JP3535014B2 - Electrode for electrolytic capacitor - Google Patents

Electrode for electrolytic capacitor

Info

Publication number
JP3535014B2
JP3535014B2 JP17195598A JP17195598A JP3535014B2 JP 3535014 B2 JP3535014 B2 JP 3535014B2 JP 17195598 A JP17195598 A JP 17195598A JP 17195598 A JP17195598 A JP 17195598A JP 3535014 B2 JP3535014 B2 JP 3535014B2
Authority
JP
Japan
Prior art keywords
foil
electrolytic capacitor
electrode
molded body
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17195598A
Other languages
Japanese (ja)
Other versions
JP2000012387A (en
Inventor
雅憲 吉田
幹也 嶋田
正和 棚橋
武志 西
潔 廣田
郁 渡辺
広志 喜多
吉浩 樋口
洋二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17195598A priority Critical patent/JP3535014B2/en
Publication of JP2000012387A publication Critical patent/JP2000012387A/en
Application granted granted Critical
Publication of JP3535014B2 publication Critical patent/JP3535014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、弁金属粉末の成形
体に弁金属からなるリードを取り付けた電解コンデンサ
用電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an electrolytic capacitor in which a lead made of valve metal is attached to a molded body of valve metal powder.

【0002】[0002]

【従来の技術】一般に、電源平滑回路の2次側やパーソ
ナルコンピュータのCPU周りなどに使用される電解コ
ンデンサ素子は、高周波に対応し、かつ大電流が流せる
ことが要求されている。
2. Description of the Related Art Generally, an electrolytic capacitor element used on the secondary side of a power supply smoothing circuit or around a CPU of a personal computer is required to be capable of handling high frequencies and flowing a large current.

【0003】図6は、従来の電解コンデンサ用電極を示
す。タンタル、アルミニウム、チタン、ニオブなどの弁
作用を有する金属粉末からなる成形体1に、弁金属から
なるリード線3が植立されて電解コンデンサ用電極4が
形成される。
FIG. 6 shows a conventional electrode for an electrolytic capacitor. Electrodes 4 for electrolytic capacitors are formed by implanting lead wires 3 made of a valve metal in a molded body 1 made of a metal powder having a valve action such as tantalum, aluminum, titanium, and niobium.

【0004】この電解コンデンサ用電極4の成形体1に
化成が行われて誘電体酸化皮膜が形成され、前記酸化皮
膜の上に固体電解質層および陰極電極層が形成される。
そして、陽極であるリード線3に外部陽極端子が接合さ
れ、前記陰極電極層に外部陰極端子が接合されて、エポ
キシ系粉末樹脂などにて陽極全体を覆うようにモールド
することにより電解コンデンサ素子が得られる。
The molded body 1 of the electrode 4 for the electrolytic capacitor is subjected to chemical conversion to form a dielectric oxide film, and a solid electrolyte layer and a cathode electrode layer are formed on the oxide film.
Then, an external anode terminal is joined to the lead wire 3 which is an anode, an external cathode terminal is joined to the cathode electrode layer, and the electrolytic capacitor element is molded by molding with epoxy-based powder resin so as to cover the entire anode. can get.

【0005】このような電解コンデンサ素子に大電流を
流すためには、リード線3と成形体1を構成する弁金属
粉末との接合面積(以下、「見掛表面積」と称す。)を
大きくする必要があることから、従来より見掛表面積を
増加させる方法が各種提案されている。
In order to pass a large current through such an electrolytic capacitor element, the joint area (hereinafter referred to as "apparent surface area") between the lead wire 3 and the valve metal powder forming the molded body 1 is increased. Therefore, various methods for increasing the apparent surface area have been proposed conventionally.

【0006】例えば、実開昭57−138330号公報
には、リード線3の成形体1への埋め込み部分を薄く偏
平加工する方法が提案されている。また、実開昭58−
187136号公報では、単にリード線3を偏平にする
だけでなく、その埋め込み長さや偏平度合を限定して見
掛表面積を増加させる方法が開示されている。また、実
開昭58−187129号公報にも、同様にリード線3
の埋め込み部分を偏平形状にし、その厚さを規定した方
法が開示されている。
For example, Japanese Utility Model Application Laid-Open No. 57-138330 proposes a method of thinly flattening the embedded portion of the lead wire 3 in the molded body 1. Also, the actual development 58-
Japanese Patent No. 187136 discloses a method of increasing the apparent surface area by limiting not only the flatness of the lead wire 3 but also the embedding length and flatness thereof. Further, Japanese Utility Model 58 -187,129 No. even publication, likewise leads 3
There is disclosed a method in which the embedded portion of is made flat and its thickness is regulated.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の電解コンデンサ素子では、リード線3を偏平化して
見掛表面積を増やしているものの、リード線3の偏平化
には強度などの問題から限界があり、焼結時の収縮によ
る凹凸が生じて超薄型高密度実装が実現できないという
問題があった。
However, in the above conventional electrolytic capacitor element, although the lead wire 3 is flattened to increase the apparent surface area, the flattening of the lead wire 3 is limited due to problems such as strength. However, there is a problem in that unevenness due to shrinkage during sintering occurs, and ultra-thin high-density mounting cannot be realized.

【0008】このような問題を解決するものとして、特
開昭63−283012号公報には、リード線3を成形
体1の側面に溶接したのち偏平形状にする方法が提案さ
れているが、この方法は製造工程が煩雑であるという問
題があった。
As a solution to such a problem, Japanese Patent Laid-Open No. 63-283012 proposes a method in which the lead wire 3 is welded to the side surface of the molded body 1 and then formed into a flat shape. The method has a problem that the manufacturing process is complicated.

【0009】さらに、上記の電解コンデンサ素子は、見
掛表面積を大きくしてはいるものの、いずれも大電流を
流すのに十分な見掛表面積を有するものではないという
問題もあった。
Further, although the above-mentioned electrolytic capacitor elements have a large apparent surface area, none of them has a sufficient apparent surface area for passing a large current.

【0010】本発明は前記問題点を解決し、見掛表面積
が大きく大電流を流すことができ、しかも高周波特性に
優れた電解コンデンサ用電極を提供するものである。
The present invention solves the above-mentioned problems and provides an electrode for an electrolytic capacitor which has a large apparent surface area and can flow a large current and is excellent in high frequency characteristics.

【0011】[0011]

【課題を解決するための手段】本発明の電解コンデンサ
用電極は、弁金属粉末の成形体に弁金属からなるリード
として箔を取り付けた電解コンデンサ用電極であって、
前記リード箔は、その幅が略一定であり、前記成形体に
埋め込まれる部分と、前記成形体へ埋め込まれていない
部分との箔幅が略同一であるように、前記成形体に一部
が埋め込まれ、かつ前記リード箔の厚みは100μm以
下である電解コンデンサ用電極である。
The electrode for an electrolytic capacitor of the present invention comprises a valve metal powder compact and a lead made of a valve metal.
An electrode for an electrolytic capacitor with a foil attached as
The width of the lead foil is substantially constant,
Embedded part and not embedded in the molded body
Part of the molded body so that the foil width is almost the same as the part
Embedded, and the thickness of the lead foil is 100 μm or less.
It is the lower electrode for the electrolytic capacitor.

【0012】この本発明によると、見掛表面積を大きく
して大電流が流せ、しかも高周波特性に優れた電解コン
デンサ用電極とすることができる。
According to the present invention, it is possible to obtain an electrode for an electrolytic capacitor which has a large apparent surface area to allow a large current to flow and which has excellent high frequency characteristics.

【0013】[0013]

【発明の実施の形態】本発明の請求項1記載の電解コン
デンサ用電極は、弁金属粉末の成形体に弁金属からなる
リードとして箔を取り付けた電解コンデンサ用電極であ
って、前記リード箔は、その幅が略一定であり、前記成
形体に埋め込まれる部分と、前記成形体へ埋め込まれて
いない部分との箔幅が略同一であるように、前記成形体
に一部が埋め込まれ、かつ前記リード箔の厚みは100
μm以下であることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode for an electrolytic capacitor according to claim 1 of the present invention is an electrode for an electrolytic capacitor in which a foil made of valve metal is attached to a molded body of valve metal powder as a lead, and the lead foil is , The width of which is substantially constant, a part of which is embedded in the molded body, and a part of which is not embedded in the molded body, the foil width being substantially the same, and The thickness of the lead foil is 100
It is characterized by being less than or equal to μm.

【0014】この構成によると、成形体を構成する弁金
属の粉末とリードとの接合面積が増大するため、接合点
の抵抗が低減され、等価直列抵抗が低くなり、高周波特
性に優れ、かつ大リップル電流を流すことができる。さ
らに、前記接合面積が増大することで、リードと成形体
との接着強度を向上させることもできる。
According to this structure, the bonding area between the powder of the valve metal forming the molded body and the lead is increased, so that the resistance at the bonding point is reduced, the equivalent series resistance is reduced, and the high frequency characteristics are excellent and large. Ripple current can flow. Further, since the bonding area is increased, the adhesive strength between the lead and the molded body can be improved.

【0015】請求項2記載の電解コンデンサ用電極は、
請求項1において、弁金属の箔の表面に凹凸を形成し、
前記箔の成形体への接触部分の表面積が、凹凸を形成し
ない箔の成形体への接触部分の表面積の2倍以上になる
ように前記凹凸が形成されていることを特徴とする。
The electrode for an electrolytic capacitor according to claim 2 is
In Claim 1, unevenness is formed on the surface of the valve metal foil,
The unevenness is formed so that the surface area of the contact portion of the foil with the molded body is not less than twice the surface area of the contact area of the foil with the molded body.

【0016】この構成によると、上記効果をさらに高め
ることができる。請求項3記載の電解コンデンサ用電極
は、請求項1または請求項2において、弁金属の箔が、
貫通孔を有することを特徴とする。
With this configuration, the above effect can be further enhanced. An electrode for an electrolytic capacitor according to claim 3 is the electrode metal foil according to claim 1 or 2,
It is characterized by having a through hole.

【0017】この構成によると、成形体を焼結する際に
成形体が収縮する力を箔が受けやすくなるため、弁金属
の粉末と箔との接合面積がさらに増大して低等価直列抵
抗となり、しかもリードと成形体との接着強度を高くす
ることができる。
According to this structure, the foil is more likely to receive the force of shrinking the compact when the compact is sintered, so that the bonding area between the valve metal powder and the foil is further increased, resulting in a low equivalent series resistance. Moreover, the adhesive strength between the lead and the molded body can be increased.

【0018】以下、本発明の各実施の形態について、図
1〜図5を用いて説明する。なお、上記従来例を示す図
1と同様をなすものについては、同一の符号を付けて説
明する。
Each embodiment of the present invention will be described below with reference to FIGS. It should be noted that components similar to those in FIG. 1 showing the above-mentioned conventional example will be described with the same reference numerals.

【0019】(実施の形態1)図1〜図3は、本発明の
(実施の形態1)の電解コンデンサ用電極を示す。図1
に示す電解コンデンサ用電極は、上記従来例を示す図6
とほぼ同様の構成であるが、この(実施の形態1)で
は、従来は線状であったリード線3を箔形状として見掛
表面積を大きくした点で異なる。
(Embodiment 1) FIGS. 1 to 3 show an electrode for an electrolytic capacitor according to (Embodiment 1) of the present invention. Figure 1
The electrode for an electrolytic capacitor shown in FIG.
However, this (Embodiment 1) is different in that the lead wire 3 which is conventionally linear has a foil shape to increase the apparent surface area.

【0020】具体的には、弁金属としてタンタル粉末を
用い、このタンタル粉末を成形加工し、同じくタンタル
からなる箔2とともに真空焼結して電解コンデンサ用電
極4を形成する。
Specifically, tantalum powder is used as the valve metal, this tantalum powder is molded and vacuum-sintered with the foil 2 also made of tantalum to form the electrode 4 for electrolytic capacitor.

【0021】そして、この電解コンデンサ用電極4に、
上記従来例と同様に酸化皮膜および電解質層を形成した
後、陰極引出電極を設ける。その後、陽極である箔2に
外部陽極端子を接合し、前記陰極電極層に外部陰極端子
を接合して、エポキシ系粉末樹脂などにて陽極全体を覆
うようにモールドして電解コンデンサ素子とする。
Then, on the electrolytic capacitor electrode 4,
After forming an oxide film and an electrolyte layer in the same manner as in the above-mentioned conventional example, a cathode extraction electrode is provided. After that, an external anode terminal is joined to the foil 2, which is an anode, an external cathode terminal is joined to the cathode electrode layer, and the anode 2 is molded with an epoxy-based powder resin or the like so as to cover the entire anode to form an electrolytic capacitor element.

【0022】このように、陽極リードの形状を線状では
なく箔2とすることで、陽極であるタンタル微粉末とリ
ードの接触面積すなわち見掛表面積が増大して、得られ
る電解コンデンサ素子は、等価直列抵抗が低減し、高周
波特性に優れたものとなる。
As described above, by making the shape of the anode lead not the linear shape but the foil 2, the contact area, that is, the apparent surface area, of the tantalum fine powder as the anode and the lead is increased, and the obtained electrolytic capacitor element is The equivalent series resistance is reduced and the high frequency characteristics are excellent.

【0023】また、箔2を用いることで見掛表面積を増
大させ、かつ静電容量としては損失となる埋没体積を小
さくさせることができるため、静電容量を大きくとるこ
とも可能である。
Further, since the apparent surface area can be increased by using the foil 2 and the buried volume which is a loss in capacitance can be reduced, the capacitance can be increased.

【0024】また、見掛表面積を大きくするためには、
箔2の厚さや幅、埋め込み長さを調整するだけでなく、
箔2の表面を研磨または電気的エッチングによって増大
させてもよい。
In order to increase the apparent surface area,
Not only adjusting the thickness and width of the foil 2 and the embedding length,
The surface of the foil 2 may be increased by polishing or electroetching.

【0025】また、箔2を用いることでより薄型の成形
体1が作成できることから必然的に電解コンデンサ用電
極4も薄型となり、小型で大容量の電解コンデンサ素子
が得られる。
Further, since the thinner molded body 1 can be prepared by using the foil 2, the electrolytic capacitor electrode 4 is inevitably thin, and a small and large-capacity electrolytic capacitor element can be obtained.

【0026】以下にこの(実施の形態1)の具体例を示
す。見掛表面積と、等価直列抵抗およびリップル発熱温
度との関係を調べるために、以下の実施例1〜5および
比較例1を行った。
A specific example of this (Embodiment 1) will be shown below. The following Examples 1 to 5 and Comparative Example 1 were performed in order to investigate the relationship between the apparent surface area and the equivalent series resistance and the ripple heat generation temperature.

【0027】実施例1弁金属として40000μF・V
/gのタンタル粉末を用い、このタンタル粉末を1.7
mm×3.5mm×6.4mmの大きさに成形加工し、
成形体1を得た。
Example 1 40000 μF · V as valve metal
/ G of tantalum powder was used, and this tantalum powder was added to 1.7.
Formed into a size of mm × 3.5 mm × 6.4 mm,
A molded body 1 was obtained.

