JPH07220984A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH07220984A
JPH07220984A JP2733794A JP2733794A JPH07220984A JP H07220984 A JPH07220984 A JP H07220984A JP 2733794 A JP2733794 A JP 2733794A JP 2733794 A JP2733794 A JP 2733794A JP H07220984 A JPH07220984 A JP H07220984A
Authority
JP
Japan
Prior art keywords
side surfaces
electrolytic capacitor
solid electrolytic
curvature
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2733794A
Other languages
Japanese (ja)
Other versions
JP3246540B2 (en
Inventor
Takashi Tomizawa
孝史 富澤
Atsushi Yamamoto
敦司 山本
Tomonori Aoki
智則 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP02733794A priority Critical patent/JP3246540B2/en
Publication of JPH07220984A publication Critical patent/JPH07220984A/en
Application granted granted Critical
Publication of JP3246540B2 publication Critical patent/JP3246540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve yield of a product by eliminating generation of a protrusion of solid electrolyte at a corner of a pyramidal pellet when the electrolyte is formed at the pellet. CONSTITUTION:One set of opposed side faces 10c, 10e of four side faces 10b-10e of a pyramidal pellet are formed in circular arc-like faces 12b extended toward outside with a predetermined curvature, and a crossing surface 12a between the face 12b and the other side face is also formed in a curved surface having a predetermined curvature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサに関
し、さらに詳しく言えば、熱的ストレスや機械的ストレ
スにより固体電解質が損傷を受け難くした形状の陽極焼
結体を有する固体電解コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor having an anode sintered body having a shape in which the solid electrolyte is less likely to be damaged by thermal stress or mechanical stress. is there.

【0002】[0002]

【従来の技術】タンタル固体電解コンデンサについてそ
の製造方法を説明すると、まず、タンタル粉末に適当な
バインダーを混合して例えば所定の大きさの直方体状ま
たは円柱状に成形し、陽極リードを植設したうえで、焼
結してタンタルの焼結ペレット(陽極焼結体)を得る。
2. Description of the Related Art A method of manufacturing a tantalum solid electrolytic capacitor will be described. First, a suitable binder is mixed with tantalum powder to form a rectangular parallelepiped or a cylinder having a predetermined size, and an anode lead is implanted. Then, it is sintered to obtain a sintered pellet of tantalum (anode sintered body).

【0003】そして、同焼結ペレットに誘電体としての
酸化皮膜を形成する。通常、この酸化皮膜はリン酸水溶
液もしくは硝酸水溶液による単独化成処理、または硝酸
水溶液による化成を行なった後に、リン酸水溶液による
化成を行なう二段化成処理によって形成される。
Then, an oxide film as a dielectric is formed on the sintered pellet. Usually, this oxide film is formed by a single chemical conversion treatment using a phosphoric acid aqueous solution or a nitric acid aqueous solution, or a two-step chemical conversion treatment in which chemical conversion is performed using a nitric acid aqueous solution and then phosphoric acid aqueous solution.

【0004】次に、焼結ペレットに二酸化マンガンから
なる固体電解質を形成する。すなわち、同焼結ペレット
を硝酸マンガン水溶液中に浸漬して硝酸マンガンを含浸
させ、引き上げて熱分解を行なう。硝酸マンガンの濃度
を順次高めて数回これを繰り返すとともに、熱分解工程
により損傷した酸化皮膜を修復する目的で再化成を数回
繰り返す。
Next, a solid electrolyte made of manganese dioxide is formed on the sintered pellet. That is, the same sintered pellet is immersed in an aqueous solution of manganese nitrate to impregnate it with manganese nitrate and then pulled up for thermal decomposition. The concentration of manganese nitrate is sequentially increased and this is repeated several times, and re-formation is repeated several times for the purpose of repairing the oxide film damaged by the thermal decomposition process.

