JP2004146850A - Electrolytic capacitor and electrode for electrolytic capacitor - Google Patents

Electrolytic capacitor and electrode for electrolytic capacitor Download PDF

Info

Publication number
JP2004146850A
JP2004146850A JP2004010023A JP2004010023A JP2004146850A JP 2004146850 A JP2004146850 A JP 2004146850A JP 2004010023 A JP2004010023 A JP 2004010023A JP 2004010023 A JP2004010023 A JP 2004010023A JP 2004146850 A JP2004146850 A JP 2004146850A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
foil
molded body
electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004010023A
Other languages
Japanese (ja)
Inventor
Masanori Yoshida
吉田 雅憲
Mikiya Shimada
嶋田 幹也
Masakazu Tanahashi
棚橋 正和
Takeshi Nishi
西 武志
Kiyoshi Hirota
廣田 潔
Iku Watanabe
渡辺 郁
Hiroshi Kita
喜多 広志
Yoshihiro Higuchi
樋口 吉浩
Yoji Masuda
増田 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004010023A priority Critical patent/JP2004146850A/en
Publication of JP2004146850A publication Critical patent/JP2004146850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for an electrolytic capacitor whose apparent surface area is large, and through which a heavy-current can flow, and which is excellent in high frequency characteristic. <P>SOLUTION: In an electrode 4 for an electrolytic capacitor made by furnishing a compact 1 made of valve metal powder with a reed made of valve metal, the reed at least contacting with the compact 1 is formed in a foil shape and thickness of foil 2 is set to 200μm or less. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、弁金属粉末の成形体に弁金属からなるリードを取り付けた電解コンデンサ用電極に関するものである。 The present invention relates to an electrode for an electrolytic capacitor in which a valve metal lead is attached to a valve metal powder compact.

 一般に、電源平滑回路の2次側やパーソナルコンピュータのCPU周りなどに使用される電解コンデンサ素子は、高周波に対応し、かつ大電流が流せることが要求されている。 Generally, an electrolytic capacitor element used on the secondary side of a power supply smoothing circuit or around a CPU of a personal computer is required to be compatible with high frequencies and to allow a large current to flow.

 図6は、従来の電解コンデンサ用電極を示す。タンタル、アルミニウム、チタン、ニオブなどの弁作用を有する金属粉末からなる成形体1に、弁金属からなるリード線3が植立されて電解コンデンサ用電極4が形成される。 FIG. 6 shows a conventional electrode for an electrolytic capacitor. A lead wire 3 made of a valve metal is implanted on a molded body 1 made of a metal powder having a valve action such as tantalum, aluminum, titanium, or niobium to form an electrode 4 for an electrolytic capacitor.

 この電解コンデンサ用電極4の成形体1に化成が行われて誘電体酸化皮膜が形成され、前記酸化皮膜の上に固体電解質層および陰極電極層が形成される。そして、陽極であるリード線3に外部陽極端子が接合され、前記陰極電極層に外部陰極端子が接合されて、エポキシ系粉末樹脂などにて陽極全体を覆うようにモールドすることにより電解コンデンサ素子が得られる。 化 The formed body 1 of the electrode 4 for the electrolytic capacitor is subjected to chemical conversion to form a dielectric oxide film, and a solid electrolyte layer and a cathode electrode layer are formed on the oxide film. Then, an external anode terminal is joined to the lead wire 3 as an anode, and an external cathode terminal is joined to the cathode electrode layer. The electrolytic capacitor element is molded by covering the entire anode with an epoxy powder resin or the like. can get.

 このような電解コンデンサ素子に大電流を流すためには、リード線3と成形体1を構成する弁金属粉末との接合面積(以下、「見掛表面積」と称す。)を大きくする必要があることから、従来より見掛表面積を増加させる方法が各種提案されている。 In order to allow a large current to flow through such an electrolytic capacitor element, it is necessary to increase the bonding area (hereinafter, referred to as “apparent surface area”) between the lead wire 3 and the valve metal powder constituting the compact 1. Therefore, various methods for increasing the apparent surface area have been conventionally proposed.

 例えば、実開昭57−138330号公報には、リード線3の成形体1への埋め込み部分を薄く偏平加工する方法が提案されている。また、実開昭58−187136号公報では、単にリード線3を偏平にするだけでなく、その埋め込み長さや偏平度合を限定して見掛表面積を増加させる方法が開示されている。また、実開昭58−187129号公報にも、同様にリード線3の埋め込み部分を偏平形状にし、その厚さを規定した方法が開示されている。
実開昭57−138330号公報 実開昭58−187136号公報 実開昭58−187129号公報
For example, Japanese Utility Model Laid-Open No. 57-138330 proposes a method of thinly flattening a portion of the lead wire 3 embedded in the molded body 1. Further, Japanese Utility Model Application Laid-Open No. 58-187136 discloses a method of not only simply flattening the lead wire 3 but also increasing the apparent surface area by limiting the embedded length and the degree of flatness. Japanese Utility Model Application Laid-Open No. 58-187129 also discloses a method in which the embedded portion of the lead wire 3 is similarly formed in a flat shape and its thickness is defined.
Japanese Utility Model Publication No. 57-138330 JP-A-58-187136 JP-A-58-187129

 しかしながら、上記従来の電解コンデンサ素子では、リード線3を偏平化して見掛表面積を増やしているものの、リード線3の偏平化には強度などの問題から限界があり、焼結時の収縮による凹凸が生じて超薄型高密度実装が実現できないという問題があった。 However, in the above-mentioned conventional electrolytic capacitor element, although the lead wire 3 is flattened to increase the apparent surface area, the flattening of the lead wire 3 is limited by problems such as strength and the like. As a result, there is a problem that ultra-thin high-density mounting cannot be realized.

 このような問題を解決するものとして、特開昭63−283012号公報には、リード線3を成形体1の側面に溶接したのち偏平形状にする方法が提案されているが、この方法は製造工程が煩雑であるという問題があった。 In order to solve such a problem, Japanese Patent Application Laid-Open No. 63-283012 proposes a method in which a lead wire 3 is welded to a side surface of a molded body 1 and then formed into a flat shape. There is a problem that the process is complicated.

 さらに、上記の電解コンデンサ素子は、見掛表面積を大きくしてはいるものの、いずれも大電流を流すのに十分な見掛表面積を有するものではないという問題もあった。
 本発明は前記問題点を解決し、見掛表面積が大きく大電流を流すことができ、しかも高周波特性に優れた電解コンデンサ用電極を提供するものである。
Further, although the above-mentioned electrolytic capacitor elements have an increased apparent surface area, there is a problem that none of them has an apparent surface area sufficient to flow a large current.
The present invention solves the above-mentioned problems, and provides an electrode for an electrolytic capacitor having a large apparent surface area, allowing a large current to flow, and having excellent high-frequency characteristics.

 本発明の電解コンデンサ用電極は、陽極リードの形状を特殊な構成としたことを特徴とする。
 この本発明によると、見掛表面積を大きくして大電流が流せ、しかも高周波特性に優れた電解コンデンサ用電極とすることができる。
The electrode for an electrolytic capacitor of the present invention is characterized in that the shape of the anode lead has a special configuration.
According to the present invention, it is possible to provide an electrode for an electrolytic capacitor having a large apparent surface area, allowing a large current to flow, and having excellent high frequency characteristics.

 本発明の請求項1記載の電解コンデンサは、弁金属粉末の成形体に弁金属からなるリードとして箔を取り付けた陽極体と、陽極体の細孔表面に形成された誘電体酸化皮膜と、前記酸化皮膜に接して形成された固体電解質を含み、100kHz以上の高周波で使用される電解コンデンサであって、前記リード箔は、その幅が略一定であり、前記成形体に埋め込まれる部分と、前記成形体へ埋め込まれていない部分との箔幅が略同一であるように、前記成形体に一部が埋め込まれ、かつ前記リード箔の厚みは100μm以下であることを特徴とする。 The electrolytic capacitor according to claim 1 of the present invention has an anode body in which a foil as a lead made of valve metal is attached to a molded body of valve metal powder, a dielectric oxide film formed on the surface of pores of the anode body, An electrolytic capacitor including a solid electrolyte formed in contact with an oxide film and used at a high frequency of 100 kHz or more, wherein the lead foil has a substantially constant width, a portion embedded in the molded body, A part is buried in the molded body so that a foil width of a part not buried in the molded body is substantially the same, and a thickness of the lead foil is 100 μm or less.

 本発明の請求項2記載の電解コンデンサ用電極は、弁金属粉末の成形体に弁金属からなるリードとして箔を取り付けた電解コンデンサ用電極であって、前記リード箔は、その幅が成形体の幅に対して0.17以上で略一定であり、前記成形体に埋め込まれる部分と、前記成形体へ埋め込まれていない部分との箔幅が略同一であるように、前記成形体に一部が埋め込まれ、かつ前記リード箔の厚みは100μm以下であることを特徴とする。 The electrode for an electrolytic capacitor according to claim 2 of the present invention is an electrode for an electrolytic capacitor in which a foil as a lead made of a valve metal is attached to a molded body of valve metal powder, and the lead foil has a width of the molded body. The width is substantially constant at 0.17 or more with respect to the width, and a part of the molded body is so formed that the foil width of the part embedded in the molded body and the part not embedded in the molded body are substantially the same. And the lead foil has a thickness of 100 μm or less.

 本発明の請求項3記載の電解コンデンサ用電極は、請求項2において、弁金属の箔の表面に凹凸を形成し、前記箔の成形体への接触部分の表面積が、凹凸を形成しない箔の成形体への接触部分の表面積の2倍以上になるように前記凹凸が形成されていることを特徴とする。 The electrode for an electrolytic capacitor according to claim 3 of the present invention is the electrode for an electrolytic capacitor according to claim 2, wherein the surface of the valve metal foil has irregularities, and the surface area of the contact portion of the foil with the molded body has the irregular surface. The irregularities are formed so as to be at least twice as large as the surface area of the contact portion with the molded body.

 本発明の請求項4記載の電解コンデンサ用電極は、請求項2または請求項3において、弁金属の箔が、貫通孔を有することを特徴とする。 電解 An electrolytic capacitor electrode according to a fourth aspect of the present invention is characterized in that, in the second or third aspect, the valve metal foil has a through hole.

 本発明の電解コンデンサ用電極によると、リードの形状を箔とし、その厚みを200μm以下とすることで、成形体を構成する弁金属の粉末とリードとの接合面積が増大するため、接合点の抵抗が低減され、等価直列抵抗が低くなり、高周波特性に優れ、かつ大リップル電流を流すことができる電解コンデンサ用電極が得られる。 According to the electrode for an electrolytic capacitor of the present invention, by setting the shape of the lead to a foil and setting the thickness to 200 μm or less, the bonding area between the lead of the valve metal powder and the lead constituting the molded body increases. An electrode for an electrolytic capacitor having reduced resistance, reduced equivalent series resistance, excellent high-frequency characteristics, and capable of flowing a large ripple current is obtained.

 また、リードと成形体との接合面積が増大することで、リードと成形体との接着強度を向上させることもできる。 In addition, by increasing the bonding area between the lead and the molded body, the adhesive strength between the lead and the molded body can be improved.

 以下、本発明の各実施の形態について、図1〜図5を用いて説明する。
 なお、上記従来例を示す図1と同様をなすものについては、同一の符号を付けて説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.
Note that components similar to those in FIG. 1 showing the above-described conventional example are denoted by the same reference numerals.

  (実施の形態1)
 図1〜図3は、本発明の(実施の形態1)の電解コンデンサ用電極を示す。図1に示す電解コンデンサ用電極は、上記従来例を示す図6とほぼ同様の構成であるが、この(実施の形態1)では、従来は線状であったリード線3を箔形状として見掛表面積を大きくした点で異なる。
(Embodiment 1)
1 to 3 show an electrode for an electrolytic capacitor according to (first embodiment) of the present invention. The electrode for an electrolytic capacitor shown in FIG. 1 has substantially the same configuration as that of FIG. 6 showing the above-mentioned conventional example, but in this (Embodiment 1), the lead wire 3 which was conventionally linear is viewed as a foil. The difference is that the hanging surface area is increased.

 具体的には、弁金属としてタンタル粉末を用い、このタンタル粉末を成形加工し、同じくタンタルからなる箔2とともに真空焼結して電解コンデンサ用電極4を形成する。
 そして、この電解コンデンサ用電極4に、上記従来例と同様に酸化皮膜および電解質層を形成した後、陰極引出電極を設ける。その後、陽極である箔2に外部陽極端子を接合し、前記陰極電極層に外部陰極端子を接合して、エポキシ系粉末樹脂などにて陽極全体を覆うようにモールドして電解コンデンサ素子とする。
Specifically, tantalum powder is used as a valve metal, and the tantalum powder is formed and processed together with the foil 2 made of tantalum to form an electrode 4 for an electrolytic capacitor by vacuum sintering.
Then, after forming an oxide film and an electrolyte layer on the electrode 4 for an electrolytic capacitor in the same manner as in the conventional example, a cathode extraction electrode is provided. Thereafter, an external anode terminal is joined to the foil 2 serving as an anode, an external cathode terminal is joined to the cathode electrode layer, and molded to cover the entire anode with an epoxy-based powder resin or the like, thereby forming an electrolytic capacitor element.

 このように、陽極リードの形状を線状ではなく箔2とすることで、陽極であるタンタル微粉末とリードの接触面積すなわち見掛表面積が増大して、得られる電解コンデンサ素子は、等価直列抵抗が低減し、高周波特性に優れたものとなる。 Thus, by making the shape of the anode lead into a foil 2 instead of a line, the contact area, that is, the apparent surface area, of the tantalum fine powder as the anode and the lead is increased, and the obtained electrolytic capacitor element has an equivalent series resistance. Is reduced and the high frequency characteristics are excellent.

 また、箔2を用いることで見掛表面積を増大させ、かつ静電容量としては損失となる埋没体積を小さくさせることができるため、静電容量を大きくとることも可能である。
 また、見掛表面積を大きくするためには、箔2の厚さや幅、埋め込み長さを調整するだけでなく、箔2の表面を研磨または電気的エッチングによって増大させてもよい。
Further, by using the foil 2, the apparent surface area can be increased, and the buried volume, which is a loss in capacitance, can be reduced, so that the capacitance can be increased.
Further, in order to increase the apparent surface area, not only the thickness, width and embedding length of the foil 2 are adjusted, but the surface of the foil 2 may be increased by polishing or electrical etching.

 また、箔2を用いることでより薄型の成形体1が作成できることから必然的に電解コンデンサ用電極4も薄型となり、小型で大容量の電解コンデンサ素子が得られる。
 以下にこの(実施の形態1)の具体例を示す。見掛表面積と、等価直列抵抗およびリップル発熱温度との関係を調べるために、以下の実施例1〜5および比較例1を行った。
In addition, since the thinner molded body 1 can be produced by using the foil 2, the electrode 4 for the electrolytic capacitor is inevitably thinner, and a small and large-capacity electrolytic capacitor element can be obtained.
Hereinafter, a specific example of this (Embodiment 1) will be described. The following Examples 1 to 5 and Comparative Example 1 were performed in order to examine the relationship between the apparent surface area, the equivalent series resistance, and the ripple heating temperature.

  実施例1
 弁金属として40000μF・V/gのタンタル粉末を用い、このタンタル粉末を1.7mm×3.5mm×6.4mmの大きさに成形加工し、成形体1を得た。
Example 1
Using a 40000 μF · V / g tantalum powder as a valve metal, the tantalum powder was formed into a size of 1.7 mm × 3.5 mm × 6.4 mm to obtain a formed body 1.

 また、箔2としては、同じくタンタルからなる、厚み200μm、幅0.3mmの箔2を用い、成形体1への埋め込み部の深さを4mmとして、成形体1とともに1450℃で真空焼結して、電解コンデンサ用電極4を得た。 The foil 2 was also made of tantalum and had a thickness of 200 μm and a width of 0.3 mm. The depth of the embedding part in the molded body 1 was 4 mm. Thus, an electrode 4 for an electrolytic capacitor was obtained.

 そして、電解コンデンサ素子として評価するために、この電解コンデンサ用電極4の成形体1に85℃のリン酸溶液中で印加電圧30Vで化成を行い酸化皮膜を形成した。さらに、電解質として二酸化マンガンを形成した後、カーボン層、銀導電性樹脂層からなる陰極引出電極を設けた。 (5) Then, in order to evaluate as an electrolytic capacitor element, the molded body 1 of the electrode 4 for an electrolytic capacitor was formed in a phosphoric acid solution at 85 ° C. at an applied voltage of 30 V to form an oxide film. Further, after forming manganese dioxide as an electrolyte, a cathode extraction electrode composed of a carbon layer and a silver conductive resin layer was provided.

 その後、箔2には外部陽極端子を接合し、前記陰極引出電極には外部陰極端子を接合して、樹脂でモールドして電解コンデンサ素子を作製した。この電解コンデンサ素子を用いて、100kHzの等価直列抵抗とリップル発熱温度とを測定した。 Thereafter, an external anode terminal was joined to the foil 2, an external cathode terminal was joined to the cathode extraction electrode, and molded with a resin to produce an electrolytic capacitor element. Using this electrolytic capacitor element, an equivalent series resistance of 100 kHz and a ripple heat generation temperature were measured.

 なお、リップル発熱温度は次のように測定した。すなわち、電解コンデンサ素子の外部陽極及び外部陰極端子に100kHzの正弦波にバイアスを重畳したものをリップルとして印加する。リップル電流は1000mAP−Pが電解コンデンサ素子に流れるようにアンプ出力を調整してそのリップル発熱温度を測定した。 Ripple heating temperature was measured as follows. That is, a voltage obtained by superimposing a bias on a 100 kHz sine wave is applied as a ripple to the external anode and external cathode terminals of the electrolytic capacitor element. As for the ripple current, the output of the amplifier was adjusted so that 1000 mAP-P would flow through the electrolytic capacitor element, and the ripple heat generation temperature was measured.

 得られた電解コンデンサ素子の等価直列抵抗およびリップル発熱温度を表1に示す。 Table 1 shows the equivalent series resistance and the ripple heat generation temperature of the obtained electrolytic capacitor element.

Figure 2004146850
Figure 2004146850

  実施例2〜5
 見掛表面積が電解コンデンサ素子に与える影響を調べるために、箔2の成形体1への埋め込み深さは4mmに固定したまま、箔2の厚さおよび幅を表1に示すように変化させて、成形体1に埋め込まれたリード部の体積が上記実施例1とほぼ同様になるようにした。
Examples 2 to 5
In order to examine the influence of the apparent surface area on the electrolytic capacitor element, the thickness and width of the foil 2 were changed as shown in Table 1 while the embedding depth of the foil 2 in the compact 1 was fixed at 4 mm. The volume of the lead portion embedded in the molded body 1 was set to be substantially the same as that of the first embodiment.

