JP3932191B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP3932191B2
JP3932191B2 JP2003044157A JP2003044157A JP3932191B2 JP 3932191 B2 JP3932191 B2 JP 3932191B2 JP 2003044157 A JP2003044157 A JP 2003044157A JP 2003044157 A JP2003044157 A JP 2003044157A JP 3932191 B2 JP3932191 B2 JP 3932191B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
anode
lead frame
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003044157A
Other languages
Japanese (ja)
Other versions
JP2003264128A (en
Inventor
一美 内藤
好信 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003044157A priority Critical patent/JP3932191B2/en
Publication of JP2003264128A publication Critical patent/JP2003264128A/en
Application granted granted Critical
Publication of JP3932191B2 publication Critical patent/JP3932191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は高周波性能(ESR)の良好な固体電解コンデンサに関する。
【0002】
【従来の技術】
従来の固体電解コンデンサは、図3にその構造を斜視図として示してあるように、1個の固体電解コンデンサ素子2の表面に形成された導電体層3の一部と陽極リード4bをリードフレーム1に一対の対向して配置された凸部1a、1bに載置し、それぞれ接合した後、リードフレームの凸部の一部のみを残して樹脂で封口して外装部5を形成したものが知られている。
【0003】
【発明が解決しようとする課題】
一方、近年の電子機器の高周波化に対応して、固体電解コンデンサにおいても高周波性能(ESR)の良好なものが望まれているが、例えば固体電解コンデンサ素子が多孔性焼結体の場合、焼結体の強度を維持するためにある程度の厚みを必要とし、その結果、高周波性能(ESR)が良好でないという欠点があった。
【0004】
【課題を解決するための手段】
本発明は、前述した問題点を解決するためになされたものであって、
[1] 陽極リードを有し、弁作用金属の角柱状焼結体よりなる陽極基体の表面に誘電体酸化皮膜層、その上に半導体層、さらにその上に導電体層が順次形成されて導電体層形成部が形成された固体電解コンデンサ素子の複数個が、リードフレームの1つの凸部に方向を揃えて並列に水平に隙間なく載置され、前記固体電解コンデンサ素子の複数個を前記導電体層形成部の側面同士が隙間のない状態で接しており、且つ前記すべての固体電解コンデンサ素子の導電体層形成部の載置部は、リードフレームに直接に、および前記陽極リードはそれぞれリードフレームに接合され、前記リードフレームの一部を残して樹脂封口されていることを特徴とする高周波性能(ESR)の優れた固体電解コンデンサ、
[2] 100KHzにおけるESRが優れている上記[1]に記載の固体電解コンデンサ、
[3] 弁作用金属がタンタルである上記[1]又は[2]に記載の固体電解コンデンサ、及び
[4] 半導体層が導電性高分子化合物である上記[1]ないし[3]のいずれかに記載の固体電解コンデンサ、を開発することにより上記の課題を解決した。
【0005】
以下、本発明を図面を参照しながら説明する。図1は、本発明の固体電解コンデンサを説明する一例を示す斜視図である。図1は、リードフレーム1に設けられている一対の対向して配置された凸部1a、1bに3個の固体電解コンデンサ素子2の表面にそれぞれ形成された導電体層3の一部と陽極部となる陽極リード4bが載置されており、前者は銀ペースト等で、後者は熔接等で接続した状態を示している。そしてリードフレームの一部を残して樹脂で封口して外装部5を形成している。
【0006】
3個の固体電解コンデンサ素子は、後述するように導電体層まで形成した後、リードフレームの凸部に方向を揃えて並列に載置することが肝要で、この場合、隙間なく載置することが、全体としての固体電解コンデンサの小型化のために好都合である。なお、リードフレームの一対の凸部に載置する固体電解コンデンサ素子は3個に限定されるものではなく、複数個である。また、リードフレームに対して垂直に固体電解コンデンサ素子を重ねて載置することは、全体としての固体電解コンデンサの高さが高くなるために不都合である。
【0007】
本発明を構成する固体電解コンデンサ素子は、以下のようにして作製される。まず、弁作用を有する陽極基体としては、例えばアルミニウム、タンタル、及びこれらを基質とする合金等、弁作用を有する金属がいずれも使用できる。そして陽極基体の形状としては、アルミニウムの板やタンタルの焼結体がある。
【0008】
陽極基体の表面に設ける誘電体酸化皮膜層は、弁作用金属の表面上に設けられた他の誘電体酸化物の層であってもよいが、特に弁作用金属自体の酸化物からなる層であることが好ましい。いずれの場合にも酸化物層を設ける方法としては、電解液を用いた陽極化成法など従来公知の方法を用いることができる。
【0009】
次に、誘電体酸化皮膜層上に半導体層を形成させるが、誘電体酸化皮膜層まで形成した部分の一部を図2に示したように陽極部4aとして設けるか、又は図1で示したようにこの部分の一部に陽極リード4bを接続して陽極部としておく。陽極リードを陽極部として使用するには、前述した以外に、例えば陽極基体を作製する時に、あらかじめ陽極リードの一部を陽極基体中に埋設しておいてもよい。
【0010】
そして半導体層は、これらの陽極部とした部分を除いて誘電体酸化皮膜層上に設けられ、さらにその上に導電体層を積層して導電体層形成部を形成する。誘電体酸化皮膜層上に設けられる半導体層の種類には特に制限は無く、従来公知の半導体層を使用できるが、とりわけ本願出願人の出願による二酸化鉛、又は二酸化鉛と硫酸鉛からなる半導体層(特開昭62−256423号公報、特開昭63−51621号公報)が、作製したコンデンサの高周波性能(ESR)が良好なために好ましい。
【0011】
また酸化剤と有機酸を用いて気相重合によってポリアニリン、ポリピロール等の電導性高分子化合物を半導体層として形成させる方法(特開昭62−47109号公報)や、タリウムイオン及び過硫酸イオンを含んだ反応母液から化学的に酸化第2タリウムを半導体層として析出させる方法(特開昭62−38715号公報)もその一例である。
【0012】
このような半導体層上には、例えばカーボンペースト及び/又は銀ペースト等の従来公知の導電ペーストを積層して導電体層が形成されている。図1はこのようにして形成された固体電解コンデンサ素子2に陽極リード4bが接続されており、図2は3個の固体電解コンデンサ素子2が一対のリードフレームの凸部1a、1bに載置された斜視図であり、固体電解コンデンサ素子2自身の一部分に陽極部4aが形成されている。
【0013】
このようにして形成された固体電解コンデンサ素子は前述したように、複数個方向を揃えて、一対の対向して配置されたリードフレームの凸部に載置後、接合され、図1及び図2の破線部で示したようにリードフレームの凸部1a、1bの一部を除いて封口され外装部5が形成される。外装部5の封口材として、例えばエポキシ樹脂、フェノール樹脂、アリルエステル樹脂等が用いられ、トランスファー成型、射出成型、注型成型等によって封口作業が行われる。
【0014】
【作用】
一対の対向して配置されたリードフレームの凸部に複数個の固体電解コンデンサ素子が並列に載置、接合されており、結果として、陽極基体が複数個に分割されていることになり、陽極基体内部から導電体層を通して、リードフレームへ流れる電流の距離がある程度短くなるため、その間の抵抗値が小さくなり高周波性能(ESR)が良好になる。
【0015】
【実施例】
以下、実施例及び比較例を示して本発明を説明する。
(実施例1、2)
りん酸水溶液中で化成処理して表面に誘電体酸化皮膜層を形成し、タンタルの陽極リードの一部を埋設したタンタル焼結体を陽極基体として用意しその寸法を表1に示した。次に酢酸鉛三水和物2.4モル/lの水溶液と過硫酸アンモニウム4.0モル/l水溶液の混合液に、前記陽極基体を浸漬し、60℃で20分放置した。この操作を4回行って、二酸化鉛と硫酸鉛からなる半導体層を形成した。次いで、半導体層上にカーボンペースト及び銀ペーストを順に積層して導電体層を形成した。
【0016】
一方、別に用意した厚さ0.1mm、材質が42アロイ、導電体層形成部が載る凸部の寸法を表1に並記した一対の凸部を有するリードフレームに、前記した導電体層まで形成した固体電解コンデンサ素子を3個、並列に載置し、導電体層形成部は銀ペーストで、陽極リードは熔接で各々電気的かつ機械的に接続した後、リードフレームの凸部の一部を残して、エポキシ樹脂で封口し、固体電解コンデンサを作製した。
【0017】
(実施例3、4)
実施例1、2で、陽極基体を表1に寸法を記載した長方形状で、りん酸アンモニウム水溶液で誘電体酸化皮膜層を形成したエッチングアルミニウム板にし、陽極基体の一部(端面から2mm)を陽極部とし、さらに半導体層を酢酸鉛三水和物2.0モル/l水溶液に陽極基体の一部を浸漬して、別に用意した白金陰極との間で電気化学的に形成して二酸化鉛にした以外は実施例1、2と同様に3個の固体電解コンデンサ素子を並列に接合して固体電解コンデンサを作製した。
【0018】
(比較例1)
実施例1でタンタル焼結体の大きさを表1に記載した大きさにし、リードフレームに固体電解コンデンサ素子を1個載置して接合した以外は実施例1と同様にして固体電解コンデンサを作製した。
【0019】
【表1】

Figure 0003932191
以上作製した直後の固体電解コンデンサの性能を表2にまとめて示した。なお、全数値はn=20点の平均値である。
【0020】
【表2】
Figure 0003932191
【0021】
【発明の効果】
本発明の固体電解コンデンサは、固体電解コンデンサ素子を複数個並列にリードフレームの一つの凸部に載置して接合しているので作製した固体電解コンデンサは高周波性能(ESR)が良好である。
【図面の簡単な説明】
【図1】陽極リードを有する固体電解コンデンサ素子を3個並列にリードフレームに載置した状態を示す斜視図である。
【図2】固体電解コンデンサ素子自体に陽極部を有する固体電解コンデンサ素子を3個、リードフレームに載置した状態を示す斜視図である。
【図3】リードフレームに接続した固体電解コンデンサ素子を示す従来例の斜視図である。
【符号の説明】
1 リードフレーム
1a リードフレームの一方の凸部
1b リードフレームのたほうの凸部
2 固体電解コンデンサ素子
3 導電体層
4a 陽極部
4b 陽極リード
5 外装部[0001]
[Industrial application fields]
The present invention relates to a solid electrolytic capacitor having good high frequency performance (ESR).
[0002]
[Prior art]
As shown in the perspective view of the structure of the conventional solid electrolytic capacitor, a part of the conductor layer 3 formed on the surface of one solid electrolytic capacitor element 2 and the anode lead 4b are connected to the lead frame as shown in FIG. 1 is placed on a pair of opposed convex portions 1a and 1b and bonded to each other, and then the outer frame portion 5 is formed by sealing with resin leaving only a part of the convex portion of the lead frame. Are known.
[0003]
[Problems to be solved by the invention]
On the other hand, in response to the recent trend toward higher frequencies in electronic equipment, solid electrolytic capacitors with good high frequency performance (ESR) are also desired. For example, when the solid electrolytic capacitor element is a porous sintered body, a sintered body is required. In order to maintain the strength of the bonded body, a certain amount of thickness is required. As a result, there is a drawback that high frequency performance (ESR) is not good.
[0004]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems,
[1] A conductive oxide layer is formed on a surface of an anode base body made of a prismatic sintered body of valve action metal, a dielectric oxide film layer on the surface, a semiconductor layer thereon, and a conductor layer thereon. A plurality of solid electrolytic capacitor elements in which the body layer forming portion is formed are placed horizontally in parallel with a single protrusion on the lead frame without gaps, and the plurality of solid electrolytic capacitor elements are electrically connected to the conductive layer. The side surfaces of the body layer forming portion are in contact with each other with no gap, and the mounting portion of the conductor layer forming portion of all the solid electrolytic capacitor elements is directly on the lead frame, and the anode lead is the lead. A solid electrolytic capacitor having excellent high frequency performance (ESR), characterized in that it is bonded to a frame and is resin-sealed leaving a part of the lead frame;
[2] The solid electrolytic capacitor according to [1], wherein ESR at 100 KHz is excellent,
[3] The solid electrolytic capacitor according to the above [1] or [2], wherein the valve metal is tantalum, and [4] any one of the above [1] to [3], wherein the semiconductor layer is a conductive polymer compound. The above-mentioned problems have been solved by developing the solid electrolytic capacitor described in 1. above.