【0005】しかる後、固体電解質上に陰極導電層とし
てのカーボン層および銀層を形成し、リードフレームに
装着したうえで、最終的に樹脂モールドにより樹脂外装
体が形成される。
After that, a carbon layer and a silver layer as a cathode conductive layer are formed on the solid electrolyte and mounted on a lead frame, and finally a resin outer package is formed by resin molding.

【0006】[0006]

【発明が解決しようとする課題】ところで、この種の焼
結ペレットは、通常、円筒体もしくは角柱体に形成され
るが、機器の小形化に対応するため、焼結ペレットを円
筒体から角柱体にすることにより、体積効率を上げるよ
うにしている。
By the way, this kind of sintered pellet is usually formed into a cylindrical body or a prism, but in order to cope with downsizing of equipment, the sintered pellet is changed from the cylinder to the prism. By doing so, the volume efficiency is increased.

【0007】図3には、角柱体状とした焼結ペレット1
の平面図が示されており、これによれば、同焼結ペレッ
ト1とそれに内接する円筒体状の焼結ペレット1Aの断
面での面積比は1:0.785であり、角柱状とするこ
とにより、その分体積効率を上げることができる。
FIG. 3 shows a sintered pellet 1 having a prismatic shape.
According to this, the area ratio in the cross section of the same sintered pellet 1 and the cylindrical sintered pellet 1A inscribed therein is 1: 0.785, which is a prismatic shape. As a result, the volume efficiency can be increased accordingly.

【0008】しかしながら、角柱体焼結ペレット1の場
合、図4に示されているように、その周りに二酸化マン
ガンからなる固体電解質2を形成させる工程で、その角
部に二酸化マンガンの突起2Aが生成される。
However, in the case of the prismatic sintered pellet 1, as shown in FIG. 4, in the step of forming the solid electrolyte 2 made of manganese dioxide around it, the protrusions 2A of manganese dioxide are formed at the corners. Is generated.

【0009】この突起2Aには、熱的ストレスや機械的
ストレス、とりわけ樹脂外装体との熱膨脹差による歪み
が集中する。このため、同部分が損傷し易く、漏れ電流
不良を引き起こす原因となり、歩留り率を低下させてい
た。
Thermal stress and mechanical stress, especially distortion due to the difference in thermal expansion from the resin exterior body, concentrates on the protrusion 2A. For this reason, the same portion is easily damaged, which causes a defective leakage current, thus lowering the yield rate.

【0010】[0010]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、その構成上の特徴は、タ
ンタル、ニオブなどの弁作用金属粉末を焼結してなり、
頂面に陽極リードが植設された陽極焼結体を有し、同陽
極焼結体に化成皮膜、二酸化マンガンからなる固体電解
質および陰極用導電層を順次形成してなる固体電解コン
デンサにおいて、上記陽極焼結体が四角柱状体であっ
て、上記頂面と直交する側面の内、少なくとも対向する
一対の側面が所定の曲率をもって外側に向けて膨らむ円
弧面に形成されていることにある。
The present invention has been made in order to solve the above-mentioned problems, and is characterized in that it is formed by sintering valve action metal powder such as tantalum or niobium.
A solid electrolytic capacitor having an anode sintered body having an anode lead implanted on the top surface thereof, and a chemical conversion film, a solid electrolyte consisting of manganese dioxide, and a conductive layer for a cathode being sequentially formed on the anode sintered body. The anode sintered body is a quadrangular prism, and at least a pair of side surfaces facing each other among the side surfaces orthogonal to the top surface are formed into arcuate surfaces that bulge outward with a predetermined curvature.

【0011】この場合、上記円弧面の頂点間の距離をR
とするとき、同円弧面の曲率は、隣接する他の側面と交
叉する部分(以下、単に交叉面ともいう)においては
0.2R〜0.4R、また、その交叉面間の曲率は0.
8R以上であることが好ましい。すなわち、交叉面の曲
率が0.2R以下では、二酸化マンガン(固体電解質)
の形成時にその突起の生成を抑えることが難しく、他
方、0.4R以上とすると、円筒体に対する体積効率の
利点が少なくなる。また、交叉面間の円弧面の曲率が
0.8R以下では、同様に円筒体に対する体積効率の利
点が少なくなる。さらには、上記陽極焼結体の頂面と側
面および底面と側面との角部にも所定曲率の曲面が形成
されてもよい。
In this case, the distance between the vertices of the arc surface is R
, The curvature of the same arc surface is 0.2R to 0.4R in a portion intersecting with another adjacent side surface (hereinafter, also simply referred to as an intersection surface), and the curvature between the intersection surfaces is 0.
It is preferably 8R or more. That is, when the curvature of the intersecting surface is 0.2R or less, manganese dioxide (solid electrolyte)
When it is formed, it is difficult to suppress the formation of the protrusions. On the other hand, when it is 0.4 R or more, the advantage of the volumetric efficiency with respect to the cylindrical body decreases. Further, when the curvature of the circular arc surface between the intersecting surfaces is 0.8R or less, the advantage of the volumetric efficiency with respect to the cylindrical body is similarly reduced. Furthermore, curved surfaces having a predetermined curvature may be formed at the corners of the top surface and side surfaces and the bottom surface and side surfaces of the above-mentioned anode sintered body.

【0012】[0012]

【作用】上記の構成によれば、陽極焼結体が角柱状であ
っても、相対する一対の側面が円弧面に形成されること
により、同円弧面とそれに隣接する側面との境界部分が
曲面状とされるため、二酸化マンガンの形成時に極端な
突起は生成されない。したがって、角柱体の利点である
体積効率の良さを損なうことなく、製品の歩留り率を向
上させることができる。
According to the above construction, even if the anodic sintered body has a prismatic shape, the pair of opposite side surfaces are formed into arcuate surfaces, so that the boundary portion between the arcuate surfaces and the side surfaces adjacent thereto is reduced. Since it is curved, no extreme protrusion is generated during the formation of manganese dioxide. Therefore, the yield rate of products can be improved without impairing the good volume efficiency, which is an advantage of the prismatic body.

【0013】[0013]

【実施例】図1には、本発明の実施例にかかる焼結ペレ
ット10が示されている。同焼結ペレット10は、タン
タルやニオブなどの弁作用金属粉末に適当なバインダー
を混合して角柱体状に成形し、その頂面10aに陽極リ
ード11を植設したうえで、焼結することにより得られ
る。
EXAMPLE FIG. 1 shows a sintered pellet 10 according to an example of the present invention. The sintered pellets 10 are formed by mixing a valve action metal powder such as tantalum or niobium with an appropriate binder to form a prismatic shape, implanting the anode lead 11 on the top surface 10a, and then sintering. Is obtained by

【0014】本発明によると、頂面10aと直交する4
つの側面10b〜10eの内、少なくとも相対する一対
の側面、例えば10cと10eは、所定の曲率をもって
外側に向けて膨らむ円弧面に形成されている。なお、他
の側面10b,10dは平坦面である。
According to the present invention, 4 which is orthogonal to the top surface 10a
Of the two side surfaces 10b to 10e, at least a pair of opposing side surfaces, for example, 10c and 10e are formed into arcuate surfaces that bulge outward with a predetermined curvature. The other side surfaces 10b and 10d are flat surfaces.

【0015】図2には、図1のA−A線に沿った焼結ペ
レット10の横断面が示されており、この実施例におい
ては、対向する側面10b,10d間の距離と、対向す
る側面10c,10eの頂点間の距離がともに等しくさ
れている。すなわち、同焼結ペレット10の原形は、例
えば側面10b(10d)の頂面10aと平行な一辺の
長さがRの断面正四角の角柱体である。
FIG. 2 shows a cross section of the sintered pellet 10 taken along the line AA of FIG. 1, and in this embodiment, the distance between the opposite side surfaces 10b and 10d and the opposite side surfaces 10b and 10d. The distances between the vertices of the side surfaces 10c and 10e are equal. That is, the original shape of the sintered pellet 10 is, for example, a prismatic body having a regular square cross section with one side length R parallel to the top surface 10a of the side surface 10b (10d).

【0016】この一辺の長さRで側面10cおよび10
eの円弧面の曲率を表すと、これらの側面10c,10
eと隣接する他の側面10b,10dとの各交叉面12
aの曲率は0.2R〜0.4Rの範囲であり、また、そ
の交叉面12a,12a間に位置する同側面10c,1
0eの主たる円弧面12bの曲率は0.8R以上である
ことが好ましく、これによれば、平坦な側面10b,1
0dと円弧状の側面10c,10eとの交叉部分が緩や
かな曲面とされるため、図2に想像線で示されているよ
うに、焼結ペレット10の周りに二酸化マンガンよりな
る固体電解質2がその全面にわたってほぼ均等な厚みを
もって形成される。
With the length R of this side, the side surfaces 10c and 10
When the curvature of the arc surface of e is expressed, these side surfaces 10c, 10
Crossing surfaces 12 between the e and the other side surfaces 10b and 10d adjacent to each other
The curvature of a is in the range of 0.2R to 0.4R, and the side surfaces 10c, 1 located between the intersecting surfaces 12a, 12a.
The curvature of the main arcuate surface 12b of 0e is preferably 0.8 R or more, and the flat side surfaces 10b, 1
Since the intersection of 0d and the side surfaces 10c, 10e having an arc shape is a gently curved surface, the solid electrolyte 2 made of manganese dioxide is formed around the sintered pellet 10 as shown by an imaginary line in FIG. The entire surface is formed with a substantially uniform thickness.

【0017】なお、交叉面12aの曲率が0.2R以下
では、二酸化マンガン(固体電解質)の形成時にその突
起の生成を抑えることが難しく、他方、0.4R以上と
すると、円筒体に対する体積効率の利点が少なくなる。
When the curvature of the intersecting surface 12a is 0.2R or less, it is difficult to suppress the formation of protrusions when manganese dioxide (solid electrolyte) is formed. On the other hand, when it is 0.4R or more, the volumetric efficiency of the cylindrical body is increased. The benefits of are less.

【0018】この実施例では、4つの側面10b〜10
eの内、対向する1組の側面10c,10eの主たる部
分を曲率0.8R以上の円弧面とすることにより、各側
面間の交叉面12aを0.2〜0.4Rの曲面としてい
るが、これに加えて頂面10aと各側面10b〜10e
間の角部および頂面10aと対向する底面10fと各側
面10b〜10e間の角部にも、所定曲率の曲面を設け
てもよいことはもちろんである。
In this embodiment, four side surfaces 10b-10b are provided.
Although a main portion of the pair of facing side surfaces 10c and 10e of e is an arc surface having a curvature of 0.8R or more, the intersecting surface 12a between the side surfaces is a curved surface of 0.2 to 0.4R. In addition to this, the top surface 10a and each side surface 10b to 10e
It is needless to say that curved surfaces having a predetermined curvature may be provided also at the corners between them and the corners between the bottom surface 10f and the respective side surfaces 10b to 10e that face the top surface 10a.

【0019】その場合の曲率は、上記の好ましい範囲
(0.2R〜0.4R)を基準にして設定することがで
きる。本発明は焼結ペレット10の横断面が必ずしも正
四角に限定されるものでなく、長辺と短辺とを有する矩
形状であってもよく、また、陽極リード11の植設方向
に沿う高さは任意に設定される。
The curvature in that case can be set with reference to the above-mentioned preferable range (0.2R to 0.4R). In the present invention, the cross section of the sintered pellet 10 is not necessarily limited to a regular square, and may be a rectangular shape having long sides and short sides. Is arbitrarily set.

【0020】《実施例1》ペレットサイズ横幅0.9×
縦幅0.9×高さ1.0(mm)で相対する一対の側面
を曲率0.8Rの円弧面とし、他の側面との交叉面を
0.2Rの円弧面としたタンタル焼結ペレットを0.0
5%リン酸水溶液中において25Vの直流電圧を印加し
て酸化皮膜を形成した。
Example 1 Pellet size width 0.9 ×
A tantalum sintered pellet in which a pair of side surfaces having a vertical width of 0.9 and a height of 1.0 (mm) are arc surfaces having a curvature of 0.8R, and intersecting surfaces with other side surfaces are arc surfaces having a radius of 0.2R. To 0.0
A DC voltage of 25 V was applied in a 5% phosphoric acid aqueous solution to form an oxide film.

【0021】次に、同タンタル焼結ペレットを硝酸マン
ガン水溶液中に浸漬して硝酸マンガンを含浸させ、引き
上げて熱分解を行ない、同タンタル焼結ペレットに二酸
化マンガンよりなる固体電解質を形成した。
Next, the same tantalum sintered pellet was immersed in an aqueous solution of manganese nitrate to impregnate it with manganese nitrate, and was pulled up for thermal decomposition to form a solid electrolyte of manganese dioxide on the same tantalum sintered pellet.

【0022】この場合、硝酸マンガンの濃度を20%,
40%,70%,100%と順次高めて10回熱分解を
繰り返すとともに、熱分解工程により損傷した酸化皮膜
を修復する目的でリン酸水溶液にて再化成を5回繰り返
した。
In this case, the concentration of manganese nitrate is 20%,
The thermal decomposition was repeated 10 times by sequentially increasing it to 40%, 70%, and 100%, and re-formation was repeated 5 times with an aqueous phosphoric acid solution for the purpose of repairing the oxide film damaged by the thermal decomposition step.

【0023】しかる後、この固体電解質上にカーボン層
と銀層とを順次形成し、リードフレームへの取り付けを
経て、樹脂モールド法により樹脂外装体を形成し、製品
サイズ3.2×1.6×1.6(mm)で定格6.3V
3.3μFのタンタル固体電解コンデンサを30000
個作製した。
Thereafter, a carbon layer and a silver layer are sequentially formed on this solid electrolyte, and after being attached to a lead frame, a resin exterior body is formed by a resin molding method, and the product size is 3.2 × 1.6. × 1.6 (mm) rating 6.3V
3μF tantalum solid electrolytic capacitor 30000
Individually made.

【0024】これによると、製品の歩留り率は98.0
%で、漏れ電流(LC)不良および損失角の正接(ta
nδ)不良の双方を含む特性不良率は1.0%であっ
た。そして、その他の原因による不良が1.0%であっ
た。
According to this, the product yield rate is 98.0.
%, Leakage current (LC) failure and loss angle tangent (ta
The characteristic defect rate including both of nδ) defects was 1.0%. The defects due to other causes were 1.0%.

【0025】また、製品20個をランダムにピックアッ
プし、これについて次の電気的測定を行なった。その結
果、120Hz時の静電容量は最大3.09μF、最小
2.94μF、平均値3.03μFであった。120H
z時のtanδは最大1.9%、最小1.4%、平均値
で1.6%であった。100KHz時のインピーダンス
は最大0.7Ω、最小0.4Ω、平均値で0.6Ωであ
った。また、漏れ電流(LC)については最大0.01
4μA、最小0.008μA、平均値0.010μAで
あった。
Twenty products were randomly picked up, and the following electrical measurements were carried out for these. As a result, the maximum electrostatic capacity at 120 Hz was 3.09 μF, the minimum was 2.94 μF, and the average value was 3.03 μF. 120H
The maximum tan δ at z was 1.9%, the minimum was 1.4%, and the average value was 1.6%. The maximum impedance at 100 KHz was 0.7Ω, the minimum was 0.4Ω, and the average value was 0.6Ω. The maximum leakage current (LC) is 0.01
The value was 4 μA, the minimum value was 0.008 μA, and the average value was 0.010 μA.

【0026】〈従来例1〉上記実施例1と同じペレット
サイズで角柱状としたままのタンタル焼結ペレットを用
い、上記実施例1と同様にして同寸法、同定格のタンタ
ル固体電解コンデンサを同数作製した。
<Prior art example 1> Using tantalum sintered pellets having the same pellet size and prismatic shape as in the above-mentioned Example 1, the same number and the same number of tantalum solid electrolytic capacitors having the same size and rating as in the above-mentioned Example 1 are used. It was made.

【0027】この場合、製品の歩留り率は94.0%
で、漏れ電流(LC)不良および損失角の正接(tan
δ)不良の双方を含む特性不良率は3.0%であった。
そして、その他の原因による不良が3.0%であった。
In this case, the product yield rate is 94.0%.
, The leakage current (LC) defect and the loss angle tangent (tan
δ) The characteristic defect rate including both defects was 3.0%.
The defects due to other causes were 3.0%.

【0028】また、実施例1と同じく製品20個をラン
ダムにピックアップし、これについて次の電気的測定を
行なった。その結果、120Hz時の静電容量は最大
3.38μF、最小3.28μF、平均値3.32μF
であった。120Hz時のtanδは最大3.5%、最
小1.7%、平均値で2.5%であった。100KHz
時のインピーダンスは最大2.3Ω、最小0.8Ω、平
均値で1.0Ωであった。また、漏れ電流(LC)につ
いては最大0.015μA、最小0.010μA、平均
値0.012μAであった。
Further, as in Example 1, 20 products were picked up at random and the following electrical measurements were carried out. As a result, the maximum capacitance at 120 Hz is 3.38 μF, the minimum is 3.28 μF, and the average value is 3.32 μF.
Met. The maximum tan δ at 120 Hz was 3.5%, the minimum was 1.7%, and the average value was 2.5%. 100 KHz
The maximum impedance was 2.3Ω, the minimum was 0.8Ω, and the average value was 1.0Ω. Regarding the leakage current (LC), the maximum value was 0.015 μA, the minimum value was 0.010 μA, and the average value was 0.012 μA.

【0029】〈従来例2〉直径0.9mm、軸長1.0
mmの円柱状をなすタンタル焼結ペレットを使用し、上
記実施例1と同様にして同定格のタンタル固体電解コン
デンサを同数作製した。
<Conventional example 2> Diameter 0.9 mm, axial length 1.0
The same number of tantalum solid electrolytic capacitors having the same rating were produced in the same manner as in Example 1 using the columnar sintered tantalum pellets having a diameter of mm.

【0030】この場合、製品の歩留り率は94.0%
で、漏れ電流(LC)不良および損失角の正接(tan
δ)不良の双方を含む特性不良率は5.0%であった。
そして、その他の原因による不良が1.0%であった。
In this case, the product yield rate is 94.0%.
, The leakage current (LC) defect and the loss angle tangent (tan
δ) The characteristic defect rate including both defects was 5.0%.
The defects due to other causes were 1.0%.

【0031】また、実施例1と同じく製品20個をラン
ダムにピックアップし、これについて次の電気的測定を
行なった。その結果、120Hz時の静電容量は最大
2.53μF、最小2.40μF、平均値2.45μF
であった。120Hz時のtanδは最大4.0%、最
小2.5%、平均値で3.0%であった。100KHz
時のインピーダンスは最大3.5Ω、最小1.5Ω、平
均値で2.0Ωであった。また、漏れ電流(LC)につ
いては最大0.016μA、最小0.010μA、平均
値0.013μAであった。
In the same manner as in Example 1, 20 products were randomly picked up and the following electrical measurement was carried out. As a result, the maximum capacitance at 120 Hz is 2.53 μF, the minimum is 2.40 μF, and the average is 2.45 μF.
Met. The maximum tan δ at 120 Hz was 4.0%, the minimum was 2.5%, and the average value was 3.0%. 100 KHz
The impedance at that time was 3.5Ω at maximum, 1.5Ω at minimum, and 2.0Ω on average. Regarding the leakage current (LC), the maximum value was 0.016 μA, the minimum value was 0.010 μA, and the average value was 0.013 μA.

【0032】なお、比較を容易にするため、上記実施例
1と従来例1、2の測定結果を表1と表2に示す。
In order to facilitate comparison, the measurement results of Example 1 and Conventional Examples 1 and 2 are shown in Tables 1 and 2.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】この表から分かるように、本発明によれ
ば、加工不良率と特性不良率、特に漏れ電流値とtan
δ値が大幅に改善され、製品歩留り率が飛躍的に向上す
る。
As can be seen from this table, according to the present invention, the processing defect rate and the characteristic defect rate, particularly the leakage current value and the tan.
The δ value is greatly improved, and the product yield rate is dramatically improved.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
四角柱状焼結ペレットの4つの側面の内、少なくとも対
向する一対の側面を所定の曲率をもって外側に向けて膨
らむ円弧面にとするとともに、その円弧面と他の側面と
の交叉面を所定の曲率の曲面としたことにより、同焼結
ペレットの周りに二酸化マンガンよりなる固体電解質を
形成する際、その角部を含めて固体電解質がほぼ均等の
厚みをもって形成されることになる。
As described above, according to the present invention,
Of the four side surfaces of the quadrangular prism-shaped sintered pellet, at least a pair of side surfaces facing each other are formed into arc surfaces that bulge outward with a predetermined curvature, and the intersection surface of the arc surface and the other side surface has a predetermined curvature. Due to the curved surface, when the solid electrolyte made of manganese dioxide is formed around the sintered pellet, the solid electrolyte is formed with a substantially uniform thickness including the corners.

【0037】これにより、角柱状の焼結ペレットであっ
ても、熱的ストレスや機械的ストレスにより固体電解質
が損傷を受けるおそれがなく、製品の歩留り率が大幅に
向上する。
As a result, even in the case of prismatic sintered pellets, there is no risk of damage to the solid electrolyte due to thermal stress or mechanical stress, and the yield rate of products is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解コンデンサに用いられる焼結
ペレットの一実施例を示した斜視図。
FIG. 1 is a perspective view showing an example of a sintered pellet used in a solid electrolytic capacitor of the present invention.

【図2】図1のA−A線断面図FIG. 2 is a sectional view taken along line AA of FIG.

【図3】角柱ペレットと円柱ペレットの体積効率を説明
するための説明図。
FIG. 3 is an explanatory diagram for explaining the volume efficiency of prismatic pellets and cylindrical pellets.

【図4】従来の角柱ペレットに固体電解質を形成した状
態を説明するための断面図。
FIG. 4 is a cross-sectional view for explaining a state in which a solid electrolyte is formed on a conventional prismatic pellet.

【符号の説明】[Explanation of symbols]

10 焼結ペレット 10a 頂面 10b〜10e 側面 10f 底面 11 陽極リード 12a 交叉面 12b 円弧面 10 Sintered Pellet 10a Top Surface 10b to 10e Side Surface 10f Bottom Surface 11 Anode Lead 12a Crossing Surface 12b Arc Surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タンタル、ニオブなどの弁作用金属粉末
を焼結してなり、頂面に陽極リードが植設された陽極焼
結体を有し、同陽極焼結体に化成皮膜、二酸化マンガン
からなる固体電解質および陰極用導電層を順次形成して
なる固体電解コンデンサにおいて、上記陽極焼結体が四
角柱状体であって、上記頂面と直交する側面の内、少な
くとも対向する一対の側面が所定の曲率をもって外側に
向けて膨らむ円弧面に形成されていることを特徴とする
固体電解コンデンサ。
1. An anode sintered body made by sintering valve action metal powder such as tantalum or niobium, and having anode leads implanted on the top surface, and a chemical conversion film, manganese dioxide on the anode sintered body. In a solid electrolytic capacitor formed by sequentially forming a solid electrolyte and a conductive layer for a cathode made of, the anode sintered body is a quadrangular prism, among the side surfaces orthogonal to the top surface, at least a pair of opposing side surfaces is A solid electrolytic capacitor, which is formed on an arc surface that bulges outward with a predetermined curvature.
【請求項2】 上記円弧面の頂点間の距離をRとすると
き、同円弧面の曲率は、隣接する他の側面との交叉面に
おいては0.2R〜0.4R、また、その交叉面間の曲
率は0.8R以上であることを特徴とする請求項1に記
載の固体電解コンデンサ。
2. When the distance between the vertices of the arcuate surface is R, the curvature of the arcuate surface is 0.2R to 0.4R at the intersecting surface with another adjacent side surface, and the intersecting surface thereof. The solid electrolytic capacitor according to claim 1, wherein the curvature between them is 0.8 R or more.
【請求項3】 上記陽極焼結体の頂面と側面および底面
と側面との角部にも所定曲率の曲面が形成されているこ
とを特徴とする請求項1に記載の固体電解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein curved surfaces having a predetermined curvature are also formed at the corners of the top surface and side surfaces and the bottom surface and side surfaces of the anode sintered body.
JP02733794A 1994-01-31 1994-01-31 Solid electrolytic capacitors Expired - Fee Related JP3246540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02733794A JP3246540B2 (en) 1994-01-31 1994-01-31 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02733794A JP3246540B2 (en) 1994-01-31 1994-01-31 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH07220984A true JPH07220984A (en) 1995-08-18
JP3246540B2 JP3246540B2 (en) 2002-01-15

Family

ID=12218254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02733794A Expired - Fee Related JP3246540B2 (en) 1994-01-31 1994-01-31 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3246540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220172901A1 (en) * 2019-03-27 2022-06-02 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220172901A1 (en) * 2019-03-27 2022-06-02 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same
US11823845B2 (en) * 2019-03-27 2023-11-21 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same

Also Published As

Publication number Publication date
JP3246540B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
KR101235437B1 (en) Electrolytic capacitor and method for manufacturing the same
US8066783B2 (en) Solid electrolytic capacitor and manufacturing method therefor
TWI674600B (en) Electrode foil, wound capacitor, method of manufacturing electrode foil, and method of manufacturing wound capacitor
JP2002367867A (en) Electrode member for solid electrolytic capacitor, method of manufacturing it and solid electrolytic capacitor using this
JP2005244234A (en) Manufacturing method for electrostatic or electrochemical energy storage electrical component, apparatus for implementing the method, and component manufactured by the method
US20210134533A1 (en) Oxide on edges of metal anode foils
JP3535014B2 (en) Electrode for electrolytic capacitor
KR20210061616A (en) Solid Electrolyte Capacitor and fabrication method thereof
JP2010251436A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JPH07220984A (en) Solid electrolytic capacitor
US8057883B2 (en) Abrasive process for modifying corners, edges, and surfaces of capacitor anode bodies
JPH07230937A (en) Solid electrolytic capacitor
TW201903796A (en) Electrode foil, wound capacitor, method of manufacturing electrode foil, and method of manufacturing wound capacitor
WO2022163587A1 (en) Electrode foil for electrolytic capacitors, and electrolytic capacitor
JP3945958B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005294402A (en) Solid electrolytic capacitor and its manufacturing method
WO2004073000A1 (en) Solid electrolytic capacitor
JP2005064238A (en) Chip type solid electrolytic capacitor
JP2007311531A (en) Solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JP7051177B1 (en) Electrode foil for electrolytic capacitors, and electrolytic capacitors
JPH0513286A (en) Solid electrolytic capacitor
JP2000124074A (en) Aluminum electrolytic capacitor
JPWO2018051520A1 (en) Electrode member for electrolytic capacitor and electrolytic capacitor
JP2009260017A (en) Method of manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011003

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees