at the minimum, and 3.03 μF on average. 120H
The tan δ at z was 1.9% at the maximum, 1.4% at the minimum, and 1.6% on average. The impedance at 100 KHz was 0.7 Ω at the maximum, 0.4 Ω at the minimum, and 0.6 Ω on average. The maximum leakage current (LC) is 0.01
4 μA, minimum 0.008 μA, average value 0.010 μA.

【0026】〈従来例1〉上記実施例1と同じペレット
サイズで角柱状としたままのタンタル焼結ペレットを用
い、上記実施例1と同様にして同寸法、同定格のタンタ
ル固体電解コンデンサを同数作製した。
<Conventional Example 1> Tantalum sintered pellets of the same pellet size and prismatic shape as in Example 1 were used, and the same number of tantalum solid electrolytic capacitors of the same size and rating as in Example 1 were used. Produced.

【0027】この場合、製品の歩留り率は94.0%
で、漏れ電流(LC)不良および損失角の正接(tan
δ)不良の双方を含む特性不良率は3.0%であった。
そして、その他の原因による不良が3.0%であった。
In this case, the product yield rate is 94.0%.
And the tangent (tan) of the leakage current (LC) defect and the loss angle
δ) The characteristic failure rate including both failures was 3.0%.
And the defect by other causes was 3.0%.

【0028】また、実施例1と同じく製品20個をラン
ダムにピックアップし、これについて次の電気的測定を
行なった。その結果、120Hz時の静電容量は最大
3.38μF、最小3.28μF、平均値3.32μF
であった。120Hz時のtanδは最大3.5%、最
小1.7%、平均値で2.5%であった。100KHz
時のインピーダンスは最大2.3Ω、最小0.8Ω、平
均値で1.0Ωであった。また、漏れ電流(LC)につ
いては最大0.015μA、最小0.010μA、平均
値0.012μAであった。
Also, as in Example 1, 20 products were picked up at random and the following electrical measurements were made. As a result, the capacitance at 120 Hz was 3.38 μF at maximum, 3.28 μF at minimum, and 3.32 μF on average.
Met. At 120 Hz, tan δ was 3.5% at the maximum, 1.7% at the minimum, and 2.5% on average. 100KHz
The impedance at the time was 2.3 Ω at the maximum, 0.8 Ω at the minimum, and 1.0 Ω in average. The leakage current (LC) was 0.015 μA at the maximum, 0.010 μA at the minimum, and 0.012 μA on average.

【0029】〈従来例2〉直径0.9mm、軸長1.0
mmの円柱状をなすタンタル焼結ペレットを使用し、上
記実施例1と同様にして同定格のタンタル固体電解コン
デンサを同数作製した。
<Conventional Example 2> Diameter 0.9 mm, axial length 1.0
The same number of tantalum solid electrolytic capacitors of the same rating were produced in the same manner as in Example 1 above, using tantalum sintered pellets having a columnar shape of mm.

【0030】この場合、製品の歩留り率は94.0%
で、漏れ電流(LC)不良および損失角の正接(tan
δ)不良の双方を含む特性不良率は5.0%であった。
そして、その他の原因による不良が1.0%であった。
In this case, the product yield rate is 94.0%
And the tangent (tan) of the leakage current (LC) defect and the loss angle
δ) The characteristic failure rate including both failures was 5.0%.
And the defect due to other causes was 1.0%.