【0028】また、箔2としては、同じくタンタルから
なる、厚み200μm、幅0.3mmの箔2を用い、成
形体1への埋め込み部の深さを4mmとして、成形体1
とともに1450℃で真空焼結して、電解コンデンサ用
電極4を得た。
As the foil 2, a foil 2 also made of tantalum and having a thickness of 200 μm and a width of 0.3 mm is used, and the depth of the embedded portion in the molded body 1 is 4 mm.
Along with that, vacuum sintering was performed at 1450 ° C. to obtain an electrode 4 for an electrolytic capacitor.

【0029】そして、電解コンデンサ素子として評価す
るために、この電解コンデンサ用電極4の成形体1に8
5℃のリン酸溶液中で印加電圧30Vで化成を行い酸化
皮膜を形成した。さらに、電解質として二酸化マンガン
を形成した後、カーボン層、銀導電性樹脂層からなる陰
極引出電極を設けた。
Then, in order to evaluate it as an electrolytic capacitor element, the molded body 1 of the electrode 4 for electrolytic capacitor is provided with 8
Chemical formation was carried out in a phosphoric acid solution at 5 ° C. at an applied voltage of 30 V to form an oxide film. Further, after forming manganese dioxide as an electrolyte, a cathode extraction electrode composed of a carbon layer and a silver conductive resin layer was provided.

【0030】その後、箔2には外部陽極端子を接合し、
前記陰極引出電極には外部陰極端子を接合して、樹脂で
モールドして電解コンデンサ素子を作製した。この電解
コンデンサ素子を用いて、100kHzの等価直列抵抗
とリップル発熱温度とを測定した。
After that, an external anode terminal is joined to the foil 2,
An external cathode terminal was joined to the cathode extraction electrode and molded with a resin to produce an electrolytic capacitor element. Using this electrolytic capacitor element, the equivalent series resistance of 100 kHz and the ripple heat generation temperature were measured.

【0031】なお、リップル発熱温度は次のように測定
した。すなわち、電解コンデンサ素子の外部陽極及び外
部陰極端子に100kHzの正弦波にバイアスを重畳し
たものをリップルとして印加する。リップル電流は10
00mAP−Pが電解コンデンサ素子に流れるようにア
ンプ出力を調整してそのリップル発熱温度を測定した。
The ripple heat generation temperature was measured as follows. That is, a 100 kHz sine wave with a bias superimposed is applied as a ripple to the external anode and external cathode terminals of the electrolytic capacitor element. Ripple current is 10
The output of the amplifier was adjusted so that 00mAP-P could flow through the electrolytic capacitor element, and the ripple heat temperature was measured.

【0032】得られた電解コンデンサ素子の等価直列抵
抗およびリップル発熱温度を表1に示す。
Table 1 shows the equivalent series resistance and the ripple heat generation temperature of the obtained electrolytic capacitor element.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例2〜5 見掛表面積が電解コンデンサ素子に与える影響を調べる
ために、箔2の成形体1への埋め込み深さは4mmに固
定したまま、箔2の厚さおよび幅を表1に示すように変
化させて、成形体1に埋め込まれたリード部の体積が上
記実施例1とほぼ同様になるようにした。
Examples 2 to 5 In order to investigate the influence of the apparent surface area on the electrolytic capacitor element, the thickness and width of the foil 2 are shown while the embedding depth of the foil 2 in the molded body 1 is fixed at 4 mm. The volume of the lead portion embedded in the molded body 1 was changed as shown in FIG.

【0035】そしてそれ以外は上記実施例1と同様にし
て電解コンデンサ素子を作成し、電解コンデンサ素子の
等価直列抵抗およびリップル発熱温度を測定した。得ら
れた測定結果を表1に示す。
Other than that, an electrolytic capacitor element was prepared in the same manner as in Example 1, and the equivalent series resistance and the ripple heat generation temperature of the electrolytic capacitor element were measured. The obtained measurement results are shown in Table 1.

【0036】比較例1 リードとして、上記実施例1〜5とは異なり、断面積が
円状であり径が280μmのリード線3を用いた。
Comparative Example 1 Unlike the above Examples 1 to 5, a lead wire 3 having a circular cross section and a diameter of 280 μm was used as a lead.

【0037】なお、リード線3の埋め込み部の深さは4
mmとして、得られる電極の静電容量が上記実施例1〜
5とほぼ等しくなるようにした。
The depth of the embedded portion of the lead wire 3 is 4
mm, the capacitance of the obtained electrode is
It was made to be almost equal to 5.

【0038】実施例1と比較例とを比較すると、どち
らも陽極リードの見掛表面積がほぼ同じため、等価直列
抵抗およびリップル発熱温度が同じ程度となっている。
しかし、実施例2〜5に示すように、箔2の厚みを20
0μmよりも小さくして、箔2の幅を広くし、見掛表面
積を大きくしていくにつれて、陽極であるタンタル微粉
末とリードとの接触面積が増大することから、得られる
電解コンデンサ素子は等価直列抵抗が低減し、高周波特
性の優れたものとなる。
Comparing Example 1 with Comparative Example 1 , the apparent surface area of the anode lead is almost the same, so that the equivalent series resistance and the ripple heat generation temperature are about the same.
However, as shown in Examples 2 to 5, the thickness of the foil 2 is 20
Since the contact area between the tantalum fine powder, which is the anode, and the lead increases as the width of the foil 2 becomes wider and the apparent surface area becomes larger by making the thickness smaller than 0 μm, the obtained electrolytic capacitor element is equivalent. The series resistance is reduced and the high frequency characteristics are excellent.

【0039】また、リップル発熱の温度上昇も低減でき
ることから、同一温度上昇範囲における許容リップル電
流量が増加した優れた電解コンデンサ素子を得ることが
できる。
Further, since the temperature rise of the ripple heat generation can be reduced, an excellent electrolytic capacitor element having an increased allowable ripple current amount in the same temperature rise range can be obtained.

【0040】なお、上記(実施の形態1)では、陽極リ
ードとしての箔2を図1に示すように成形体1の内部に
埋め込んだが、本発明はこれに限定されるものではな
く、リード線3を用いた場合よりも見掛表面積が大きけ
れば、図2に示すように箔2を成形体1の表面に取り付
ける、あるいは図3に示すように箔2を成形体1に埋め
込みその一部を露出させてもよい。
Although the foil 2 as the anode lead is embedded inside the molded body 1 as shown in FIG. 1 in the above (first embodiment), the present invention is not limited to this, and the lead wire is not limited thereto. If the apparent surface area is larger than when using No. 3, the foil 2 is attached to the surface of the molded body 1 as shown in FIG. 2, or the foil 2 is embedded in the molded body 1 as shown in FIG. It may be exposed.

【0041】また、箔2の表面に研磨あるいは電子的エ
ッチングを施して凹凸を形成し、見掛表面積を増大させ
る場合には、上記実施例1〜5より明らかなように、凹
凸を形成する前の箔2の見掛表面積の2倍以上になるよ
うに凹凸を形成すると、等価直列抵抗値の低下やリップ
ル発熱温度の低下の実現により効果的となる。
When the surface of the foil 2 is polished or electronically etched to form irregularities to increase the apparent surface area, as is clear from Examples 1 to 5, before the irregularities are formed. If the unevenness is formed so as to be more than twice the apparent surface area of the foil 2, it will be more effective to realize a reduction in the equivalent series resistance value and a reduction in the ripple heat generation temperature.

【0042】また、実施例1〜5および比較例1から明
らかなように、より大きな効果が得られたのは箔2の厚
みが100μm以下の場合であった。
Further, as is clear from Examples 1 to 5 and Comparative Example 1, the greater effect was obtained when the thickness of the foil 2 was 100 μm or less.

【0043】(実施の形態2)上記(実施の形態1)に
おける実施例1〜5および比較例1では、見掛表面積の
等価直列抵抗およびリップル発熱温度に与える影響を調
べたが、この(実施の形態1)では、以下の実施例6〜
8および比較例2において、見掛表面積の高周波特性に
与える影響を調べた。
(Embodiment 2) In Examples 1 to 5 and Comparative Example 1 in the above (Embodiment 1), the influence of the apparent surface area on the equivalent series resistance and the ripple heat generation temperature was investigated. Form 1) of the following embodiment 6 to.
8 and Comparative Example 2, the effect of the apparent surface area on the high frequency characteristics was examined.

【0044】実施例6〜8 箔2として厚み50μmのものを用い、埋設部の体積が
同じになるようにその幅と成形体1への埋没深さを表2
に示すように変化させた。そして、それ以外は上記実施
例1と同様にして電解コンデンサ素子を作製した。
Examples 6 to 8 Foil 2 having a thickness of 50 μm is used, and its width and the depth of burying in the molded body 1 are shown in Table 2 so that the volume of the buried portion is the same.
It was changed as shown in. Then, an electrolytic capacitor element was produced in the same manner as in Example 1 except the above.

【0045】[0045]

【表2】 [Table 2]

【0046】得られた電解コンデンサ素子のインピーダ
ンスの100Hz〜40MHzでの変化を図4に示す。
FIG. 4 shows changes in the impedance of the obtained electrolytic capacitor element at 100 Hz to 40 MHz.

【0047】比較例2 比較例1と同様のリード線3を用いて、上記実施例6〜
8とほぼ同等の容量が得られるように成形体1にリード
線3を埋め込んだ。そしてそれ以外は実施例1と同様に
して電解コンデンサ素子を作製した。
Comparative Example 2 Using the same lead wire 3 as in Comparative Example 1, the above-mentioned Examples 6 to 6 were used.
The lead wire 3 was embedded in the molded body 1 so that a capacity substantially equal to that of 8 was obtained. An electrolytic capacitor element was produced in the same manner as in Example 1 except for the above.

【0048】得られた電解コンデンサ素子のインピーダ
ンスの100Hz〜40MHzでの変化を図4に示す。
FIG. 4 shows changes in impedance of the obtained electrolytic capacitor element in the range of 100 Hz to 40 MHz.

【0049】図4に示すように、100Hz〜300,
000Hzの間では実施例6〜8および比較例2のイン
ピーダンスに差はないが、300,000Hzを超えた
高周波数領域では、実施例6〜8は比較例2に比べイン
ピーダンスが小さくなり、良好な高周波数特性が得られ
た。
As shown in FIG. 4, 100 Hz to 300,
There is no difference in impedance between Examples 6 to 8 and Comparative Example 2 between 000 Hz, but in the high frequency region above 300,000 Hz, Examples 6 to 8 have smaller impedance than Comparative Example 2 and are favorable. High frequency characteristics were obtained.

【0050】これは、実施例6〜8の陽極リードが、断
面が円のリード線3ではなく断面が四角形の箔2である
ため、断面積が大きくなり共振周波数において低等価直
列抵抗となり、また箔2の幅が広くなることで低等価直
列誘導となったためと考えられる。
This is because the anode leads of Examples 6 to 8 are not the lead wire 3 having a circular cross section but the foil 2 having a quadrangular cross section, so that the cross sectional area becomes large and the equivalent series resistance becomes low at the resonance frequency. It is considered that this is because the width of the foil 2 becomes wider, which results in a low equivalent series induction.

【0051】(実施の形態3)図5は、本発明の(実施
の形態3)を示す。上記(実施の形態1)における図1
に示す電解コンデンサ用電極4とほぼ同様の構成である
が、この(実施の形態3)では、箔2の成形体1への埋
設部に複数の貫通孔5を設けた点で異なる。
(Embodiment 3) FIG. 5 shows (Embodiment 3) of the present invention. FIG. 1 in the above (Embodiment 1)
The electrolytic capacitor electrode 4 has substantially the same structure as that of the electrolytic capacitor electrode 4 shown in FIG. 3, except that a plurality of through holes 5 are provided in the embedded portion of the foil 2 in the molded body 1.

【0052】このように箔2に貫通孔5を設けること
で、見掛表面積はほぼ同じものであっても、成形体1と
箔2とを真空焼結する際に成形体1が収縮する力(矢印
AおよびB方向)を箔2が受けやすくなり、接合面積が
大きくなり低等価直列抵抗で高強度の電解コンデンサ素
子が得られる。
By providing the through holes 5 in the foil 2 in this way, even if the apparent surface areas are almost the same, the force with which the compact 1 shrinks when the compact 1 and the foil 2 are vacuum-sintered. The foil 2 becomes easy to receive (in the directions of arrows A and B), the bonding area becomes large, and an electrolytic capacitor element having a low equivalent series resistance and high strength can be obtained.

【0053】以下にこの(実施の形態3)の具体例を示
す。
A specific example of this (Embodiment 3) will be shown below.

【0054】実施例9 厚み50μm、幅1.2mm、埋め込み深さ4mmの箔
2に、径0.2mmの貫通孔を20孔設けた。そしてそ
れ以外は実施例1と同様にして、電解コンデンサ素子を
作製した。
Example 9 Twenty through holes having a diameter of 0.2 mm were provided in the foil 2 having a thickness of 50 μm, a width of 1.2 mm and an embedding depth of 4 mm. An electrolytic capacitor element was produced in the same manner as in Example 1 except for the above.

【0055】得られた電解コンデンサ素子の100kH
zにおける等価直列抵抗および比較例3と実施例9とを
比較したときの強度比を表3に示す。
100 kH of the obtained electrolytic capacitor element
Table 3 shows the equivalent series resistance at z and the strength ratio when Comparative Example 3 and Example 9 were compared.

【0056】[0056]

【表3】 [Table 3]

【0057】比較例3 厚み50μm、幅1.2mm、埋め込み深さ4mmの貫
通孔5のない箔2を用いた。そしてそれ以外は実施例1
と同様にして電解コンデンサ素子を作製した。
Comparative Example 3 A foil 2 having a thickness of 50 μm, a width of 1.2 mm and an embedding depth of 4 mm and having no through hole 5 was used. And otherwise, Example 1
An electrolytic capacitor element was produced in the same manner as in.

【0058】得られた電解コンデンサ素子の100kH
zにおける等価直列抵抗および強度比を表3に示す。
100 kH of the obtained electrolytic capacitor element
Table 3 shows the equivalent series resistance and intensity ratio at z.

【0059】実施例9と比較例3とは、見掛表面積はほ
ぼ等しいものの、実施例9は、真空焼結の際に成形体1
が収縮する力を箔2が受けやすくなり、粉末と箔2の接
合面積が増えるため、低等価直列抵抗となり、また、高
強度のものが得られた。
Although the apparent surface areas of Example 9 and Comparative Example 3 are almost the same, Example 9 is different from Compact 1 in vacuum sintering.
Since the foil 2 is easily subjected to the force of contraction and the bonding area between the powder and the foil 2 is increased, a low equivalent series resistance and a high strength are obtained.

【0060】なお、上記(実施の形態3)では、箔2に
複数の貫通孔5を設けたが、本発明はこれに限定される
ものではなく、上記(実施の形態1)で述べたように箔
2の表面にエッチングなどにより凹凸を形成し、この凹
凸を有する箔2に複数の貫通孔5を形成してもよい。
Although a plurality of through holes 5 are provided in the foil 2 in the above (Embodiment 3), the present invention is not limited to this, and as described in the above (Embodiment 1). In addition, unevenness may be formed on the surface of the foil 2 by etching or the like, and a plurality of through holes 5 may be formed in the foil 2 having this unevenness.

【0061】また、上記(実施の形態1)〜(実施の形
態3)では、弁金属としてタンタルを用いたが、本発明
はこれに限定されるものではなく、タンタル以外の弁金
属を用いても同様の効果が得られる。
Although tantalum is used as the valve metal in the above (first embodiment) to (third embodiment), the present invention is not limited to this, and valve metals other than tantalum may be used. Also has the same effect.

【0062】[0062]

【発明の効果】以上のように、本発明の電解コンデンサ
用電極によれば、リード箔は、その幅が略一定であり、
成形体に埋め込まれる部分と、成形体へ埋め込まれてい
ない部分との箔幅が略同一であるように、成形体に一部
が埋め込まれ、かつリード箔の厚みは100μm以下と
することにより、成形体を構成する弁金属の粉末とリー
ドとの接合面積が増大するため、接合点の抵抗が低減さ
れ、等価直列抵抗が低くなり、高周波特性に優れ、かつ
大リップル電流を流すことができる電解コンデンサ用電
極が得られる。
As described above, according to the electrode for an electrolytic capacitor of the present invention, the lead foil has a substantially constant width,
By embedding a part in the molded body and setting the thickness of the lead foil to 100 μm or less, so that the foil width of the portion embedded in the molded body and the portion not embedded in the molded body are substantially the same. Since the bonding area between the powder of the valve metal and the lead forming the molded body is increased, the resistance at the bonding point is reduced, the equivalent series resistance is reduced, the high frequency characteristics are excellent, and an electrolysis that allows a large ripple current to flow. A capacitor electrode is obtained.

【0063】また、リードと成形体との接合面積が増大
することで、リードと成形体との接着強度を向上させる
こともできる。
Further, since the bonding area between the lead and the molded body is increased, the adhesive strength between the lead and the molded body can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(実施の形態1)における電解コンデンサ用電
極の構成を示す斜視図
FIG. 1 is a perspective view showing the configuration of an electrode for an electrolytic capacitor according to (Embodiment 1).

【図2】(実施の形態1)における別の電解コンデンサ
用電極の構成を示す斜視図
FIG. 2 is a perspective view showing the configuration of another electrolytic capacitor electrode according to the first embodiment.

【図3】(実施の形態1)における別の電解コンデンサ
用電極の構成を示す斜視図
FIG. 3 is a perspective view showing the configuration of another electrolytic capacitor electrode according to the first embodiment.

【図4】(実施の形態2)におけるインピーダンスの周
波数特性を示すグラフ
FIG. 4 is a graph showing frequency characteristics of impedance in (Embodiment 2)

【図5】(実施の形態3)における電解コンデンサ用電
極の構成を示す断面図
FIG. 5 is a cross-sectional view showing the configuration of an electrolytic capacitor electrode according to (Embodiment 3).

【図6】従来の電解コンデンサ用電極の構成を示す斜視
FIG. 6 is a perspective view showing a configuration of a conventional electrode for electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 成形体 2 箔 3 リード線 4 電解コンデンサ用電極 5 貫通孔 1 molded body 2 foil 3 lead wire 4 Electrode for electrolytic capacitor 5 through holes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 棚橋 正和 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 西 武志 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 廣田 潔 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 渡辺 郁 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 喜多 広志 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 樋口 吉浩 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 増田 洋二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−97009(JP,A) 特開 平5−275290(JP,A) 実開 昭63−188936(JP,U)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masakazu Tanahashi               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd. (72) Inventor Takeshi Nishi               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd. (72) Inventor Kiyoshi Hirota               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd. (72) Inventor Iku Watanabe               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd. (72) Inventor Hiroshi Kita               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd. (72) Inventor Yoshihiro Higuchi               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd. (72) Inventor Yoji Masuda               1006 Kadoma, Kadoma-shi, Osaka Matsushitaden               Instrument industry Co., Ltd.                (56) Reference JP-A-6-97009 (JP, A)                 JP-A-5-275290 (JP, A)                 Actual development Sho 63-188936 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 弁金属粉末の成形体に弁金属からなるリ
ードとして箔を取り付けた電解コンデンサ用電極であっ
て、 前記リード箔は、その幅が略一定であり、前記成形体に
埋め込まれる部分と、前記成形体へ埋め込まれていない
部分との箔幅が略同一であるように、前記成形体に一部
が埋め込まれ、かつ前記リード箔の厚みは100μm以
下である電解コンデンサ用電極。
1. An electrode for an electrolytic capacitor, comprising a valve metal powder molded body and a foil attached as a lead made of valve metal, wherein the lead foil has a substantially constant width and is embedded in the molded body. And a part not embedded in the molded body, the foil width is substantially the same as the foil width, and the lead foil has a thickness of 100 μm or less.
【請求項2】 弁金属の箔の表面に凹凸を形成し、前記
箔の成形体への接触部分の表面積が、凹凸を形成しない
箔の成形体への接触部分の表面積の2倍以上になるよう
に前記凹凸が形成されている請求項1記載の電解コンデ
ンサ用電極。
2. A surface of a valve metal foil having irregularities formed thereon, and a surface area of a contact portion of the foil with the molded body is at least twice as large as a surface area of a contact portion of the foil without the irregularity contacting the molded body. The electrode for an electrolytic capacitor according to claim 1, wherein the unevenness is formed as described above.
【請求項3】 弁金属の箔が、貫通孔を有する請求項1
または請求項2記載の電解コンデンサ用電極。
3. The valve metal foil has a through hole.
Alternatively, the electrode for an electrolytic capacitor according to claim 2.
JP17195598A 1998-06-19 1998-06-19 Electrode for electrolytic capacitor Expired - Fee Related JP3535014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17195598A JP3535014B2 (en) 1998-06-19 1998-06-19 Electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17195598A JP3535014B2 (en) 1998-06-19 1998-06-19 Electrode for electrolytic capacitor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003322356A Division JP2004015071A (en) 2003-09-16 2003-09-16 Electrolytic capacitor and electrode for the same
JP2004010023A Division JP2004146850A (en) 2004-01-19 2004-01-19 Electrolytic capacitor and electrode for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2000012387A JP2000012387A (en) 2000-01-14
JP3535014B2 true JP3535014B2 (en) 2004-06-07

Family

ID=15932883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17195598A Expired - Fee Related JP3535014B2 (en) 1998-06-19 1998-06-19 Electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3535014B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557742C (en) 2003-08-12 2009-11-04 罗姆股份有限公司 The mounting structure of solid electrolytic capacitor, circuit and solid electrolytic capacitor
JP2005064038A (en) * 2003-08-12 2005-03-10 Cabot Supermetal Kk Anode wire for electrolytic capacitor
JP2005093591A (en) 2003-09-16 2005-04-07 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP4126021B2 (en) 2004-02-05 2008-07-30 ローム株式会社 Solid electrolytic capacitor
US7450366B2 (en) 2004-02-27 2008-11-11 Rohm Co., Ltd. Solid electrolytic capacitor
JP4177322B2 (en) 2004-11-30 2008-11-05 ローム株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP5201668B2 (en) * 2008-06-19 2013-06-05 Necトーキン株式会社 Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same
CN101477897B (en) * 2009-01-20 2012-05-23 宁夏东方钽业股份有限公司 Tantalum wire for tantalum capacitor anode lead wire and manufacturing process thereof
US8441777B2 (en) * 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
JP5796194B2 (en) * 2010-12-13 2015-10-21 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor
US8842419B2 (en) * 2012-05-30 2014-09-23 Avx Corporation Notched lead tape for a solid electrolytic capacitor
GB2502703B (en) * 2012-05-30 2016-09-21 Avx Corp Notched lead for a solid electrolytic capacitor
JP6476410B2 (en) * 2014-04-15 2019-03-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor
JP5770351B1 (en) * 2014-09-29 2015-08-26 Necトーキン株式会社 Solid electrolytic capacitor
US11443902B2 (en) 2018-10-04 2022-09-13 Pacesetter, Inc. Hybrid anode and electrolytic capacitor
JP2022129665A (en) * 2021-02-25 2022-09-06 株式会社トーキン solid electrolytic capacitor
JP2022149517A (en) 2021-03-25 2022-10-07 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Also Published As

Publication number Publication date
JP2000012387A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP3535014B2 (en) Electrode for electrolytic capacitor
US6563693B2 (en) Solid electrolytic capacitor
US6522527B2 (en) Anode member for a solid electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the same
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
JPH05205984A (en) Laminated solid electrolytic capacitor
JP2008244184A (en) Solid-state electrolytic capacitor and manufacturing method therefor
CN102969165A (en) Solid electrolytic capacitor and method for manufacturing the same
US7157326B2 (en) Process for fabricating capacitor element
JP5232899B2 (en) Solid electrolytic capacitor
JP2003086459A (en) Solid electrolytic capacitor
CN1841604B (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001217160A (en) Solid electrolytic capacitor and its manufacturing method
JP3945958B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP0768686A2 (en) Solid electrolytic capacitor and fabrication method thereof
JP2004014667A (en) Solid electrolytic capacitor
JP2004015071A (en) Electrolytic capacitor and electrode for the same
JP3036017B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2004146850A (en) Electrolytic capacitor and electrode for electrolytic capacitor
JPH1154380A (en) Solid electrolytic capacitor
JP3932191B2 (en) Solid electrolytic capacitor
JPS63299307A (en) Electrolytic capacitor
JP3725392B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2006024691A (en) Solid electrolytic capacitor and its manufacturing method
JP2655629B2 (en) Chip type solid electrolytic capacitor
JP3233972B2 (en) Chip type solid electrolytic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees