JP5201668B2 - Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same - Google Patents

Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same Download PDF

Info

Publication number
JP5201668B2
JP5201668B2 JP2008159833A JP2008159833A JP5201668B2 JP 5201668 B2 JP5201668 B2 JP 5201668B2 JP 2008159833 A JP2008159833 A JP 2008159833A JP 2008159833 A JP2008159833 A JP 2008159833A JP 5201668 B2 JP5201668 B2 JP 5201668B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic capacitor
anode lead
lead
anode element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008159833A
Other languages
Japanese (ja)
Other versions
JP2010003774A (en
Inventor
薫 佐藤
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008159833A priority Critical patent/JP5201668B2/en
Publication of JP2010003774A publication Critical patent/JP2010003774A/en
Application granted granted Critical
Publication of JP5201668B2 publication Critical patent/JP5201668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電解コンデンサ用の陽極素子及びその製造方法に関し、特に陽極素子の焼結体部分の粗密差が少ない構造である電解コンデンサ陽極素子及びその製造方法、並びにこれを用いた電解コンデンサに関する。   The present invention relates to an anode element for an electrolytic capacitor and a method for manufacturing the same, and more particularly to an electrolytic capacitor anode element having a structure with a small difference in density between sintered parts of the anode element, a method for manufacturing the same, and an electrolytic capacitor using the same.

近年、デバイスの高集積化が進むに伴い、それらを構成する電子部品の高特性、高信頼性が強く求められるようになっている。電解コンデンサに対しても、大容量化、小型化が要求される一方で、動作の安定性や構造の堅牢性を兼ね備えていることが必須となっている。   In recent years, with the progress of high integration of devices, high characteristics and high reliability of electronic components constituting them have been strongly demanded. Electrolytic capacitors are also required to have a large capacity and a small size, but are also required to have operational stability and structural robustness.

現在盛んに研究、開発されている電解コンデンサの一つであるタンタルコンデンサは、一般に、タンタル陽極リードとその一部を埋設したタンタル焼結体からなる陽極素子に、化成処理を施して陽極素子表面に誘電体となる酸化皮膜を形成した構造となっている。タンタル焼結体の内部は微細な孔が複雑に入り組んで表面積が非常に大きくなっており、酸化皮膜が薄く広い面積に形成されるため大容量を実現できる特徴を有している。さらに酸化皮膜上に陰極となる二酸化マンガンや導電性高分子層、グラファイト層、銀ペースト層、陰極端子等を形成することでタンタルコンデンサの基本構造をなしている。   Tantalum capacitors, one of the electrolytic capacitors that are currently being actively researched and developed, are generally subjected to chemical conversion treatment on the anode element composed of a tantalum anode lead and a tantalum sintered body in which part of the anode element is embedded. It has a structure in which an oxide film serving as a dielectric is formed. The inside of the tantalum sintered body has a feature that a large capacity can be realized since the fine pores are complicated and the surface area is very large, and the oxide film is thin and formed in a wide area. Further, the basic structure of the tantalum capacitor is formed by forming manganese dioxide, a conductive polymer layer, a graphite layer, a silver paste layer, a cathode terminal, or the like that becomes a cathode on the oxide film.

タンタルコンデンサに用いられる陽極素子は、陽極リードとして角柱型もしくは円柱型の形状をしたものを用いている。図9は、従来の陽極素子の構造を示す透視図で、図9(a)は、陽極リードが角柱型の陽極素子、図9(b)は、陽極リードが円柱型の陽極素子である。従来の陽極素子は、タンタル金属粉末等の弁作用金属を焼結して得られた焼結体1にタンタル金属等の弁作用金属からなる陽極リード2の一部が埋設されて構成されている。   The anode element used for the tantalum capacitor uses a prismatic or cylindrical shape as the anode lead. 9A and 9B are perspective views showing the structure of a conventional anode element. FIG. 9A shows a prismatic anode element having an anode lead, and FIG. 9B shows an anode element having a cylindrical anode lead. A conventional anode element is configured by embedding a part of an anode lead 2 made of a valve action metal such as tantalum metal in a sintered body 1 obtained by sintering a valve action metal such as tantalum metal powder. .

製造方法としては、タンタル金属粉末とバインダーとを混合して金型の中に入れ、加圧成型して、円柱型或いは角柱型の成型体を得る。このとき、成型体の一端面に、同じタンタル金属からなるワイヤを植立するように、ワイヤの一部を成形体に埋設する。このタンタルワイヤを植立した成型体を焼結して、多孔質の焼結体1と陽極リード2が形成され、タンタルコンデンサの陽極素子が得られる。   As a manufacturing method, a tantalum metal powder and a binder are mixed, put into a mold, and press-molded to obtain a cylindrical or prismatic molded body. At this time, a part of the wire is embedded in the molded body so that a wire made of the same tantalum metal is planted on one end face of the molded body. The molded body in which the tantalum wire is planted is sintered to form the porous sintered body 1 and the anode lead 2, thereby obtaining the anode element of the tantalum capacitor.

一般的には、陽極素子の厚さ方向が、成型体の作製時のプレス加圧方向となるが、従来の陽極素子は、陽極素子全体の厚さに対して陽極リードの厚さの占める比率が大きく、その結果、焼結体内部の陽極リードが埋設されている部分と埋設されていない部分とで、粗密差が生じてしまうという問題があった。焼結体に粗密差があると、強度のばらつきにつながり、例えば陰極形成後に続く外装樹脂形成や熱処理、機械的衝撃などによる応力が加わった場合、陽極素子の酸化皮膜が破壊する可能性がある。酸化皮膜が破壊されると、陽極と陰極とが短絡して漏れ電流不良を引き起こし、信頼性、動作安定性の低下につながる恐れがある。   In general, the thickness direction of the anode element is the press-pressing direction at the time of producing the molded body. However, in the conventional anode element, the ratio of the thickness of the anode lead to the thickness of the entire anode element As a result, there is a problem that a density difference occurs between a portion where the anode lead inside the sintered body is embedded and a portion where the anode lead is not embedded. If there is a difference in density between the sintered bodies, it will lead to variations in strength. For example, if stress is applied due to the formation of exterior resin, heat treatment, mechanical impact, etc. after the cathode formation, the oxide film of the anode element may be destroyed. . When the oxide film is destroyed, the anode and the cathode are short-circuited to cause a leakage current failure, which may lead to a decrease in reliability and operational stability.

また、角柱型の陽極リードでは、陽極素子厚さ方向に対して垂直なリード面と焼結体部分との間に剥離が生じやすく、陽極リードの抜けの発生、更には上記と同様に漏れ電流の要因となる破壊を引き起こしたり、等価直列抵抗(以下、ESRと表記する)の劣化につながったりする可能性がある。   In addition, in the prismatic type anode lead, peeling is likely to occur between the lead surface perpendicular to the thickness direction of the anode element and the sintered body portion, and the anode lead is detached, and further, the leakage current is similar to the above. May cause destruction, which may cause deterioration of equivalent series resistance (hereinafter referred to as ESR).

さらに、従来の陽極リードは単純に幅、径を細くするとリード強度が確保できなくなることから、陽極リードのサイズを小さく出来ず、陽極素子体積中の大部分を、静電容量に寄与する割合が低い陽極リードが占めることとなり、体積効率が低下する問題や、陽極リードは高価であるため、コスト的な問題もあった。   Furthermore, since the strength of the lead cannot be secured if the conventional anode lead is simply reduced in width and diameter, the size of the anode lead cannot be reduced, and a large proportion of the anode element volume contributes to the capacitance. The low anode lead occupies the volume efficiency, and the anode lead is expensive.

電解コンデンサの小型化、薄型化が求められる中、ESR改善、陽極リード抜け防止と強度改善などを目的として陽極リードの形状を箔状または扁平状として、陽極リードの厚さを薄くした方法が特許文献1や特許文献2に提案されている。   As electrolytic capacitors are required to be smaller and thinner, the method of reducing the anode lead thickness by making the anode lead shape foil or flat for the purpose of improving ESR, preventing the anode lead from falling off and improving the strength is patented It is proposed in Document 1 and Patent Document 2.

特許文献1では、チップ状コンデンサの陽極リードが、成型体の一面に植設されている弁作用金属粉末を成形した直方体形状の成型体において、陽極リードを箔状とし、植設された箔状陽極リードの幅が、成型体の幅と略同一寸法とした陽極素子が提案されている。   In Patent Document 1, the anode lead of a chip capacitor is a rectangular parallelepiped molded body obtained by molding the valve action metal powder implanted on one surface of the molded body, and the anode lead is made into a foil shape, and the implanted foil shape An anode element has been proposed in which the width of the anode lead is approximately the same as the width of the molded body.

特許文献2では、電解コンデンサの陽極素子の陽極リードの一部を埋設した弁作用金属のシート状の多孔質焼結体において、陽極リードの埋設された部分を扁平状とした陽極素子が提案されている。   Patent Document 2 proposes an anode element in which a portion in which the anode lead is embedded is flattened in a valve-acting metal sheet-like porous sintered body in which a part of the anode lead of the anode element of the electrolytic capacitor is embedded. ing.

しかし、単に陽極リードの厚さを薄くしたこれらの形状では、前述したように、焼結体に粗密さが発生する問題や、陽極素子厚さ方向に垂直な陽極リード面と焼結体部分との間の剥離を生じやすいという問題は改善できず、陽極リードの抜けの発生や、応力が加わった場合に漏れ電流やESRが劣化してしまう可能性が大きい。   However, in these shapes where the thickness of the anode lead is simply reduced, as described above, there is a problem in that the sintered body becomes rough, the anode lead surface perpendicular to the anode element thickness direction, the sintered body portion, The problem of easy peeling between the electrodes cannot be improved, and there is a high possibility that leakage current and ESR will deteriorate when an anode lead comes off or stress is applied.

特開2005−101592号公報JP 2005-101582 A 特開2004−153263号公報JP 2004-153263 A

前述のように、従来の陽極リードを使用した電解コンデンサ陽極素子では、焼結体の粗密差が少なくかつストレスによる破壊、剥離を引き起こしにくい信頼性の高い構造であるという点とともに、コスト面でも有利であるという点の2つの課題を同時に解決することは困難であった。   As described above, the electrolytic capacitor anode element using the conventional anode lead is advantageous in terms of cost as well as having a highly reliable structure in which the density difference of the sintered body is small and it is difficult to cause destruction and peeling due to stress. It was difficult to solve the two problems at the same time.

従って、本発明では、陽極素子の焼結体に粗密差が少なく、また陽極リードと焼結体との剥離が生じにくく、かつ体積効率やコスト的にも有利である電解コンデンサ陽極素子とこの製造方法、並びにこれを用いた電解コンデンサを提供することを課題とする。   Therefore, in the present invention, there is little difference in density between the sintered bodies of the anode element, the anode lead and the sintered body are less likely to be peeled off, and the electrolytic capacitor anode element is advantageous in terms of volume efficiency and cost. It is an object of the present invention to provide a method and an electrolytic capacitor using the method.

前記課題を解決するために、本発明の電解コンデンサ陽極素子は、弁作用金属を用いた陽極リードと、前記陽極リードの一部を埋設した多孔質の弁作用金属粉末の焼結体とを有する電解コンデンサ陽極素子であって、前記陽極リードの焼結体内に埋設した埋設部が薄板状で、かつ前記埋設部の最大幅が前記焼結体と同じ幅であり、前記埋設部の外周に切り込みを形成し、前記切り込みの最大幅および最大長さが、前記陽極リードの埋設部の厚さ以上であることを特徴とする。 In order to solve the above problems, an electrolytic capacitor anode element of the present invention includes an anode lead using a valve metal and a sintered body of porous valve metal powder in which a part of the anode lead is embedded. An electrolytic capacitor anode element, wherein the embedded portion embedded in the sintered body of the anode lead is a thin plate, and the maximum width of the embedded portion is the same width as the sintered body, and is cut into the outer periphery of the embedded portion forming a maximum width and maximum length of the incision, and wherein more thickness der Rukoto buried portion of the anode lead.

また、本発明の電解コンデンサ陽極素子は、前記埋設部に1つ以上の貫通穴を形成していることを特徴とする。 Further, electrolytic capacitor anodes element of the present invention is characterized by forming one or more through holes before Symbol embedded portion.

また、本発明の電解コンデンサ陽極素子は、前記陽極リードの埋設部に形成した貫通穴の開口サイズは、前記貫通穴の最大内接円直径が、前記陽極リードの埋設部の厚さ以上であることを特徴とする。   In the electrolytic capacitor anode element of the present invention, the opening size of the through hole formed in the buried portion of the anode lead is such that the maximum inscribed circle diameter of the through hole is equal to or greater than the thickness of the buried portion of the anode lead. It is characterized by that.

また、本発明の電解コンデンサ陽極素子は、前記陽極リードの埋設部の厚さは、前記電解コンデンサ陽極素子の総厚さの3分の1以下であることを特徴とする。   In the electrolytic capacitor anode element of the present invention, the thickness of the buried portion of the anode lead is not more than one third of the total thickness of the electrolytic capacitor anode element.

また、本発明によると、前記弁作用金属粉末を加圧成形する際に、前記陽極リードの埋設部の主面に対して垂直方向に加圧することを特徴とする電解コンデンサ陽極素子の製造方法が得られる。 Further, according to the present invention, before the Kiben action metal powder at the time of press molding, method of manufacturing an electrolytic capacitor anode element, characterized in that pressed in a direction perpendicular to the main surface of the embedded portion of the anode lead Is obtained.

また、本発明によると、前記電解コンデンサ陽極素子を使用した電解コンデンサが得られる。   Moreover, according to the present invention, an electrolytic capacitor using the electrolytic capacitor anode element can be obtained.

本発明によれば、弁作用金属の焼結体の密度ばらつきが少なく、かつ種々の応力が加わることによる破壊、剥離を生じにくい電解コンデンサ陽極素子を得ることができ、信頼性の高い電解コンデンサを提供することができる。さらに高信頼性に加え、陽極リードの体積を削減することが可能なためコストパフォーマンスの高い電解コンデンサ陽極素子と電解コンデンサを提供できるという、2つの効果を同時に実現することができる。また、陽極素子体積に占める陽極リードの体積を低減できれば焼結体部分の体積を増やすことが可能となるため、同サイズで高容量化を図ることができるという効果も期待される。   According to the present invention, it is possible to obtain an electrolytic capacitor anode element in which the sintered density of the valve action metal is small, and it is difficult to cause destruction and peeling due to various stresses. Can be provided. Furthermore, in addition to high reliability, the volume of the anode lead can be reduced, so that two effects of providing an electrolytic capacitor anode element and an electrolytic capacitor with high cost performance can be realized simultaneously. Further, if the volume of the anode lead occupying the anode element volume can be reduced, the volume of the sintered body portion can be increased. Therefore, an effect that the capacity can be increased with the same size is also expected.

以下、本発明の好ましい実施の形態について図面を参照しながら詳細に説明するが、本発明はこれらの例に限定されるものではない。また、図面においては、誘電体となる酸化皮膜や陰極、端子、外装樹脂などは省略しており、陽極素子の構造や陽極リードの形状、効果の概念を表したものとなっている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these examples. Also, in the drawings, an oxide film, a cathode, a terminal, an exterior resin, and the like serving as a dielectric are omitted, and represent the concept of the structure of the anode element, the shape of the anode lead, and the effect.

図1は、本発明の電解コンデンサ陽極素子の参考例を示す構造図で、図1(a)は、陽極リードの埋没部に貫通穴を設けた陽極素子、図1(b)は、紙面右から見た側面図である。図1に示すように、電解コンデンサ陽極素子は、弁作用金属粉末からなる焼結体1と弁作用金属からなる陽極リード2から構成される。陽極リード2は、陽極素子の焼結体1に埋設される埋設部3を有し、この埋設部3が薄板状であり、貫通穴12が形成されている。 FIG. 1 is a structural diagram showing a reference example of an electrolytic capacitor anode element according to the present invention. FIG. 1A is an anode element in which a through hole is provided in the buried portion of an anode lead, and FIG. It is the side view seen from. As shown in FIG. 1, the electrolytic capacitor anode element includes a sintered body 1 made of valve action metal powder and an anode lead 2 made of valve action metal. The anode lead 2 has an embedded portion 3 embedded in the sintered body 1 of the anode element. The embedded portion 3 is a thin plate and has a through hole 12 formed therein.

図2は、陽極素子の焼結体の断面状態を説明する模式図で、図2(a)は、従来の陽極素子の焼結体の幅方向断面図、図2(b)は、本発明の陽極素子の焼結体の幅方向断面図である。従来の陽極素子構造の場合は、図2(a)に示すように、陽極素子全体の厚さに対して陽極リード2の埋設部3の厚さの占める割合が大きい。その結果、弁作用金属粉末4を加圧成形する際に、陽極リード2の埋設部3が埋設されている部分は、焼結体1中の弁作用金属粉末4の割合が多く焼結体1は密になり、陽極リード2の埋設部3が埋設されていない部分は、空隙5の割合が多く焼結体1は粗となる。また、加圧方向6と垂直な陽極リード面と焼結体1との間は剥離が生じやすく、機械的に弱い部分であるといえる。   FIG. 2 is a schematic diagram for explaining a sectional state of the sintered body of the anode element, FIG. 2 (a) is a sectional view in the width direction of the sintered body of the conventional anode element, and FIG. 2 (b) is the present invention. It is sectional drawing of the width direction of the sintered compact of this anode element. In the case of the conventional anode element structure, as shown in FIG. 2A, the ratio of the thickness of the buried portion 3 of the anode lead 2 to the total thickness of the anode element is large. As a result, when pressure-molding the valve metal powder 4, the portion where the embedded portion 3 of the anode lead 2 is embedded has a large proportion of the valve metal powder 4 in the sintered body 1. The portion where the buried portion 3 of the anode lead 2 is not buried has a large proportion of the gap 5 and the sintered body 1 becomes rough. Further, it can be said that the anode lead surface perpendicular to the pressing direction 6 and the sintered body 1 are easily peeled off and are mechanically weak portions.

一方、本発明の構造の場合は、陽極素子全体の厚さに対して陽極リード2の厚さの占める割合を小さくすることが出来る。この構造によって、陽極リード2の厚さは薄くなるものの、焼結体1のほぼ全面に埋設することが出来るため、焼結体1と陽極リード2の埋設部3との接触面積や、陽極リード2の強度を低下させることなく、電解コンデンサの薄型化が可能となる。更に、陽極リード2の埋設部3に形成した貫通穴12を設けることで、弁作用金属粉末4が貫通穴12部分に入り込み、弁作用金属粉末4の偏りを防ぐことが出来る。これらによって、焼結体1の粗密差を低減することが可能となる。また、貫通穴12部分に入り込んだ弁作用金属粉末4は、陽極リード2の埋設部3の上下を結束する働きを持ち、陽極リード2と焼結体1が剥離し難くなり、リード抜けを防止するという効果が得られる。陽極素子を加圧成形するにあたっては、陽極リード2の埋設部3の主面に対して垂直方向に加圧すると良い。こうすることで、埋設部3に形成した貫通穴12に効果的に粉末が入り込むことが可能となる。   On the other hand, in the case of the structure of the present invention, the ratio of the thickness of the anode lead 2 to the thickness of the entire anode element can be reduced. Although the thickness of the anode lead 2 is reduced by this structure, the anode lead 2 can be embedded almost over the entire surface of the sintered body 1, so that the contact area between the sintered body 1 and the embedded portion 3 of the anode lead 2, the anode lead The thickness of the electrolytic capacitor can be reduced without reducing the strength of 2. Furthermore, by providing the through hole 12 formed in the buried portion 3 of the anode lead 2, the valve metal powder 4 enters the through hole 12 portion, and the bias of the valve metal powder 4 can be prevented. By these, it becomes possible to reduce the density difference of the sintered body 1. Further, the valve metal powder 4 that has entered the through hole 12 has a function of binding the upper and lower portions of the buried portion 3 of the anode lead 2, and it becomes difficult for the anode lead 2 and the sintered body 1 to be peeled off, thereby preventing the lead from coming off. The effect of doing is obtained. In press molding the anode element, it is preferable to press the anode element 2 in a direction perpendicular to the main surface of the buried portion 3 of the anode lead 2. By doing so, the powder can effectively enter the through hole 12 formed in the embedded portion 3.

図3は、本発明の電解コンデンサ陽極素子の第一の実施の形態を示す構造図で、図3(a)は、陽極リードの埋設部に切り込みを設けた陽極素子、図3(b)は、紙面右から見た側面図である。第一の実施の形態では、図3に示すように、陽極素子の埋設部3に矩形状切り込みを設けている。この構造によって、焼結体1の粗密差が少なく、陽極リード2と焼結体1の間が剥離し難くなり、リード抜けを防ぐことが可能となる。 FIG. 3 is a structural diagram showing a first embodiment of the electrolytic capacitor anode element of the present invention. FIG. 3 (a) is an anode element in which a cut portion is provided in the buried portion of the anode lead, and FIG. It is the side view seen from the paper surface right. In the first embodiment, as shown in FIG. 3, a rectangular cut is provided in the buried portion 3 of the anode element. By this structure, density difference of sintered body 1 is small, while the anode lead 2 and the sintered body 1 is hardly peeled off, it is possible to prevent the lead omission.

図4は、本発明の電解コンデンサ陽極素子の第二の実施の形態を示す構造図で、図4(a)は、陽極リードの埋設部に貫通穴と切り込みを設けた陽極素子、図4(b)は、紙面右から見た側面図である。第二の実施の形態では、図4に示すように、陽極素子の埋設部3に長方形状の貫通穴12と、波状の切り込みを設けている。このように、貫通穴12と切り込みを同時に設けても良く、この構造によって、焼結体1の粗密さが少なく、陽極リード2と焼結体1の間が剥離し難くなり、リード抜けを防ぐことが可能となる。 FIG. 4 is a structural diagram showing a second embodiment of the electrolytic capacitor anode element of the present invention. FIG. 4 (a) is an anode element in which a through hole and a cut are provided in the buried portion of the anode lead, and FIG. b) is a side view seen from the right side of the drawing. In the second embodiment, as shown in FIG. 4, a rectangular through hole 12 and a wavy cut are provided in the buried portion 3 of the anode element. Thus may be provided a notch and the through hole 12 at the same time, by this structure, less density of sintered body 1 made between the anode lead 2 and the sintered body 1 is hardly peeled off, the lead omission Can be prevented.

図5は、本発明の電解コンデンサ陽極素子のその他の陽極リード形状例を示す図で、図5(a)は、陽極リードの埋設部に長方形状の貫通穴を横方向に二つ設けた例、図5(b)は、陽極リードの埋設部に長方形状の貫通穴を縦方向に二つ設けた例、図5(c)は、陽極リードの埋設部に多角形状の貫通穴と、外周に波状の切り込みを設けた例、図5(d)は、陽極リードの埋設部に櫛型状の切り込みを設けた例である。ここで、図中点線で囲まれた部分は焼結体1の外に露出している陽極リード2の部分である。このように、貫通穴12の形状やその数量、切り込みの形状やその数量、またこれらの組み合わせは、特に限定されず、電解コンデンサ陽極素子の大きさや製造条件によって選択することが可能である。但し、弁作用金属粉末4の粒径や、加圧成型の加圧条件によっては、矩形状の貫通穴12や切り込みの場合、その角部に弁作用金属粉末4が入り込みにくくなることも考えられ、この点を留意して、円形状、波状としたり、角部に丸め処理を施したりするのが好適である。   FIG. 5 is a diagram showing another anode lead shape example of the electrolytic capacitor anode element of the present invention, and FIG. 5A is an example in which two rectangular through holes are provided in the horizontal direction in the buried portion of the anode lead. 5B shows an example in which two rectangular through holes are provided in the vertical direction in the buried portion of the anode lead, and FIG. 5C shows a polygonal through hole in the buried portion of the anode lead and the outer periphery. FIG. 5D shows an example in which a comb-shaped cut is provided in the buried portion of the anode lead. Here, a portion surrounded by a dotted line in the drawing is a portion of the anode lead 2 exposed to the outside of the sintered body 1. Thus, the shape and the number of the through holes 12, the shape and the number of the cuts, and the combination thereof are not particularly limited, and can be selected according to the size of the electrolytic capacitor anode element and the manufacturing conditions. However, depending on the particle diameter of the valve metal powder 4 and the pressurization conditions of the pressure molding, it may be difficult for the valve metal powder 4 to enter the corners of the rectangular through holes 12 and the cuts. With this point in mind, it is preferable to use a circular shape, a wavy shape, or round corners.

次に、貫通穴12のサイズと、切り込みのサイズについて説明する。図6は、陽極リードの埋設部に設けた貫通穴並びに切り込み部分の拡大図で、図6(a)は、貫通穴が楕円状の場合、図6(b)は、貫通穴が長方形状の場合、図6(c)は、切込みが波状の場合、図6(d)は、切り込みが矩形状の場合を示している。貫通穴12のサイズは、貫通穴12に内接する最大円7の直径8が、陽極リード2の厚さ以上であることが望ましい。また、切り込みサイズについても同様に、各々の切り込みの最大幅9、および最大長さ10が、陽極リード2の厚さ以上であることが望ましい。貫通穴12と切り込みのサイズを、陽極リード2の厚さ以下とすると、弁作用金属粉末4が貫通穴12、または切り込みの部分に流れ込みにくくなり、焼結体1に粗密差が発生し易い。また、これらのサイズの上限については、特に限定されないが、貫通穴12と切り込みを形成した面積が、陽極リードの埋没部の面積の半分を超えないように調整することで、焼結体1と埋設部3の接触面積を十分に確保することが可能となる。   Next, the size of the through hole 12 and the size of the cut will be described. FIG. 6 is an enlarged view of the through hole and the cut portion provided in the buried portion of the anode lead. FIG. 6A shows a case where the through hole is elliptical, and FIG. 6B shows a case where the through hole is rectangular. In this case, FIG. 6C shows a case where the cut is wavy, and FIG. 6D shows a case where the cut is rectangular. As for the size of the through hole 12, it is desirable that the diameter 8 of the maximum circle 7 inscribed in the through hole 12 is equal to or larger than the thickness of the anode lead 2. Similarly for the cut size, it is desirable that the maximum width 9 and the maximum length 10 of each cut be equal to or greater than the thickness of the anode lead 2. When the size of the through hole 12 and the cut is set to be equal to or smaller than the thickness of the anode lead 2, the valve metal powder 4 is less likely to flow into the through hole 12 or the cut portion, and a density difference is likely to occur in the sintered body 1. Further, the upper limit of these sizes is not particularly limited, but by adjusting the area where the through hole 12 and the cut are formed so as not to exceed half of the area of the buried portion of the anode lead, It becomes possible to ensure a sufficient contact area of the embedded portion 3.

陽極リード2の埋設部3の厚さは、陽極素子全体の厚さの3分の1以下とすることが好ましく、薄くすることにより、電解コンデンサの薄型化、陽極素子の体積効率の向上につながり、またコスト面でも有利となる。埋設部3の厚さを3分の1以上とすると、弁作用金属粉末4の流れ込みが悪くなり、焼結体1の粗密差が発生する。埋設部3の厚さの下限値については、陽極素子全体の厚さの1/10以上とすることが好ましく、これは1/10未満にした場合に、加圧成型時に埋設部3に破壊が生じる恐れがあるためであり、1/10以上とすることにより、強度が確保される。   The thickness of the buried portion 3 of the anode lead 2 is preferably set to one third or less of the thickness of the entire anode element, and by reducing the thickness, the electrolytic capacitor is made thinner and the volume efficiency of the anode element is improved. Also, it is advantageous in terms of cost. If the thickness of the embedded portion 3 is set to one third or more, the flow of the valve action metal powder 4 becomes worse, and a density difference of the sintered body 1 occurs. The lower limit value of the thickness of the embedded portion 3 is preferably 1/10 or more of the thickness of the whole anode element, and when this is less than 1/10, the embedded portion 3 is destroyed during pressure molding. This is because there is a possibility that it will occur. By setting it to 1/10 or more, the strength is secured.

また、陽極リード2の埋設部3の幅は、焼結体1と埋設部3の接触面積を確保するために、陽極素子の幅とほぼ同じであることが望ましく、同寸であってもよい。但し、同寸にする場合には、埋設部3の外周に切り込みを形成し、弁作用金属粉末4の流れ込みを良くする工夫が必要である。更に、陽極リード2の焼結体1に埋設していない部分の形状については特に限定しないが、強度が確保できる厚さ、幅を有することとする。   The width of the buried portion 3 of the anode lead 2 is preferably substantially the same as the width of the anode element in order to secure a contact area between the sintered body 1 and the buried portion 3 and may be the same size. . However, in order to make it the same size, it is necessary to make a cut in the outer periphery of the embedded portion 3 to improve the flow of the valve action metal powder 4. Furthermore, the shape of the portion of the anode lead 2 that is not embedded in the sintered body 1 is not particularly limited, but has a thickness and a width that can ensure strength.

以下、本発明の具体的実施例について説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲の設計変更を伴う構成であっても本発明に含まれるものである。   Hereinafter, specific examples of the present invention will be described. However, the present invention is not limited to the following examples, and the present invention can be applied even to configurations with design changes within a scope not departing from the gist of the present invention. It is included.

本発明では、陽極素子の弁作用金属としては、タンタルを使用した。タンタル粉末は、タンタル純度99.5%以上で、一次粒子の平均粒径がD50=0.4μmであるものを使用した。バインダーにはアクリル系バインダーを使用した。後述する実施の形態に係る構造の陽極リードを、タンタル粉末に埋設し、200kgfの加圧力で加圧成形後、バインダー除去処理をして1300℃で焼結し、長さ5mm(焼結体長さ4.3mm)、幅3.5mm、厚さ2mmの陽極素子を得た。 In the present invention, tantalum is used as the valve metal of the anode element. A tantalum powder having a tantalum purity of 99.5% or more and an average primary particle diameter of D 50 = 0.4 μm was used. An acrylic binder was used as the binder. An anode lead having a structure according to an embodiment to be described later is embedded in tantalum powder, subjected to pressure molding with a pressure of 200 kgf, subjected to binder removal treatment, sintered at 1300 ° C., and a length of 5 mm (sintered body length). 4.3 mm), a width of 3.5 mm, and a thickness of 2 mm were obtained.

参考例として、図1に示すように、陽極リード2の埋設部3に楕円状の貫通穴12を形成した。陽極リード2の幅は3.0mm、埋設部3の長さは4.0mm、楕円のサイズは長径を1.5mm、短径を1.0mmとした。また、陽極リード2の厚さは0.15mmとし、焼結体1に埋設していない部分も同じ厚さとした。 As a reference example, as shown in FIG. 1, an elliptical through hole 12 was formed in the embedded portion 3 of the anode lead 2. The anode lead 2 had a width of 3.0 mm, the buried portion 3 had a length of 4.0 mm, and the ellipse had a major axis of 1.5 mm and a minor axis of 1.0 mm. The thickness of the anode lead 2 was 0.15 mm, and the portion not embedded in the sintered body 1 was also the same thickness.

実施例1として、図3に示すように、陽極リード2の埋設部3の外周に矩形状の切り込みを形成した。陽極リードの幅は3.5mm、埋設部の長さは4.0mmとし、矩形状の切り込み幅を0.8mm、切り込み深さを1.5mmとして4箇所の切り込みと形成した。また、陽極リードの厚さは0.15mmとし、焼結体1に埋設していない部分も同じ厚さとした。 As Example 1 , a rectangular cut was formed on the outer periphery of the embedded portion 3 of the anode lead 2 as shown in FIG. The width of the anode lead was 3.5 mm, the length of the buried portion was 4.0 mm, the rectangular cut width was 0.8 mm, the cut depth was 1.5 mm, and four cuts were formed. Further, the thickness of the anode lead was 0.15 mm, and the portion not embedded in the sintered body 1 was also made the same thickness.

実施例2として、図4に示すように、陽極リード2の埋設部3に長方形状の貫通穴12を形成し、更に外周には波状の切り込みを形成した。陽極リードの最大幅は3.5mm、埋設部の最大長さは4.0mmとし、波状の切り込みは、切り込み最大幅を0.5mm、切り込み最大深さを1mmとした。貫通穴12のサイズは、2.0mm×1.0mmとした。また、陽極リード2の厚さは0.15mmとし、焼結体1に埋設していない部分も同じ厚さとした。 As Example 2, as shown in FIG. 4, a rectangular through hole 12 was formed in the embedded portion 3 of the anode lead 2, and a wavy cut was formed on the outer periphery. The maximum width of the anode lead was 3.5 mm, the maximum length of the buried portion was 4.0 mm, and the wavy cuts had a maximum cut width of 0.5 mm and a maximum cut depth of 1 mm. The size of the through hole 12 was 2.0 mm × 1.0 mm. The thickness of the anode lead 2 was 0.15 mm, and the portion not embedded in the sintered body 1 was also the same thickness.

比較例として、従来構造の陽極素子を作製した。図7は、従来の電解コンデンサ陽極素子の構造を示す図で、図7(a)は、角型の陽極リードを埋設した図、図7(b)は、紙面右から見た側面図である。陽極素子の材質や大きさは、本発明の実施の形態と同一とし、製造方法についても、貫通穴や切り込みを形成しないこと以外は同条件で作製した。
陽極リード2の幅は2mm、埋設部3の長さは4.0mm、厚さは0.7mmとし、焼結体1に埋設していない部分も同じ厚さとした。
As a comparative example, an anode element having a conventional structure was produced. 7A and 7B are diagrams showing the structure of a conventional electrolytic capacitor anode element. FIG. 7A is a view in which a square anode lead is embedded, and FIG. 7B is a side view as viewed from the right side of the drawing. . The material and size of the anode element were the same as in the embodiment of the present invention, and the manufacturing method was also made under the same conditions except that no through hole or notch was formed.
The width of the anode lead 2 was 2 mm, the length of the embedded portion 3 was 4.0 mm, the thickness was 0.7 mm, and the portion not embedded in the sintered body 1 was also the same thickness.

上述した陽極素子について、以下の方法で陽極素子の焼結体1の密度ばらつきを評価した。   About the anode element mentioned above, the density variation of the sintered compact 1 of an anode element was evaluated with the following method.

焼結後に得られた陽極素子について、陽極素子長手方向を横切るように断面を作製した。断面箇所は、焼結体1のほぼ中央とし、陽極リードの埋設部3の断面と焼結体1のみの断面が観察できる部分を選択した。断面作製に当たっては、研磨紙で手研磨を行った後、日本電子(株)製クロスセクションポリッシャSM−09010を用いて断面出しを行った。図8は、本発明と比較例の陽極素子の断面の観察箇所を示す図で、図8(a)は、実施例1の断面図、図8(b)は、実施例2の断面図、図8(c)は、実施例3の断面図、図8(d)は、比較例の断面図である。得られた断面について、走査型電子顕微鏡で観察を行い、写真撮影の後、画像処理を施して、分析箇所11の範囲で、弁作用金属粉末4と空隙5のそれぞれの面積を求めた。分析箇所11の範囲は85μm×60μmとし、分析箇所11の面積に対する空隙部5の面積の割合を算出した。分析箇所11は、図8に示すように幅方向にa〜dの5箇所で評価を行った。   About the anode element obtained after sintering, the cross section was produced so that the anode element longitudinal direction might be crossed. The cross-sectional location was set to the approximate center of the sintered body 1 and a portion where the cross section of the buried portion 3 of the anode lead and the cross section of only the sintered body 1 could be observed was selected. In preparation of the cross section, the cross section was polished using a cross section polisher SM-09010 manufactured by JEOL Ltd. after hand polishing with abrasive paper. FIG. 8 is a diagram showing the observation location of the cross section of the anode element of the present invention and the comparative example, FIG. 8A is a cross sectional view of Example 1, FIG. 8B is a cross sectional view of Example 2, FIG. 8C is a sectional view of Example 3, and FIG. 8D is a sectional view of a comparative example. The obtained cross section was observed with a scanning electron microscope, photographed, and subjected to image processing, and the areas of the valve metal powder 4 and the voids 5 were determined in the range of the analysis site 11. The range of the analysis part 11 was 85 μm × 60 μm, and the ratio of the area of the gap 5 to the area of the analysis part 11 was calculated. As shown in FIG. 8, the analysis portion 11 was evaluated at five locations a to d in the width direction.

参考例、実施例1、2および比較例の陽極素子の焼結体断面の空隙面積率を評価した結果を、表1に示す。 Table 1 shows the results of evaluating the void area ratio of the cross sections of the sintered bodies of the anode elements of the reference examples, Examples 1 and 2 and the comparative example.

Figure 0005201668
Figure 0005201668

比較例は、成形時の加圧方向で陽極リードの埋設部3が重なる部分a、bでは、空隙面積率が低く、焼結体が密となっている、これに対して、陽極リード2の埋設部3と重ならない部分c、d、eでは、空隙面積率が低く、焼結体が粗である傾向がある。また、断面観察の際、加圧方向に垂直な陽極リードの埋設部3の主面と焼結体1の間で剥離が生じているのが確認された。   In the comparative example, in the portions a and b where the anode lead embedded portion 3 overlaps in the pressing direction at the time of molding, the void area ratio is low and the sintered body is dense. In the portions c, d, and e that do not overlap with the embedded portion 3, the void area ratio is low and the sintered body tends to be rough. Further, during cross-sectional observation, it was confirmed that peeling occurred between the main surface of the buried portion 3 of the anode lead perpendicular to the pressing direction and the sintered body 1.

一方、実施例1、2においては、分析箇所による空隙面積率の差が比較例と比べて小さく、密度ばらつきが改善されていることが明らかである。また、実施例1、2では、加圧方向に垂直な陽極リードの埋設部3の主面と焼結体1の間の剥離は見られず、陽極リードの埋設部3に形成した貫通穴や、切り込みに入り込んだ弁作用金属粉末4が埋設部の上部と下部とを結束することで剥離発生を回避できることが確認された。 On the other hand, in Examples 1 and 2 , it is clear that the difference in the void area ratio depending on the analysis location is smaller than that in the comparative example, and the density variation is improved. Further, in Examples 1 and 2 , peeling between the main surface of the buried portion 3 of the anode lead perpendicular to the pressing direction and the sintered body 1 was not observed, and a through hole formed in the buried portion 3 of the anode lead It has been confirmed that the valve action metal powder 4 entering the cut can avoid the occurrence of peeling by binding the upper part and the lower part of the buried part.

以上述べたように、本発明によれば、弁作用金属の焼結体1の密度ばらつきが少なく、リード抜けの発生や、種々の応力が加わることによる破壊、剥離の発生を防止できる構造の電解コンデンサ陽極素子が得られることがわかった。また、本発明の電解コンデンサ陽極素子と製造方法を採用することで、陽極素子全体体積に占める陽極リードの体積を低減でき、小型化にした場合においても、体積効率がよく、コストパフォーマンスも高い電解コンデンサを提供できる。   As described above, according to the present invention, there is little density variation of the sintered body 1 of the valve action metal, and the electrolytic structure has a structure capable of preventing the occurrence of lead omission, destruction due to application of various stresses, and occurrence of peeling. It was found that a capacitor anode element was obtained. Also, by adopting the electrolytic capacitor anode element and the manufacturing method of the present invention, the volume of the anode lead occupying the entire volume of the anode element can be reduced, and even when it is downsized, the volume efficiency is good and the cost performance is high. Capacitors can be provided.

本発明の電解コンデンサ陽極素子の参考例を示す構造図。図1(a)は、陽極リードの埋設部に貫通穴を設けた陽極素子を示す図。図1(b)は、紙面右から見た側面図。FIG. 3 is a structural diagram showing a reference example of the electrolytic capacitor anode element of the present invention. FIG. 1A is a view showing an anode element in which a through hole is provided in a buried portion of an anode lead. FIG.1 (b) is the side view seen from the paper surface right. 陽極素子の焼結体の断面状態を説明する模式図。図2(a)は、従来の陽極素子の焼結体の幅方向断面図。図2(b)は、本発明の陽極素子の焼結体の幅方向断面図。The schematic diagram explaining the cross-sectional state of the sintered compact of an anode element. FIG. 2A is a cross-sectional view in the width direction of a sintered body of a conventional anode element. FIG.2 (b) is sectional drawing of the width direction of the sintered compact of the anode element of this invention. 本発明の電解コンデンサ陽極素子の第一の実施の形態を示す構造図。図3(a)は、陽極リードの埋設部に切り込みを設けた陽極素子を示す図。図3(b)は、紙面右から見た側面図。 1 is a structural diagram showing a first embodiment of an electrolytic capacitor anode element of the present invention. FIG. 3A is a view showing an anode element in which a cut portion is provided in a buried portion of an anode lead. FIG. 3B is a side view as viewed from the right side of the drawing. 本発明の電解コンデンサ陽極素子の第二の実施の形態を示す構造図。図4(a)は、陽極リードの埋設部に貫通穴と切り込みを設けた陽極素子を示す図。図4(b)は、紙面右から見た側面図。FIG. 3 is a structural diagram showing a second embodiment of the electrolytic capacitor anode element of the present invention. FIG. 4A is a view showing an anode element in which a through hole and a cut are provided in the buried portion of the anode lead. FIG. 4B is a side view as viewed from the right side of the drawing. 本発明の電解コンデンサ陽極素子のその他の陽極リード形状例を示す図。図5(a)は、陽極リードの埋設部に長方形状の貫通穴を横方向に二つ設けた例を示す図。図5(b)は、陽極リードの埋設部に長方形状の貫通穴を縦方向に二つ設けた例を示す図。図5(c)は、陽極リードの埋設部に多角形状の貫通穴と、外周に波状の切り込みを設けた例を示す図。図5(d)は、陽極リードの埋設部に櫛型状の切り込みを設けた例を示す図。The figure which shows the other anode lead shape example of the electrolytic capacitor anode element of this invention. FIG. 5A is a diagram showing an example in which two rectangular through holes are provided in the lateral direction in the buried portion of the anode lead. FIG. 5B is a view showing an example in which two rectangular through holes are provided in the vertical direction in the buried portion of the anode lead. FIG.5 (c) is a figure which shows the example which provided the polygonal through-hole in the embedding part of an anode lead, and the wavy cut | notch in the outer periphery. FIG.5 (d) is a figure which shows the example which provided the comb-shaped cut | notch in the embedding part of the anode lead. 陽極リードの埋設部に設けた貫通穴並びに切り込み部分の拡大図。図6(a)は、貫通穴が楕円状の場合を示す図、図6(b)は、貫通穴が長方形状の場合を示す図、図6(c)は、切り込みが波状の場合を示す図、図6(d)は、切り込みが矩形状の場合を示す図。The enlarged view of the through-hole provided in the embedding part of an anode lead, and a notch part. 6A is a diagram showing a case where the through hole is elliptical, FIG. 6B is a diagram showing a case where the through hole is rectangular, and FIG. 6C shows a case where the notch is wavy. FIG. 6 and FIG. 6D are diagrams showing a case where the cut is rectangular. 従来の電解コンデンサ陽極素子の構造を示す図。図7(a)は、角型の陽極リードを埋設した図、図7(b)は、紙面右から見た側面図。The figure which shows the structure of the conventional electrolytic capacitor anode element. FIG. 7A is a view in which a square anode lead is embedded, and FIG. 7B is a side view as viewed from the right side of the drawing. 本発明と参考例、比較例の陽極素子の断面の観察箇所を示す図。図8(a)は、参考例の断面図、図8(b)は、実施例1の断面図、図8(c)は、実施例2の断面図、図8(d)は、比較例の断面図。The figure which shows the observation location of the cross section of the anode element of this invention, a reference example, and a comparative example. 8A is a cross-sectional view of a reference example , FIG. 8B is a cross-sectional view of the first embodiment , FIG. 8C is a cross-sectional view of the second embodiment , and FIG. 8D is a comparative example. FIG. 従来の陽極素子の構造を示す透視図。図9(a)は、陽極リードが角柱型の陽極素子を示す図、図9(b)は、陽極リードが円柱型の陽極素子を示す図。The perspective view which shows the structure of the conventional anode element. FIG. 9A is a diagram showing an anode element whose anode lead is a prismatic type, and FIG. 9B is a diagram showing an anode element whose anode lead is a cylindrical type.

符号の説明Explanation of symbols

1 焼結体
2 陽極リード
3 埋設部
4 弁作用金属粉末
5 空隙
6 加圧方向
7 貫通穴に内接する最大円
8 (貫通穴に内接する最大円の)直径
9 (切り込みの)最大幅
10 (切り込みの)最大長さ
11 分析箇所
12 貫通穴
DESCRIPTION OF SYMBOLS 1 Sintered body 2 Anode lead 3 Buried part 4 Valve action metal powder 5 Cavity 6 Pressurizing direction 7 Maximum circle inscribed in the through hole 8 Maximum diameter (of the largest circle inscribed in the through hole) Maximum diameter 10 (of the notch) Maximum length 11) Analysis location 12 Through hole

Claims (6)

弁作用金属を用いた陽極リードと、前記陽極リードの一部を埋設した多孔質の弁作用金属粉末の焼結体とを有する電解コンデンサ陽極素子であって、前記陽極リードの焼結体内に埋設した埋設部が薄板状で、かつ前記埋設部の最大幅が前記焼結体と同じ幅であり、前記埋設部の外周に切り込みを形成し、前記切り込みの最大幅および最大長さが、前記陽極リードの埋設部の厚さ以上であることを特徴とする電解コンデンサ陽極素子。 An electrolytic capacitor anode element having an anode lead using a valve metal and a sintered body of porous valve metal powder in which a part of the anode lead is embedded, embedded in the sintered body of the anode lead The embedded portion is a thin plate, and the maximum width of the embedded portion is the same as that of the sintered body, and a cut is formed in the outer periphery of the embedded portion, and the maximum width and the maximum length of the cut are determined by the anode. electrolytic capacitor anode element characterized above thickness der Rukoto buried portion of the lead. 前記埋設部に1つ以上の貫通穴を形成していることを特徴とする請求項記載の電解コンデンサ陽極素子。 Electrolytic capacitor anode element according to claim 1, wherein the forming one or more through holes in the embedded portion. 前記陽極リードの埋設部に形成した貫通穴の開口サイズは、前記貫通穴の最大内接円直径が、前記陽極リードの埋設部の厚さ以上であることを特徴とする請求項に記載の電解コンデンサ陽極素子。 Opening size of the through hole formed in the embedded portion of the anode lead, a maximum inscribed circle diameter of the through hole, according to claim 2, characterized in that said at anode lead than the thickness of the embedded portion Electrolytic capacitor anode element. 前記陽極リードの埋設部の厚さは、前記電解コンデンサ陽極素子の総厚さの3分の1以下であることを特徴とする請求項1ないし請求項のいずれか一項に記載の電解コンデンサ陽極素子。 The thickness of the buried portion of the anode lead, electrolytic capacitor according to any one of claims 1 to 3, characterized in that said at electrolytic less capacitor anode one-third of the total thickness of the element Anode element. 前記弁作用金属粉末を加圧成形する際に、前記陽極リードの埋設部の主面に対して垂直方向に加圧することを特徴とする請求項1ないし請求項のいずれかに記載の電解コンデンサ陽極素子の製造方法。 When press molding the valve action metal powder, electrolytic capacitor according to any one of claims 1 to 4, characterized in that pressed in a direction perpendicular to the main surface of the embedded portion of the anode lead A manufacturing method of an anode element. 請求項1ないし請求項のいずれか一項に記載の電解コンデンサ陽極素子を使用した電解コンデンサ。 The electrolytic capacitor using the electrolytic capacitor anode element as described in any one of Claims 1 thru | or 4 .
JP2008159833A 2008-06-19 2008-06-19 Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same Active JP5201668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159833A JP5201668B2 (en) 2008-06-19 2008-06-19 Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159833A JP5201668B2 (en) 2008-06-19 2008-06-19 Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2010003774A JP2010003774A (en) 2010-01-07
JP5201668B2 true JP5201668B2 (en) 2013-06-05

Family

ID=41585264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159833A Active JP5201668B2 (en) 2008-06-19 2008-06-19 Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP5201668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947858B2 (en) * 2012-04-24 2015-02-03 Avx Corporation Crimped leadwire for improved contact with anodes of a solid electrolytic capacitor
US9842704B2 (en) * 2015-08-04 2017-12-12 Avx Corporation Low ESR anode lead tape for a solid electrolytic capacitor
US11443902B2 (en) * 2018-10-04 2022-09-13 Pacesetter, Inc. Hybrid anode and electrolytic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535014B2 (en) * 1998-06-19 2004-06-07 松下電器産業株式会社 Electrode for electrolytic capacitor
JP2000195757A (en) * 1998-12-25 2000-07-14 Hitachi Aic Inc Solid electrolytic capacitor and manufacture of its sintered body
JP2004253501A (en) * 2003-02-19 2004-09-09 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2005294527A (en) * 2004-03-31 2005-10-20 Nippon Chemicon Corp Solid state electrolytic capacitor

Also Published As

Publication number Publication date
JP2010003774A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP2010135750A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2009117590A (en) Solid electrolytic capacitor, and solid electrolytic capacitor element and its manufacturing method
JP2013120927A (en) Multilayer ceramic electronic part
JP2005166832A (en) Solid-state electrolytic capacitor
JP2007042932A (en) Solid-state electrolytic capacitor and distributed constant noise filter
JP5201668B2 (en) Electrolytic capacitor anode element, manufacturing method thereof, and electrolytic capacitor using the same
JP4177322B2 (en) Solid electrolytic capacitor and manufacturing method thereof
CN100378883C (en) Anode for solid electrolytic capacitor and solid electrolytic capacitor using anode
US8422200B2 (en) Conductive structure having an embedded electrode, and solid capacitor having an embedded electrode and method of making the same
JP2007081069A (en) Chip type solid electrolytic capacitor, terminals, and method for manufacturing them
JP2008108931A (en) Solid-state electrolytic capacitor and its manufacturing method
JP5340092B2 (en) Solid electrolytic capacitor
JP5294900B2 (en) Solid electrolytic capacitor
JP2011176232A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4756649B2 (en) Surface mount thin capacitors
JP4790488B2 (en) Solid electrolytic capacitor
JP2007073570A (en) Porous sintered body, solid electrolytic capacitor using the same and their manufacturing method
JP2003229327A (en) Manufacturing method for solid electrolytic capacitor element
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP2008270754A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5763932B2 (en) Solid electrolytic capacitor and manufacturing method thereof
CN113632189A (en) Electrolytic capacitor and method for manufacturing the same
JP4745196B2 (en) Solid electrolytic capacitor
JP5329319B2 (en) Solid electrolytic capacitor
JP2007317930A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

R150 Certificate of patent or registration of utility model

Ref document number: 5201668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250