[0005]
The present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an example for explaining a solid electrolytic capacitor of the present invention. FIG. 1 shows a part of a conductor layer 3 formed on a surface of three solid electrolytic capacitor elements 2 and an anode on a pair of opposed convex portions 1 a and 1 b provided on a lead frame 1. An anode lead 4b is placed, and the former is a silver paste or the like, and the latter is connected by welding or the like. The exterior portion 5 is formed by sealing a portion of the lead frame with resin.
[0006]
It is important that the three solid electrolytic capacitor elements are formed up to the conductor layer as will be described later, and then placed parallel to the convex portion of the lead frame. In this case, the three solid electrolytic capacitor elements should be placed without gaps. However, this is advantageous for reducing the size of the solid electrolytic capacitor as a whole. Note that the number of the solid electrolytic capacitor elements placed on the pair of convex portions of the lead frame is not limited to three, but a plurality. Further, it is inconvenient to place the solid electrolytic capacitor element so as to be perpendicular to the lead frame because the height of the solid electrolytic capacitor as a whole becomes high.
[0007]
The solid electrolytic capacitor element constituting the present invention is manufactured as follows. First, as the anode substrate having a valve action, for example, any metal having a valve action such as aluminum, tantalum, and an alloy using these as a substrate can be used. The shape of the anode substrate includes an aluminum plate and a tantalum sintered body.
[0008]
The dielectric oxide film layer provided on the surface of the anode substrate may be a layer of another dielectric oxide provided on the surface of the valve metal, but is particularly a layer made of an oxide of the valve metal itself. Preferably there is. In any case, as a method for providing the oxide layer, a conventionally known method such as an anodizing method using an electrolytic solution can be used.
[0009]
Next, a semiconductor layer is formed on the dielectric oxide film layer. A part of the part formed up to the dielectric oxide film layer is provided as the anode portion 4a as shown in FIG. 2, or as shown in FIG. As described above, the anode lead 4b is connected to a part of this portion to form an anode portion. In order to use the anode lead as the anode part, in addition to the above, a part of the anode lead may be embedded in the anode substrate in advance, for example, when the anode substrate is manufactured.
[0010]
The semiconductor layer is provided on the dielectric oxide film layer except for these anode portions, and a conductor layer is further laminated thereon to form a conductor layer forming portion. There are no particular restrictions on the type of semiconductor layer provided on the dielectric oxide film layer, and a conventionally known semiconductor layer can be used, but in particular, a semiconductor layer composed of lead dioxide or lead dioxide and lead sulfate according to the applicant's application. (Japanese Patent Laid-Open Nos. 62-256423 and 63-51621) are preferable because the produced capacitors have good high frequency performance (ESR).
[0011]
In addition, a method of forming a conductive polymer compound such as polyaniline and polypyrrole as a semiconductor layer by vapor phase polymerization using an oxidizing agent and an organic acid (Japanese Patent Laid-Open No. 62-47109), and thallium ions and persulfate ions are included. An example is a method in which tantalum oxide is chemically precipitated from the reaction mother liquor as a semiconductor layer (Japanese Patent Laid-Open No. 62-38715).
[0012]
On such a semiconductor layer, a conductive layer is formed by laminating a conventionally known conductive paste such as a carbon paste and / or a silver paste. In FIG. 1, the anode lead 4b is connected to the solid electrolytic capacitor element 2 formed as described above, and in FIG. 2, three solid electrolytic capacitor elements 2 are placed on the convex portions 1a and 1b of the pair of lead frames. The anode part 4a is formed in a part of the solid electrolytic capacitor element 2 itself.
[0013]
As described above, the solid electrolytic capacitor element formed in this way is placed on the convex portions of a pair of opposingly arranged lead frames with a plurality of directions aligned, and bonded, as shown in FIGS. As shown by the broken line portion, the outer portion 5 is formed by sealing except for a part of the convex portions 1a and 1b of the lead frame. For example, an epoxy resin, a phenol resin, an allyl ester resin, or the like is used as the sealing material of the exterior portion 5, and the sealing operation is performed by transfer molding, injection molding, cast molding, or the like.
[0014]
[Action]
A plurality of solid electrolytic capacitor elements are mounted and bonded in parallel on the convex portions of the pair of opposed lead frames, and as a result, the anode base is divided into a plurality of parts. Since the distance of the current flowing from the inside of the substrate through the conductor layer to the lead frame is shortened to some extent, the resistance value therebetween is reduced and the high frequency performance (ESR) is improved.
[0015]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples.
(Examples 1 and 2)
Table 1 shows a tantalum sintered body in which a dielectric oxide film layer is formed on the surface by chemical conversion treatment in an aqueous phosphoric acid solution, and a portion of the tantalum anode lead is embedded as an anode substrate. Next, the anode substrate was immersed in a mixed solution of a lead acetate trihydrate 2.4 mol / l aqueous solution and an ammonium persulfate 4.0 mol / l aqueous solution and allowed to stand at 60 ° C. for 20 minutes. This operation was performed four times to form a semiconductor layer made of lead dioxide and lead sulfate. Next, a carbon paste and a silver paste were sequentially laminated on the semiconductor layer to form a conductor layer.
[0016]
On the other hand, a lead frame having a pair of protrusions, each having a thickness of 0.1 mm, a material of 42 alloy, and the protrusions on which the conductor layer forming part is mounted, as shown in Table 1, is provided. Three solid electrolytic capacitor elements were placed in parallel, the conductor layer forming part was made of silver paste, and the anode lead was welded to each electrically and mechanically, and then part of the convex part of the lead frame Was sealed with an epoxy resin to produce a solid electrolytic capacitor.
[0017]
(Examples 3 and 4)
In Examples 1 and 2, the anode substrate was made into an etched aluminum plate having a rectangular shape whose dimensions are listed in Table 1 and a dielectric oxide film layer was formed with an aqueous ammonium phosphate solution. A part of the anode substrate (2 mm from the end face) was formed. Lead dioxide is formed by electrochemically forming an anode part and further immersing a part of the anode base in a 2.0 mol / l aqueous solution of lead acetate trihydrate and a separately prepared platinum cathode. Except for the above, three solid electrolytic capacitor elements were joined in parallel in the same manner as in Examples 1 and 2, to produce a solid electrolytic capacitor.
[0018]
(Comparative Example 1)
The solid electrolytic capacitor was prepared in the same manner as in Example 1 except that the size of the tantalum sintered body in Example 1 was set to the size shown in Table 1, and one solid electrolytic capacitor element was placed on and joined to the lead frame. Produced.
[0019]
[Table 1]
Figure 0003932191
Table 2 summarizes the performance of the solid electrolytic capacitor immediately after fabrication. All numerical values are average values of n = 20 points.
[0020]
[Table 2]
Figure 0003932191
[0021]
【The invention's effect】
Since the solid electrolytic capacitor of the present invention has a plurality of solid electrolytic capacitor elements mounted in parallel on one convex portion of the lead frame and joined together, the produced solid electrolytic capacitor has good high frequency performance (ESR).
[Brief description of the drawings]
FIG. 1 is a perspective view showing a state in which three solid electrolytic capacitor elements having anode leads are placed in parallel on a lead frame.
FIG. 2 is a perspective view showing a state in which three solid electrolytic capacitor elements each having an anode portion are placed on a lead frame.
FIG. 3 is a perspective view of a conventional example showing a solid electrolytic capacitor element connected to a lead frame.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lead frame 1a One convex part 1b of a lead frame The convex part 2 near the lead frame Solid electrolytic capacitor element 3 Conductor layer 4a Anode part 4b Anode lead 5 Exterior part

Claims (4)

陽極リードを有し、弁作用金属の角柱状焼結体よりなる陽極基体の表面に誘電体酸化皮膜層、その上に半導体層、さらにその上に導電体層が順次形成されて導電体層形成部が形成された固体電解コンデンサ素子の複数個が、リードフレームの1つの凸部に方向を揃えて並列に水平に隙間なく載置され、前記固体電解コンデンサ素子の複数個を、前記導電体層形成部の側面同士が隙間のない状態で接しており、且つ前記すべての固体電解コンデンサ素子の導電体層形成部の載置部は、リードフレームに直接に、および前記陽極リードはそれぞれリードフレームに接合され、前記リードフレームの一部を残して樹脂封口されていることを特徴とする高周波性能(ESR)の優れた固体電解コンデンサ。A conductor layer is formed by sequentially forming a dielectric oxide film layer on the surface of an anode base body made of a prismatic sintered body of a valve action metal having an anode lead, a semiconductor layer thereon, and a conductor layer thereon. A plurality of solid electrolytic capacitor elements formed with a plurality of portions are placed horizontally in parallel with a single protrusion on a lead frame without gaps, and the plurality of solid electrolytic capacitor elements are connected to the conductor layer. The side surfaces of the forming portions are in contact with each other with no gaps, and the mounting portions of the conductor layer forming portions of all the solid electrolytic capacitor elements are directly on the lead frame, and the anode leads are on the lead frame, respectively. A solid electrolytic capacitor excellent in high frequency performance (ESR), characterized in that it is bonded and sealed with a resin leaving a part of the lead frame. 100KHzにおけるESRが優れている請求項1に記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 1, wherein ESR at 100 KHz is excellent. 弁作用金属がタンタルである請求項1又は2に記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 1, wherein the valve action metal is tantalum. 半導体層が導電性高分子化合物である請求項1ないし3のいずれか1項に記載の固体電解コンデンサ。  The solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a conductive polymer compound.
JP2003044157A 2003-02-21 2003-02-21 Solid electrolytic capacitor Expired - Lifetime JP3932191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044157A JP3932191B2 (en) 2003-02-21 2003-02-21 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044157A JP3932191B2 (en) 2003-02-21 2003-02-21 Solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03356892A Division JP3441088B2 (en) 1992-02-20 1992-02-20 Method for manufacturing solid electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005299871A Division JP3976055B2 (en) 2005-10-14 2005-10-14 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2003264128A JP2003264128A (en) 2003-09-19
JP3932191B2 true JP3932191B2 (en) 2007-06-20

Family

ID=29208471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044157A Expired - Lifetime JP3932191B2 (en) 2003-02-21 2003-02-21 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3932191B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126021B2 (en) * 2004-02-05 2008-07-30 ローム株式会社 Solid electrolytic capacitor
JP4699082B2 (en) * 2004-04-27 2011-06-08 昭和電工株式会社 Solid electrolytic capacitor and manufacturing method thereof
US7352563B2 (en) * 2006-03-13 2008-04-01 Avx Corporation Capacitor assembly

Also Published As

Publication number Publication date
JP2003264128A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US20060126273A1 (en) Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JP3932191B2 (en) Solid electrolytic capacitor
JP3976055B2 (en) Solid electrolytic capacitor
JPH05175085A (en) Chip-shaped solid electrolytic capacitor
JPH05275290A (en) Chiplike solid electrolytic capacitor
JP3433478B2 (en) Solid electrolytic capacitors
JP3123232B2 (en) Multilayer solid electrolytic capacitors
JP3441095B2 (en) Solid electrolytic capacitors
JPH05217811A (en) Chip-shaped solid electrolytic capacitor and its manufacture
JP4330128B2 (en) Solid electrolytic capacitor
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JP3185405B2 (en) Solid electrolytic capacitors
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP3129033B2 (en) Chip-shaped solid electrolytic capacitor
JP3424269B2 (en) Chip-shaped solid electrolytic capacitors
JPH0590097A (en) Lead frame for capacitor and solid electrolytic capacitor using it
JP3433490B2 (en) Chip-shaped solid electrolytic capacitors
JP3241807B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04192405A (en) Solid electrolytic capacitor
JP3894316B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP2549702B2 (en) Solid electrolytic capacitor
JP2902681B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2005039043A (en) Chip electrolytic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

EXPY Cancellation because of completion of term