【0031】また、実施例1と同じく製品20個をラン
ダムにピックアップし、これについて次の電気的測定を
行なった。その結果、120Hz時の静電容量は最大
2.53μF、最小2.40μF、平均値2.45μF
であった。120Hz時のtanδは最大4.0%、最
小2.5%、平均値で3.0%であった。100KHz
時のインピーダンスは最大3.5Ω、最小1.5Ω、平
均値で2.0Ωであった。また、漏れ電流(LC)につ
いては最大0.016μA、最小0.010μA、平均
値0.013μAであった。
As in Example 1, 20 products were randomly picked up, and the following electrical measurements were made. As a result, the capacitance at 120 Hz is 2.53 μF at maximum, 2.40 μF at minimum, and 2.45 μF on average.
Met. At 120 Hz, tan δ was 4.0% at the maximum, 2.5% at the minimum, and 3.0% on average. 100KHz
The impedance at the time was 3.5Ω at the maximum, 1.5Ω at the minimum, and 2.0Ω in average. The leakage current (LC) was 0.016 μA at the maximum, 0.010 μA at the minimum, and 0.013 μA on average.

【0032】なお、比較を容易にするため、上記実施例
1と従来例1、2の測定結果を表1と表2に示す。
Tables 1 and 2 show the measurement results of Example 1 and Conventional Examples 1 and 2 for easy comparison.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】この表から分かるように、本発明によれ
ば、加工不良率と特性不良率、特に漏れ電流値とtan
δ値が大幅に改善され、製品歩留り率が飛躍的に向上す
る。
As can be seen from this table, according to the present invention, the processing failure rate and the characteristic failure rate, in particular, the leakage current value and the tan
The δ value is greatly improved, and the product yield is dramatically improved.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
四角柱状焼結ペレットの4つの側面の内、少なくとも対
向する一対の側面を外側に向けて膨らむ円弧面とし、そ
の円弧面の頂点間の距離をRとして、隣接する他の側面
との交叉面については0.2R〜0.4Rの曲率とし、
また、その交叉面間については0.8R以上の曲率とし
たことにより、焼結ペレットの周りに二酸化マンガンよ
りなる固体電解質を形成する際、その角部を含めて固体
電解質ほぼ均等の厚みをもって形成することができ
As described above, according to the present invention,
Of the four side surfaces of the quadrangular prism sintered pellets, and inflated arcuate surface towards the pair of side surfaces, at least facing the outer side, its
Let R be the distance between the vertices of the arc surface of
With a curvature of 0.2R to 0.4R,
Also, the curvature between the intersecting surfaces should be 0.8R or more.
By the, when forming the solid electrolyte consisting of manganese dioxide around the sintered pellets can be formed with a substantially uniform thickness of the solid electrolyte, including the corner portion
You .

【0037】これにより、角柱状の焼結ペレットであっ
ても、熱的ストレスや機械的ストレスにより固体電解質
が損傷を受けるおそれがなく、製品の歩留り率が大幅に
向上する。
As a result, even if the sintered pellets are prismatic, the solid electrolyte is not likely to be damaged by thermal stress or mechanical stress, and the yield of the product is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解コンデンサに用いられる焼結
ペレットの一実施例を示した斜視図。
FIG. 1 is a perspective view showing one embodiment of a sintered pellet used for a solid electrolytic capacitor of the present invention.

【図2】図1のA−A線断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】角柱ペレットと円柱ペレットの体積効率を説明
するための説明図。
FIG. 3 is an explanatory diagram for explaining the volume efficiency of prisms and cylinders.

【図4】従来の角柱ペレットに固体電解質を形成した状
態を説明するための断面図。
FIG. 4 is a cross-sectional view for explaining a state in which a solid electrolyte is formed on a conventional prism pellet.

【符号の説明】[Explanation of symbols]

10 焼結ペレット 10a 頂面 10b〜10e 側面 10f 底面 11 陽極リード 12a 交叉面 12b 円弧面 DESCRIPTION OF SYMBOLS 10 Sintered pellet 10a Top surface 10b-10e Side surface 10f Bottom surface 11 Anode lead 12a Crossing surface 12b Arc surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭60−172340(JP,U) 実開 平2−88229(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01G 9/052 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-172340 (JP, U) JP-A-2-88229 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 9/052