 そしてそれ以外は上記実施例1と同様にして電解コンデンサ素子を作成し、電解コンデンサ素子の等価直列抵抗およびリップル発熱温度を測定した。得られた測定結果を表1に示す。 And otherwise, an electrolytic capacitor element was prepared in the same manner as in Example 1 described above, and the equivalent series resistance and the ripple heating temperature of the electrolytic capacitor element were measured. Table 1 shows the obtained measurement results.

  比較例1
 リードとして、上記実施例1〜5とは異なり、断面積が円状であり径が280μmのリード線3を用いた。
Comparative Example 1
Unlike the above Examples 1 to 5, a lead wire 3 having a circular cross section and a diameter of 280 μm was used as a lead.

 なお、リード線3の埋め込み部の深さは4mmとして、得られる電極の静電容量が上記実施例1〜5とほぼ等しくなるようにした。
 実施例1と比較例5とを比較すると、どちらも陽極リードの見掛表面積がほぼ同じため、等価直列抵抗およびリップル発熱温度が同じ程度となっている。しかし、実施例2〜5に示すように、箔2の厚みを200μmよりも小さくして、箔2の幅を広くし、見掛表面積を大きくしていくにつれて、陽極であるタンタル微粉末とリードとの接触面積が増大することから、得られる電解コンデンサ素子は等価直列抵抗が低減し、高周波特性の優れたものとなる。
The depth of the embedded portion of the lead wire 3 was set to 4 mm, and the capacitance of the obtained electrode was set to be substantially equal to those in Examples 1 to 5 described above.
Comparing Example 1 with Comparative Example 5, both have substantially the same apparent surface area of the anode lead, and thus have the same equivalent series resistance and the same ripple heating temperature. However, as shown in Examples 2 to 5, as the thickness of the foil 2 was made smaller than 200 μm, the width of the foil 2 was increased, and the apparent surface area was increased, the tantalum fine powder as the anode and the lead were increased. Since the area of contact with the capacitor increases, the resulting electrolytic capacitor element has a reduced equivalent series resistance and excellent high-frequency characteristics.

 また、リップル発熱の温度上昇も低減できることから、同一温度上昇範囲における許容リップル電流量が増加した優れた電解コンデンサ素子を得ることができる。
 なお、上記(実施の形態1)では、陽極リードとしての箔2を図1に示すように成形体1の内部に埋め込んだが、本発明はこれに限定されるものではなく、リード線3を用いた場合よりも見掛表面積が大きければ、図2に示すように箔2を成形体1の表面に取り付ける、あるいは図3に示すように箔2を成形体1に埋め込みその一部を露出させてもよい。
Further, since the temperature rise of the ripple heat can be reduced, an excellent electrolytic capacitor element having an increased allowable ripple current in the same temperature rise range can be obtained.
In the above (Embodiment 1), the foil 2 as the anode lead is embedded in the inside of the molded body 1 as shown in FIG. 1, but the present invention is not limited to this, and the lead wire 3 may be used. If the apparent surface area is larger than the case, the foil 2 is attached to the surface of the molded body 1 as shown in FIG. 2, or the foil 2 is embedded in the molded body 1 as shown in FIG. Is also good.

 また、箔2の表面に研磨あるいは電子的エッチングを施して凹凸を形成し、見掛表面積を増大させる場合には、上記実施例1〜5より明らかなように、凹凸を形成する前の箔2の見掛表面積の2倍以上になるように凹凸を形成すると、等価直列抵抗値の低下やリップル発熱温度の低下の実現により効果的となる。 When the surface of the foil 2 is polished or electronically etched to form irregularities to increase the apparent surface area, as apparent from the above Examples 1 to 5, the foil 2 before the irregularities are formed is formed. When the irregularities are formed so as to be at least twice the apparent surface area of the above, it is more effective to reduce the equivalent series resistance value and the ripple heat generation temperature.

 また、実施例1〜5および比較例1から明らかなように、より大きな効果が得られたのは箔2の厚みが100μm以下の場合であった。
  (実施の形態2)
 上記(実施の形態1)における実施例1〜5および比較例1では、見掛表面積の等価直列抵抗およびリップル発熱温度に与える影響を調べたが、この(実施の形態1)では、以下の実施例6〜8および比較例2において、見掛表面積の高周波特性に与える影響を調べた。
Further, as is clear from Examples 1 to 5 and Comparative Example 1, a larger effect was obtained when the thickness of the foil 2 was 100 μm or less.
(Embodiment 2)
In Examples 1 to 5 and Comparative Example 1 in the above (Embodiment 1), the effects of the apparent surface area on the equivalent series resistance and the ripple heat generation temperature were examined. In Examples 6 to 8 and Comparative Example 2, the effect of the apparent surface area on the high-frequency characteristics was examined.

  実施例6〜8
 箔2として厚み50μmのものを用い、埋設部の体積が同じになるようにその幅と成形体1への埋没深さを表2に示すように変化させた。そして、それ以外は上記実施例1と同様にして電解コンデンサ素子を作製した。
Examples 6 to 8
The foil 2 having a thickness of 50 μm was used, and the width and the burial depth in the molded body 1 were changed as shown in Table 2 so that the volume of the buried portion was the same. Otherwise, an electrolytic capacitor element was manufactured in the same manner as in Example 1 above.

Figure 2004146850
Figure 2004146850

 得られた電解コンデンサ素子のインピーダンスの100Hz〜40MHzでの変化を図4に示す。
  比較例2
 比較例1と同様のリード線3を用いて、上記実施例6〜8とほぼ同等の容量が得られるように成形体1にリード線3を埋め込んだ。そしてそれ以外は実施例1と同様にして電解コンデンサ素子を作製した。
FIG. 4 shows changes in the impedance of the obtained electrolytic capacitor element in the range of 100 Hz to 40 MHz.
Comparative Example 2
Using the same lead wire 3 as in Comparative Example 1, the lead wire 3 was embedded in the molded body 1 so as to obtain approximately the same capacity as in Examples 6 to 8 described above. Otherwise, an electrolytic capacitor element was manufactured in the same manner as in Example 1.

 得られた電解コンデンサ素子のインピーダンスの100Hz〜40MHzでの変化を図4に示す。
 図4に示すように、100Hz〜300,000Hzの間では実施例6〜8および比較例2のインピーダンスに差はないが、300,000Hzを超えた高周波数領域では、実施例6〜8は比較例2に比べインピーダンスが小さくなり、良好な高周波数特性が得られた。
FIG. 4 shows changes in the impedance of the obtained electrolytic capacitor element in the range of 100 Hz to 40 MHz.
As shown in FIG. 4, there is no difference between the impedances of Examples 6 to 8 and Comparative Example 2 between 100 Hz and 300,000 Hz, but in the high frequency region exceeding 300,000 Hz, Examples 6 to 8 are compared. The impedance was smaller than in Example 2, and good high frequency characteristics were obtained.

 これは、実施例6〜8の陽極リードが、断面が円のリード線3ではなく断面が四角形の箔2であるため、断面積が大きくなり共振周波数において低等価直列抵抗となり、また箔2の幅が広くなることで低等価直列誘導となったためと考えられる。 This is because the anode lead of each of Examples 6 to 8 is not a lead wire 3 having a circular cross section but a foil 2 having a rectangular cross section, and thus has a large cross-sectional area and a low equivalent series resistance at a resonance frequency. It is considered that the wide equivalent width resulted in low equivalent series induction.

  (実施の形態3)
 図5は、本発明の(実施の形態3)を示す。
 上記(実施の形態1)における図1に示す電解コンデンサ用電極4とほぼ同様の構成であるが、この(実施の形態3)では、箔2の成形体1への埋設部に複数の貫通孔5を設けた点で異なる。
(Embodiment 3)
FIG. 5 shows (Embodiment 3) of the present invention.
Although the configuration is substantially the same as that of the electrode 4 for an electrolytic capacitor shown in FIG. 1 in the above (Embodiment 1), in this (Embodiment 3) a plurality of through holes 5 is provided.

 このように箔2に貫通孔5を設けることで、見掛表面積はほぼ同じものであっても、成形体1と箔2とを真空焼結する際に成形体1が収縮する力(矢印AおよびB方向)を箔2が受けやすくなり、接合面積が大きくなり低等価直列抵抗で高強度の電解コンデンサ素子が得られる。 By providing the through-holes 5 in the foil 2 in this way, even when the apparent surface area is almost the same, the force of the compact 1 to shrink when the compact 1 and the foil 2 are vacuum-sintered (arrow A) And direction B), the joining area becomes large, and a high strength electrolytic capacitor element with low equivalent series resistance can be obtained.

 以下にこの(実施の形態3)の具体例を示す。
  実施例9
 厚み50μm、幅1.2mm、埋め込み深さ4mmの箔2に、径0.2mmの貫通孔を20孔設けた。そしてそれ以外は実施例1と同様にして、電解コンデンサ素子を作製した。
Hereinafter, a specific example of this (Embodiment 3) will be described.
Example 9
Foil 2 having a thickness of 50 μm, a width of 1.2 mm and an embedding depth of 4 mm was provided with 20 through-holes having a diameter of 0.2 mm. Otherwise, an electrolytic capacitor element was manufactured in the same manner as in Example 1.

 得られた電解コンデンサ素子の100kHzにおける等価直列抵抗および比較例3と実施例9とを比較したときの強度比を表3に示す。 Table 3 shows the equivalent series resistance at 100 kHz of the obtained electrolytic capacitor element and the intensity ratio when Comparative Example 3 and Example 9 were compared.

Figure 2004146850
Figure 2004146850

  比較例3
 厚み50μm、幅1.2mm、埋め込み深さ4mmの貫通孔5のない箔2を用いた。そしてそれ以外は実施例1と同様にして電解コンデンサ素子を作製した。
Comparative Example 3
A foil 2 having a thickness of 50 μm, a width of 1.2 mm, and an embedding depth of 4 mm without a through hole 5 was used. Otherwise, an electrolytic capacitor element was manufactured in the same manner as in Example 1.

 得られた電解コンデンサ素子の100kHzにおける等価直列抵抗および強度比を表3に示す。
  実施例9と比較例3とは、見掛表面積はほぼ等しいものの、実施例9は、真空焼結の際に成形体1が収縮する力を箔2が受けやすくなり、粉末と箔2の接合面積が増えるため、低等価直列抵抗となり、また、高強度のものが得られた。
Table 3 shows the equivalent series resistance and strength ratio at 100 kHz of the obtained electrolytic capacitor element.
Although Example 9 and Comparative Example 3 have almost the same apparent surface area, Example 9 is such that the foil 2 is more susceptible to the force of contraction of the compact 1 during vacuum sintering, Since the area was increased, a low equivalent series resistance was obtained, and a high strength product was obtained.

 なお、上記(実施の形態3)では、箔2に複数の貫通孔5を設けたが、本発明はこれに限定されるものではなく、上記(実施の形態1)で述べたように箔2の表面にエッチングなどにより凹凸を形成し、この凹凸を有する箔2に複数の貫通孔5を形成してもよい。 In the above (Embodiment 3), a plurality of through holes 5 are provided in the foil 2, but the present invention is not limited to this, and the foil 2 is provided as described in the above (Embodiment 1). May be formed on the surface of the film 2 by etching or the like, and a plurality of through holes 5 may be formed in the foil 2 having the unevenness.

 また、上記(実施の形態1)〜(実施の形態3)では、弁金属としてタンタルを用いたが、本発明はこれに限定されるものではなく、タンタル以外の弁金属を用いても同様の効果が得られる。 Further, in the above (Embodiment 1) to (Embodiment 3), tantalum is used as the valve metal, but the present invention is not limited to this, and the same applies even if a valve metal other than tantalum is used. The effect is obtained.

(実施の形態1)における電解コンデンサ用電極の構成を示す斜視図Perspective view showing a configuration of an electrode for an electrolytic capacitor in (Embodiment 1). (実施の形態1)における別の電解コンデンサ用電極の構成を示す斜視図Perspective view showing a configuration of another electrode for an electrolytic capacitor in (Embodiment 1). (実施の形態1)における別の電解コンデンサ用電極の構成を示す斜視図Perspective view showing a configuration of another electrode for an electrolytic capacitor in (Embodiment 1). (実施の形態2)におけるインピーダンスの周波数特性を示すグラフGraph showing frequency characteristics of impedance in (Embodiment 2) (実施の形態3)における電解コンデンサ用電極の構成を示す断面図Sectional view showing a configuration of an electrode for an electrolytic capacitor in (Embodiment 3). 従来の電解コンデンサ用電極の構成を示す斜視図Perspective view showing the configuration of a conventional electrode for an electrolytic capacitor

符号の説明Explanation of reference numerals

1  成形体
2  箔
3  リード線
4  電解コンデンサ用電極
5  貫通孔
REFERENCE SIGNS LIST 1 molded body 2 foil 3 lead wire 4 electrode for electrolytic capacitor 5 through hole

Claims (4)

 弁金属粉末の成形体に弁金属からなるリードとして箔を取り付けた陽極体と、陽極体の細孔表面に形成された誘電体酸化皮膜と、前記酸化皮膜に接して形成された固体電解質を含み、100kHz以上の高周波で使用される電解コンデンサであって、
 前記リード箔は、その幅が略一定であり、前記成形体に埋め込まれる部分と、前記成形体へ埋め込まれていない部分との箔幅が略同一であるように、前記成形体に一部が埋め込まれ、かつ前記リード箔の厚みは100μm以下であることを特徴とする電解コンデンサ。
An anode body in which a foil as a lead made of valve metal is attached to a molded body of valve metal powder, a dielectric oxide film formed on the pore surface of the anode body, and a solid electrolyte formed in contact with the oxide film. , An electrolytic capacitor used at a high frequency of 100 kHz or more,
The lead foil has a substantially constant width, and a part of the molded body is formed such that a portion embedded in the molded body and a part not embedded in the molded body have substantially the same foil width. An electrolytic capacitor embedded therein, wherein the thickness of the lead foil is 100 μm or less.
 弁金属粉末の成形体に弁金属からなるリードとして箔を取り付けた電解コンデンサ用電極であって、
 前記リード箔は、その幅が成形体の幅に対して0.17以上で略一定であり、前記成形体に埋め込まれる部分と、前記成形体へ埋め込まれていない部分との箔幅が略同一であるように、前記成形体に一部が埋め込まれ、かつ前記リード箔の厚みは100μm以下である電解コンデンサ用電極。
An electrode for an electrolytic capacitor in which a foil as a lead made of a valve metal is attached to a molded body of a valve metal powder,
The lead foil has a width substantially equal to or greater than 0.17 with respect to the width of the molded body, and a portion embedded in the molded body and a part not embedded in the molded body have substantially the same foil width. The electrode for an electrolytic capacitor in which a part is embedded in the molded body and the thickness of the lead foil is 100 μm or less.
 弁金属の箔の表面に凹凸を形成し、前記箔の成形体への接触部分の表面積が、凹凸を形成しない箔の成形体への接触部分の表面積の2倍以上になるように前記凹凸が形成されている請求項2記載の電解コンデンサ用電極。 Irregularities are formed on the surface of the valve metal foil, and the irregularities are adjusted so that the surface area of the contact portion of the foil with the molded body is at least twice as large as the surface area of the contact portion of the foil with no irregularities. The electrode for an electrolytic capacitor according to claim 2, which is formed.  弁金属の箔が、貫通孔を有する請求項2または請求項3記載の電解コンデンサ用電極。 4. The electrode for an electrolytic capacitor according to claim 2, wherein the valve metal foil has a through hole.
JP2004010023A 2004-01-19 2004-01-19 Electrolytic capacitor and electrode for electrolytic capacitor Pending JP2004146850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010023A JP2004146850A (en) 2004-01-19 2004-01-19 Electrolytic capacitor and electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010023A JP2004146850A (en) 2004-01-19 2004-01-19 Electrolytic capacitor and electrode for electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17195598A Division JP3535014B2 (en) 1998-06-19 1998-06-19 Electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2004146850A true JP2004146850A (en) 2004-05-20

Family

ID=32464178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010023A Pending JP2004146850A (en) 2004-01-19 2004-01-19 Electrolytic capacitor and electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2004146850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967944B1 (en) * 2005-08-09 2010-07-07 케메트 일렉트로닉스 코포레이션 Improved fluted anode with minimal density gradients and capacitor comprising same
JP2013229565A (en) * 2012-04-24 2013-11-07 Avx Corp Solid electrolytic capacitor containing multiple sinter-bonded anode leadwires

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967944B1 (en) * 2005-08-09 2010-07-07 케메트 일렉트로닉스 코포레이션 Improved fluted anode with minimal density gradients and capacitor comprising same
JP2013229565A (en) * 2012-04-24 2013-11-07 Avx Corp Solid electrolytic capacitor containing multiple sinter-bonded anode leadwires

Similar Documents

Publication Publication Date Title
JP3535014B2 (en) Electrode for electrolytic capacitor
CN107275091B (en) Solid electrolytic capacitor
JP2011071559A (en) Solid electrolytic capacitor
JP2006344936A (en) Solid electrolytic capacitor
TWI248097B (en) Solid electrolytic capacitor
JP2009246236A (en) Solid electrolytic capacitor, and method for manufacturing the same
JP4613699B2 (en) Solid electrolytic capacitor, method for manufacturing the same, and digital signal processing board using the same
TW200407921A (en) Anode member for solid electrolytic condenser and solid electrolytic condenser using the anode member
JP2011193035A (en) Solid electrolytic capacitor element, method for manufacturing the same, and solid electrolytic capacitor
JP2003332173A (en) Capacitor element, solid electrolytic capacitor, and substrate with built-in capacitor
US8018713B2 (en) Solid electrolytic capacitor having dual cathode plates surrounded by an anode body and a plurality of through holes
JP2004015071A (en) Electrolytic capacitor and electrode for the same
JP2004146850A (en) Electrolytic capacitor and electrode for electrolytic capacitor
JP2001217160A (en) Solid electrolytic capacitor and its manufacturing method
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP2004014667A (en) Solid electrolytic capacitor
JP2008235771A (en) Method of manufacturing solid state electrolytic capacitor
TWI329329B (en)
JP2006024691A (en) Solid electrolytic capacitor and its manufacturing method
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP2008177237A (en) Surface-mounting thin capacitor
JP4875468B2 (en) Chip-shaped solid electrolytic capacitor
JP4574597B2 (en) Distributed noise filter
JPH07201671A (en) Solid state electrolytic capacitor