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タンタル、ニオブなどの弁作用金属粉末
を焼結してなり、頂面に陽極リードが植設された陽極焼
結体を有し、同陽極焼結体に化成皮膜、二酸化マンガン
からなる固体電解質および陰極用導電層を順次形成して
なる固体電解コンデンサにおいて、上記陽極焼結体が四
角柱状体であって、上記頂面と直交する側面の内、少な
くとも対向する一対の側面が外側に向けて膨らむ円弧面
に形成されており、上記円弧面の頂点間の距離をRとす
るとき、同円弧面の曲率は、隣接する他の側面との交叉
面においては0.2R〜0.4R、また、その交叉面間
の曲率は0.8R以上であることを特徴とする固体電解
コンデンサ。
An anode sintered body obtained by sintering a valve metal powder such as tantalum or niobium and having an anode lead implanted on a top surface thereof, wherein the anode sintered body is provided with a chemical conversion film and manganese dioxide. in the solid electrolyte and a solid electrolytic capacitor formed by sequentially forming a cathode conductive layer made of, a the anode sintered body is quadrangular form, of the sides perpendicular to the top surface, a pair of side surfaces of at least facing It is formed in an arc surface bulging toward the outer side, to the distance between the apexes of the arcuate surface and R
The curvature of the arc surface, the intersection with the other adjacent side
0.2R to 0.4R on the surface, and between the intersections
Characterized by having a curvature of 0.8R or more.
Capacitors.
【請求項2】 上記陽極焼結体の頂面と側面および底面
と側面との角部にも所定曲率の曲面が形成されているこ
とを特徴とする請求項1に記載の固体電解コンデンサ。
2. A top surface, side surfaces and a bottom surface of the anode sintered body.
A curved surface with a predetermined curvature is also formed at the corner between
The solid electrolytic capacitor according to claim 1, wherein:
JP02733794A 1994-01-31 1994-01-31 Solid electrolytic capacitors Expired - Fee Related JP3246540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02733794A JP3246540B2 (en) 1994-01-31 1994-01-31 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02733794A JP3246540B2 (en) 1994-01-31 1994-01-31 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH07220984A JPH07220984A (en) 1995-08-18
JP3246540B2 true JP3246540B2 (en) 2002-01-15

Family

ID=12218254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02733794A Expired - Fee Related JP3246540B2 (en) 1994-01-31 1994-01-31 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3246540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116137209A (en) * 2019-03-27 2023-05-19 松下知识产权经营株式会社 Electrolytic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JPH07220984A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
KR101235437B1 (en) Electrolytic capacitor and method for manufacturing the same
JP2002367867A (en) Electrode member for solid electrolytic capacitor, method of manufacturing it and solid electrolytic capacitor using this
US20210151258A1 (en) Solid electrolyte capacitor and fabrication method thereof
KR102634211B1 (en) Electrode body, electrolytic capacitor having electrode body, and method for manufacturing the electrode body
KR101140012B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2010251436A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP3246540B2 (en) Solid electrolytic capacitors
JP3199096B2 (en) Solid electrolytic capacitors
JP2019133983A (en) Anode foil, electrolytic capacitor, manufacturing method of anode foil, and manufacturing method of electrolytic capacitor
JP2005064238A (en) Chip type solid electrolytic capacitor
JP3281658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284192A (en) Solid electrolyte capacitor and its manufacturing method
JPH03231414A (en) Solid electrolytic capacitor
JP3202040B2 (en) Solid electrolytic capacitors
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2004207686A (en) Chip-type solid-state electrolytic capacitor and manufacturing method therefor
JP4164911B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPS58153322A (en) Condenser
JP3367221B2 (en) Electrolytic capacitor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JPH0312450B2 (en)
JP2920807B2 (en) Electrolytic capacitor element
JPH07201671A (en) Solid state electrolytic capacitor
KR20000030983A (en) Aluminum thin film for aluminum electrolytic capacitor having doble dielectric layer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011003

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees