JPH1154380A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH1154380A
JPH1154380A JP9206413A JP20641397A JPH1154380A JP H1154380 A JPH1154380 A JP H1154380A JP 9206413 A JP9206413 A JP 9206413A JP 20641397 A JP20641397 A JP 20641397A JP H1154380 A JPH1154380 A JP H1154380A
Authority
JP
Japan
Prior art keywords
foil
electrolytic capacitor
voltage
withstand voltage
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9206413A
Other languages
Japanese (ja)
Inventor
Katsunori Nogami
勝憲 野上
Kazunori Naradani
一徳 奈良谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP9206413A priority Critical patent/JPH1154380A/en
Publication of JPH1154380A publication Critical patent/JPH1154380A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a soled electrolytic capacitor which permits improvement in the withstand voltage of the entire capacitor by utilizing a reverse withstand voltage of a cathode foil in the solid electrolytic capacitor. SOLUTION: A capacitor element 10 is formed by winding an anode foil 1, made of an electrode member formed at a predetermined formation voltage and a cathode foil 2, made of a formed electrode member with a separator 3 provided between the anode foil 1 and the cathode foil 2. This capacitor element 10 is impregnated with a solid electrolyte. The withstand voltage characteristic of the entire capacitor is improved, since it is the sum of a forward withstand voltage of the anode foil 1 and a reverse withstand voltage of the cathode foil 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧特性の向上
を可能とした固体電解コンデンサに関する。
The present invention relates to a solid electrolytic capacitor capable of improving withstand voltage characteristics.

【0002】[0002]

【従来の技術】有機及び無機固体アルミ電解コンデンサ
の定格電圧を向上させる主な手法として、使用する陽極
箔の化成電圧を上昇させ、酸化皮膜の厚さを増大させる
ことが、従来から知られている。一方、電解コンデンサ
では、電極の寸法が同一の場合には、耐電圧と静電容量
はほぼ反比例の関係にある。特に、固体アルミ電解コン
デンサの(VF/WV)比は3〜6であり、通常の非固
体アルミ電解コンデンサの1.1〜1.5の値よりも大
きく、その比は製品の耐電圧が高くなるほど大きくな
る。そのため、使用する陽極箔の化成電圧を上昇させ定
格電圧を向上させると、容量は大幅に低下し、体積あた
りのCV積が減少する。たとえば、二酸化マンガンを陰
極材料として使用した固体アルミ電解コンデンサの場
合、定格電圧が6.3WVで容量が15μF(CV=9
4.5)であるのに対し、16WVでは4.7μF(C
V=75.2)であり、さらに高耐電圧を得ようとする
とますますCV積は低下する。
2. Description of the Related Art It has been known that as a main method for improving the rated voltage of organic and inorganic solid aluminum electrolytic capacitors, the formation voltage of an anode foil used is increased and the thickness of an oxide film is increased. I have. On the other hand, in the case of the electrolytic capacitor, when the dimensions of the electrodes are the same, the withstand voltage and the capacitance have a substantially inversely proportional relationship. In particular, the (VF / WV) ratio of a solid aluminum electrolytic capacitor is 3 to 6, which is larger than the value of 1.1 to 1.5 of a normal non-solid aluminum electrolytic capacitor. It gets bigger. Therefore, when the formation voltage of the anode foil to be used is increased to increase the rated voltage, the capacity is significantly reduced, and the CV product per volume is reduced. For example, in the case of a solid aluminum electrolytic capacitor using manganese dioxide as a cathode material, the rated voltage is 6.3 WV and the capacitance is 15 μF (CV = 9
4.5), whereas at 16 WV, 4.7 μF (C
V = 75.2), and the CV product is reduced more and more in order to obtain a higher withstand voltage.

【0003】また、このような固体アルミ電解コンデン
サは比較的小型で使用されることが多く、陽極箔とタブ
との接続面積は小さいために、化成電圧が100V以上
になると陽極箔とタブとの接続が困難になる。これらの
理由により一般的に20WV以上(実質耐電圧としては
30V程度)の製品耐電圧を実現するのは困難であっ
た。
Also, such solid aluminum electrolytic capacitors are often used in a relatively small size, and the connection area between the anode foil and the tab is small. Connection becomes difficult. For these reasons, it is generally difficult to achieve a product withstand voltage of 20 WV or more (substantially withstand voltage of about 30 V).

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決するために提案されたもので
あって、その目的は、固体電解コンデンサにおける陰極
箔の逆方向の耐電圧に着目することにより、コンデンサ
全体の耐電圧の向上を可能とした固体電解コンデンサを
提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object thereof is to provide a solid electrolytic capacitor having a reverse resistance to a cathode foil in a reverse direction. An object of the present invention is to provide a solid electrolytic capacitor capable of improving the withstand voltage of the entire capacitor by focusing on the voltage.

【0005】すなわち、非固体アルミ電解コンデンサの
逆方向の耐電圧はほとんどないに等しいの対し、固体ア
ルミ電解コンデンサの場合、図6に示すように、正方向
の1/3〜1/2の耐電圧を有する。そこで、本発明に
おいては、陰極箔として、化成処理した電極箔を使用
し、この陰極箔の持つ逆方向の耐電圧を利用することに
より、固体電解コンデンサ全体の耐電圧の向上を図った
ものである。
That is, a non-solid aluminum electrolytic capacitor has almost no reverse withstand voltage, whereas a solid aluminum electrolytic capacitor has a 1/3 to 1/2 positive withstand voltage as shown in FIG. With voltage. Therefore, in the present invention, as the cathode foil, a chemical conversion-treated electrode foil is used, and the withstand voltage in the reverse direction of the cathode foil is used to improve the withstand voltage of the entire solid electrolytic capacitor. is there.

【0006】ところで、本発明に類似する従来技術とし
ては、例えば、特開平7−263288号(名称:無極
性固体電解コンデンサ)、特開平8−97097号(固
体電解コンデンサ及びその製造方法)に記載されるよう
に、バイポーラ型と呼ばれる無極性の固体電解コンデン
サが提案されている。これらの無極性の固体電解コンデ
ンサは、専ら交流用として使用されるもので、陽極箔と
陰極箔とを化成処理した電極箔によって構成したもので
ある。しかし、このような交流用の固体電解コンデンサ
は、順方向と逆方向の特性が等しくなるように、各電極
箔における静電容量と耐電圧が等しく設定されている。
そのため、この交流用の固体電解コンデンサを製造する
場合、各電極箔の巻回長さ、セパレータを挟んで対向す
る電極箔の面積、各箔の化成処理電圧などを精緻に調整
する必要があり、一般的な交流用の固体電解コンデンサ
に比較して、構成が複雑で製造作業も面倒である。
Conventional techniques similar to the present invention are described in, for example, JP-A-7-263288 (name: non-polar solid electrolytic capacitor) and JP-A-8-97097 (solid electrolytic capacitor and its manufacturing method). As such, a non-polar solid electrolytic capacitor called a bipolar type has been proposed. These non-polar solid electrolytic capacitors are used exclusively for alternating current, and are composed of an electrode foil obtained by subjecting an anode foil and a cathode foil to a chemical conversion treatment. However, in such an AC solid electrolytic capacitor, the capacitance and the withstand voltage of each electrode foil are set to be equal so that the characteristics in the forward and reverse directions are equal.
Therefore, when manufacturing this solid electrolytic capacitor for AC, it is necessary to precisely adjust the winding length of each electrode foil, the area of the electrode foil facing each other across the separator, the chemical conversion voltage of each foil, and the like. Compared with a general AC solid electrolytic capacitor, the configuration is complicated and the manufacturing operation is troublesome.

【0007】これに対して、本発明の固体電解コンデン
サは、陰極箔の持つ逆方向の耐電圧を利用するだけであ
るため、陽極箔と陰極箔の特性を等しくする必要はな
く、交流用固体電解コンデンサのような製造上の困難は
ない。また、陽極箔と陰極箔との特性を異ならせること
が可能であるため、例えば陰極箔の巻回回数を調整する
などして逆方向の耐電圧を変化させて、電解コンデンサ
全体の耐電圧特性を調整することもできる。
On the other hand, since the solid electrolytic capacitor of the present invention only utilizes the reverse withstand voltage of the cathode foil, it is not necessary to equalize the characteristics of the anode foil and the cathode foil. There are no manufacturing difficulties such as electrolytic capacitors. In addition, since the characteristics of the anode foil and the cathode foil can be made different, the withstand voltage characteristics of the entire electrolytic capacitor can be changed by changing the withstand voltage in the opposite direction, for example, by adjusting the number of turns of the cathode foil. Can also be adjusted.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、請求項1の発明は、所定の化成電圧で化成処理さ
れた電極部材から構成された陽極箔と、化成処理された
電極部材から構成された陰極箔と、これら陽極箔と陰極
箔とをセパレータを介して巻回してコンデンサ素子を形
成し、このコンデンサ素子に固体の電解質を生成して直
流電圧に対する耐電圧を向上させたことを特徴とする。
このような構成を有する請求項1の発明においては、固
体アルミ電解コンデンサにおいて陰極側に化成皮膜を有
する箔を使用することにより、実質的な陽極箔に加えそ
の1/3〜1/2の耐電圧を有するコンデンサを直列に
接続したのと同じ機能をもたせ、これに直流電圧を印加
すると陰極側にも電圧が分配されるため、結果としてコ
ンデンサの耐電圧が上昇させることが可能となる。
In order to achieve the above object, the present invention is directed to an anode foil composed of an electrode member which has been subjected to a chemical conversion treatment at a predetermined formation voltage, and an electrode member which has been subjected to a chemical conversion treatment. A cathode foil composed of: and the anode foil and the cathode foil wound around a separator to form a capacitor element, and a solid electrolyte is generated in the capacitor element to improve the withstand voltage against a DC voltage. It is characterized by.
In the first aspect of the present invention having such a configuration, by using a foil having a chemical conversion film on the cathode side in a solid aluminum electrolytic capacitor, in addition to the substantial anode foil, the resistance to 1/3 to 1/2 of that of the anode foil is substantially increased. The same function as connecting a capacitor having a voltage in series is provided, and when a DC voltage is applied thereto, the voltage is distributed also to the cathode side. As a result, the withstand voltage of the capacitor can be increased.

【0009】請求項2の発明は、前記陽極箔と陰極箔と
が同一の電極部材から構成されていることを特徴とす
る。この請求項2の発明においては、両電極箔が同一の
電極部材によって構成されているため、別々の電極部材
を用意する必要がなく、固体電解コンデンサの製造が容
易になる。
The invention according to claim 2 is characterized in that the anode foil and the cathode foil are formed of the same electrode member. According to the second aspect of the present invention, since both electrode foils are formed of the same electrode member, there is no need to prepare separate electrode members, and the manufacture of the solid electrolytic capacitor is facilitated.

【0010】請求項3の発明は、前記陽極箔と陰極箔に
おける印加電圧に対する順方向の耐電圧および/または
静電容量が、各電極箔でそれぞれ異なることを特徴とす
る。この請求項3の発明においては、両極で分配する電
圧の割合を適宜調整することが可能となり、所望の耐電
圧特性を容易に得ることができる。
A third aspect of the present invention is characterized in that each of the anode foils and the cathode foils have different withstand voltage and / or electrostatic capacitance in a forward direction with respect to the applied voltage. According to the third aspect of the invention, it is possible to appropriately adjust the ratio of the voltage distributed between the two electrodes, and it is possible to easily obtain a desired withstand voltage characteristic.

【0011】請求項4の発明は、前記陽極箔と陰極箔の
いずれかが、単独で巻回された空巻き部を有し、前記陽
極箔と陰極箔との長さが異なることを特徴とする。この
請求項4の発明においては、空巻き部を設けて陽極箔と
陰極箔との長さを異ならせることにより、両極の耐電圧
および/または静電容量を簡単に調整することができ
る。
The invention according to claim 4 is characterized in that one of the anode foil and the cathode foil has an empty winding portion wound independently, and the lengths of the anode foil and the cathode foil are different. I do. According to the fourth aspect of the present invention, the withstand voltage and / or the capacitance of both electrodes can be easily adjusted by providing the unwound portion and making the lengths of the anode foil and the cathode foil different.

【0012】請求項5の発明は、前記電極部材がアルミ
ニウムからなり、前記電解質が二酸化マンガンから成る
ことを特徴とする。このような電極部材と電解質を使用
した請求項5の発明では、逆方向の耐電圧が有効に生じ
るため、コンデンサ全体の耐電圧の向上が著しい。
The invention according to claim 5 is characterized in that the electrode member is made of aluminum and the electrolyte is made of manganese dioxide. In the invention according to claim 5 using such an electrode member and an electrolyte, the withstand voltage in the reverse direction is effectively generated, so that the withstand voltage of the entire capacitor is significantly improved.

【0013】[0013]

【発明の実施の形態】以下、本発明による固体電解コン
デンサの実施形態の一つを、図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a solid electrolytic capacitor according to the present invention will be described below with reference to the drawings.

【0014】(1)実施の形態の構成 図1は、本発明の固体電解コンデンサで、アルミニウム
等の弁作用金属からなり表面に酸化皮膜層が形成された
陽極箔1と、前記陽極箔1と同じ材料から構成された陰
極箔2とを、マニラ紙、ガラスペーパー、不織布などか
らなるセパレータ3を介して巻回してコンデンサ素子1
0を形成する。そして、このコンデンサ素子10に、二
酸化マンガンや7、7、8、8−テトラシアノキノジメ
タン(TCNQ)錯体などの固体電解質を含浸したもの
である。
(1) Configuration of Embodiment FIG. 1 shows a solid electrolytic capacitor according to the present invention, comprising an anode foil 1 made of a valve metal such as aluminum and having an oxide film layer formed on a surface thereof; A cathode foil 2 made of the same material is wound around a separator 3 made of manila paper, glass paper, non-woven fabric, or the like to form a capacitor element 1.
0 is formed. The capacitor element 10 is impregnated with a solid electrolyte such as manganese dioxide or a complex of 7,7,8,8-tetracyanoquinodimethane (TCNQ).

【0015】前記陽極箔1及び陰極箔2にはそれぞれの
電極を外部に接続するためのリード線6、7が、ステッ
チ、超音波溶接等の公知の手段により接続されている。
このリード線6、7は、アルミニウム等からなり、陽極
箔1、陰極箔2との接続部と外部との電気的な接続を担
う外部接続部とを備え、巻回したコンデンサ素子10の
端面から導出される。
Lead wires 6 and 7 for connecting respective electrodes to the outside are connected to the anode foil 1 and the cathode foil 2 by known means such as stitching and ultrasonic welding.
The lead wires 6 and 7 are made of aluminum or the like, and have a connection portion with the anode foil 1 and the cathode foil 2 and an external connection portion that performs electrical connection with the outside. Derived.

【0016】コンデンサ素子10は、上記の陽極箔1と
陰極箔2とを、セパレータ3を間に挟むようにして巻き
取って形成している。両極電極箔1、2の寸法は、製造
する固体電解コンデンサの仕様に応じて任意であり、セ
パレータ3も両極電箔1、2の寸法に応じてこれよりや
や大きい幅寸法のものを用いればよい。また、陽極箔1
と陰極箔2の長さは必ずしも一致する必要はなく、巻回
時においていずれかを空巻きすることにより、セパレー
タ3を介して対向する面積は変化させることなく、その
長さを異ならせることができる。また、陽極箔と陰極箔
とで、同一の部材を使用する代わりに、化成処理電圧、
肉厚、長さのいずれか一つあるいは幾つかを異なるもの
を使用することもできる。
The capacitor element 10 is formed by winding the anode foil 1 and the cathode foil 2 with the separator 3 interposed therebetween. The dimensions of the bipolar electrode foils 1 and 2 are arbitrary according to the specifications of the solid electrolytic capacitor to be manufactured, and the separator 3 may have a width slightly larger than that of the bipolar electrolytic foils 1 and 2. . In addition, anode foil 1
And the length of the cathode foil 2 do not necessarily have to be the same, and by winding one of them at the time of winding, the length thereof can be made different without changing the area opposed via the separator 3. it can. In addition, instead of using the same member for the anode foil and the cathode foil, a chemical conversion voltage,
Any one or some of different thicknesses and lengths may be used.

【0017】前記陽極箔1は、アルミニウム等の弁作用
金属からなり、図2に示すように、その表面を、塩化物
水溶液中での電気化学的なエッチング処理により粗面化
して多数のエッチングピット8を形成している。更にこ
の陽極箔1の表面には、ホウ酸アンモニウム等の水溶液
中で電圧を印加して誘電体となる酸化皮膜層4を形成し
ている。コンデンサ素子10に含浸された固体電解質
は、この酸化皮膜層4とセパレータ3の間隙部に充填さ
れ、固体電解質層5を形成している。一方、陰極箔2
は、前記陽極電極箔1と同様に構成されており、その酸
化皮膜層4がセパレータ3に対向するように、巻回され
ている。
The anode foil 1 is made of a valve metal such as aluminum. As shown in FIG. 2, the surface of the anode foil 1 is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits. 8 are formed. Further, on the surface of the anode foil 1, an oxide film layer 4 serving as a dielectric is formed by applying a voltage in an aqueous solution of ammonium borate or the like. The solid electrolyte impregnated in the capacitor element 10 fills the gap between the oxide film layer 4 and the separator 3 to form the solid electrolyte layer 5. On the other hand, the cathode foil 2
Is formed in the same manner as the anode electrode foil 1, and is wound such that the oxide film layer 4 faces the separator 3.

【0018】(2)実施の形態の作用 図3は、本実施の形態の固体電解コンデンサに直流電圧
0 を印加した際の等価回路を示したものである。図中
1 、R1 、及びV1 は陽極箔1(印加電圧に対し順方
向)の酸化皮膜の容量、直流抵抗及び分配されている電
圧、C2 、R2、及びV2 は陰極箔2(印加電圧に対し
逆方向)の酸化皮膜の容量、直流抵抗及び分配されてい
る電圧であり、I0 はこのコンデンサの漏れ電流であ
る。この時の陽極側と陰極側にかかっている電圧はC1
及びC2 には無関係で、それぞれの皮膜の直流抵抗R1
及びR2 の大きさによって決まる。すなわち、本実施の
形態では、陰極箔2は空巻きした分だけ陽極箔1に比較
して長くなっており、その直流抵抗R2 は、陽極箔の直
流抵抗R1 に比較して大きなものとなっている。
(2) Operation of the Embodiment FIG. 3 shows an equivalent circuit when a DC voltage V 0 is applied to the solid electrolytic capacitor of the present embodiment. In the figure, C 1 , R 1 and V 1 are the capacitance of the oxide film of the anode foil 1 (in the forward direction with respect to the applied voltage), the DC resistance and the distributed voltage, and C 2 , R 2 and V 2 are the cathode foils 2 (in the opposite direction to the applied voltage) are the capacitance of the oxide film, the DC resistance, and the distributed voltage, and I 0 is the leakage current of this capacitor. At this time, the voltage applied to the anode side and the cathode side is C 1
And C 2 , regardless of the DC resistance R 1 of each coating.
And on the size of the R 2. That is, in the present embodiment, the cathode foil 2 is longer than the anode foil 1 by the amount of the idle winding, and its DC resistance R 2 is larger than the DC resistance R 1 of the anode foil. Has become.

【0019】一般に、陽極箔1及び陰極箔2の両方に化
成処理を施した電極部材を使用した無極性の非固体アル
ミ電解コンデンサにおいては、印加電圧に対し逆方向の
酸化皮膜の耐電圧は小さく、すなわちR2 は非常に小さ
いため実質的にはR1 のみを考慮すればよく、従ってコ
ンデンサの直流耐電圧は印加電圧に対し順方向の酸化皮
膜の耐電圧と一致する。
Generally, in a non-polar non-solid aluminum electrolytic capacitor using an electrode member in which both the anode foil 1 and the cathode foil 2 have been subjected to chemical conversion, the withstand voltage of the oxide film in the direction opposite to the applied voltage is small. , i.e. R 2 is very small because substantially better considering only R 1, thus the DC withstand voltage of the capacitor corresponds to the applied voltage and the withstand voltage in the forward direction of the oxide film.

【0020】しかし、本実施の形態のように、前記陽極
箔1及び陰極箔2の両方に化成処理を施した電極部材を
使用した固体アルミ電解コンデンサの場合、印加電圧に
対し逆方向の酸化皮膜の耐電圧は順方向の1/3〜1/
2の耐電圧を有するためにR2 が比較的大きく、陽極側
及び陰極側にそれぞれV1 =V・R1 /(R1 +R2
及びV2 =V・R2 /(R1 +R2 )に分配される。そ
のために陽極側のみで電圧を保持している場合よりも漏
れ電流I0 が小さくなる。また、本実施形態の固体アル
ミ電解コンデンサの耐電圧は、印加電圧に対し順方向に
位置する酸化皮膜の耐電圧V1 と逆方向に位置する酸化
皮膜の耐電圧V2 の和となり、陰極箔に未化成あるいは
数V程度の化成箔を使用した場合よりもV2 だけ増加す
る。
However, in the case of a solid aluminum electrolytic capacitor using an electrode member in which both the anode foil 1 and the cathode foil 2 have been subjected to a chemical conversion treatment as in this embodiment, the oxide film in the opposite direction to the applied voltage is used. Withstand voltage of 1/3 to 1 /
R 2 is relatively large due to having a withstand voltage of 2, and V 1 = V · R 1 / (R 1 + R 2 ) on the anode side and the cathode side, respectively.
And V 2 = V · R 2 / (R 1 + R 2 ). Therefore, the leakage current I 0 is smaller than when the voltage is held only on the anode side. Further, the withstand voltage of the solid aluminum electrolytic capacitor of this embodiment, the sum of the breakdown voltage V 2 of the oxide film to the applied voltage located withstand voltages V 1 and reverse oxide film positioned in the forward direction, the cathode foil increases by V 2 than when using the unformed or several V about foil to.

【0021】このように本実施の形態の固体電解コンデ
ンサによれば、陽極箔の順方向に対する耐電圧と陰極箔
の逆方向の耐電圧とによって、コンデンサ全体の耐電圧
が決定されるため、個々の電極箔の化成処理電圧を高く
したり、電極箔の厚さを増加させることなく、その電気
的特性を向上することができる。
As described above, according to the solid electrolytic capacitor of the present embodiment, the withstand voltage of the entire capacitor is determined by the withstand voltage of the anode foil in the forward direction and the withstand voltage of the cathode foil in the reverse direction. The electrical characteristics of the electrode foil can be improved without increasing the chemical conversion voltage of the electrode foil or increasing the thickness of the electrode foil.

【0022】[0022]

【実施例】次に、本発明の固体電解コンデンサと、化成
処理を行わない陰極箔を使用した従来の固体電解コンデ
ンサとの電気的な特性を比較する。
Next, the electrical characteristics of the solid electrolytic capacitor of the present invention and a conventional solid electrolytic capacitor using a cathode foil not subjected to a chemical conversion treatment will be compared.

【0023】実施例1 アルミニウム箔をエッチング処理し、化成電圧98Vで
化成処理して表面に酸化皮膜を形成した陽極箔及び陰極
箔を作成した。これらの陽極箔と陰極箔にそれぞれ電極
端子を接合した後、セパレータを挟んで巻回してコンデ
ンサ素子を形成した。この場合、陽極箔の長さは22m
m、陰極箔の長さは33mmであり、陰極箔はその分空
巻きされている。このコンデンサ素子にほう酸を0.1
〜0.2重量%添加した硝酸マンガン水溶液に含浸し、
減圧含浸を行った。その後、270℃で10分熱分解
し、さらに修復化成液中で35V印加して修復化成を行
い、このコンデンサ素子をエポキシ樹脂で封止し、二酸
化マンガンの電解質層を有するアルミ固体電解コンデン
サを製作した。
Example 1 An aluminum foil was subjected to an etching treatment and a chemical conversion treatment at a formation voltage of 98 V to form an anode foil and a cathode foil having an oxide film formed on the surface. After bonding the electrode terminals to the anode foil and the cathode foil, respectively, they were wound around a separator to form a capacitor element. In this case, the length of the anode foil is 22m
m, the length of the cathode foil is 33 mm, and the cathode foil is wound by that amount. 0.1% boric acid is added to this capacitor element.
Impregnated with an aqueous solution of manganese nitrate added to
Vacuum impregnation was performed. After that, it was thermally decomposed at 270 ° C for 10 minutes, and then subjected to repair formation by applying 35 V in a repair formation solution. The capacitor element was sealed with epoxy resin to produce an aluminum solid electrolytic capacitor having a manganese dioxide electrolyte layer. did.

【0024】比較例1 前記実施例1に記載した固体電解コンデンサにおいて、
化成電圧98Vのアルミニウム箔を陽極箔のみに使用
し、陰極箔は未化成のアルミニウム箔を使用した。
Comparative Example 1 In the solid electrolytic capacitor described in Example 1,
An aluminum foil having a formation voltage of 98 V was used only as an anode foil, and an unformed aluminum foil was used as a cathode foil.

【0025】比較例2 前記実施例1に記載した固体電解コンデンサにおいて、
化成電圧170Vのアルミニウム箔を陽極箔のみに使用
し、陰極箔は未化成のアルミニウム箔を使用した。
Comparative Example 2 In the solid electrolytic capacitor described in Example 1,
An aluminum foil having a formation voltage of 170 V was used only as an anode foil, and an unformed aluminum foil was used as a cathode foil.

【0026】[0026]

【表1】 表1から明らかなように、実施例1における固体電解コ
ンデンサでは、100kHzで測定した等価直列抵抗E
SR、漏れ電流LC、耐電圧のいずれもが、比較例1及
び2に示す、化成処理を施していない陰極箔を使用した
固体電解コンデンサに比較して向上していることが判
る。
[Table 1] As is clear from Table 1, in the solid electrolytic capacitor in Example 1, the equivalent series resistance E measured at 100 kHz was used.
It can be seen that all of SR, leakage current LC, and withstand voltage are improved as compared with the solid electrolytic capacitors using the cathode foil not subjected to the chemical treatment shown in Comparative Examples 1 and 2.

【0027】[0027]

【発明の効果】以上の通り、本発明によれば、陰極箔と
して化成処理された電極部材を使用するという手段によ
り、固体電解コンデンサの電気的特性、特に直流電圧に
対する耐電圧特性を向上させることが可能になる。ま
た、本発明の固体電解コンデンサは、直流用として使用
するものであるから、陰極箔と陽極箔の電気的特性を一
致させる必要がなく、陰極箔の持つ逆方向の耐電圧特性
のみを考慮すればよいので、コンデンサの製造も容易で
あり、実用性に優れている。
As described above, according to the present invention, it is possible to improve the electrical characteristics of a solid electrolytic capacitor, particularly the withstand voltage characteristics against a DC voltage, by using a chemically converted electrode member as a cathode foil. Becomes possible. Further, since the solid electrolytic capacitor of the present invention is used for direct current, it is not necessary to match the electrical characteristics of the cathode foil and the anode foil, and only the withstand voltage characteristics of the cathode foil in the reverse direction are considered. Therefore, the production of the capacitor is easy and the practicability is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解コンデンサに使用するコンデ
ンサ素子の分解斜視図。
FIG. 1 is an exploded perspective view of a capacitor element used for a solid electrolytic capacitor of the present invention.

【図2】本発明の電極箔部分の概念図。FIG. 2 is a conceptual diagram of an electrode foil portion of the present invention.

【図3】本発明の固体電解コンデンサの等価回路図。FIG. 3 is an equivalent circuit diagram of the solid electrolytic capacitor of the present invention.

【図4】一般的な固体アルミ電解コンデンサのV−I特
性を示すグラフ。
FIG. 4 is a graph showing VI characteristics of a general solid aluminum electrolytic capacitor.

【図5】本発明による固体電解コンデンサのV−I特性
を示すグラフ。
FIG. 5 is a graph showing VI characteristics of the solid electrolytic capacitor according to the present invention.

【図6】固体アルミ電解コンデンサと非固体アルミ電解
コンデンサのV−I特性を示すグラフ。
FIG. 6 is a graph showing VI characteristics of a solid aluminum electrolytic capacitor and a non-solid aluminum electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1…陽極箔 2…陰極箔 3…セパレータ 4…酸化皮膜層 5…固体電解質層 6,7…リード線 8…エッチングピット 10…コンデンサ素子 DESCRIPTION OF SYMBOLS 1 ... Anode foil 2 ... Cathode foil 3 ... Separator 4 ... Oxide film layer 5 ... Solid electrolyte layer 6, 7 ... Lead wire 8 ... Etching pit 10 ... Capacitor element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定の化成電圧で化成処理された電極部
材から構成された陽極箔と、化成処理された電極部材か
ら構成された陰極箔と、これら陽極箔と陰極箔とをセパ
レータを介して巻回してコンデンサ素子を形成し、この
コンデンサ素子に固体の電解質を生成して直流電圧に対
する耐電圧を向上させたことを特徴とする固体電解コン
デンサ。
An anode foil composed of an electrode member that has been subjected to a chemical conversion treatment at a predetermined chemical conversion voltage, a cathode foil composed of an electrode member that has been subjected to a chemical conversion treatment, and these anode foil and cathode foil interposed via a separator. A solid electrolytic capacitor characterized by winding to form a capacitor element and generating a solid electrolyte in the capacitor element to improve the withstand voltage against a DC voltage.
【請求項2】 前記陽極箔と陰極箔とが同一の電極部材
から構成されていることを特徴とする請求項1に記載の
固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the anode foil and the cathode foil are formed of the same electrode member.
【請求項3】 前記陽極箔と陰極箔における印加電圧に
対する順方向の耐電圧および/または静電容量が、各電
極箔でそれぞれ異なることを特徴とする請求項1に記載
の固体電解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein a withstand voltage and / or a capacitance of the anode foil and the cathode foil in a forward direction with respect to an applied voltage are different for each electrode foil.
【請求項4】 前記陽極箔と陰極箔のいずれかが、単独
で巻回された空巻き部を有し、前記陽極箔と陰極箔との
長さが異なることを特徴とする請求項3に記載の固体電
解コンデンサ。
4. The method according to claim 3, wherein one of the anode foil and the cathode foil has an empty winding portion wound alone, and the lengths of the anode foil and the cathode foil are different. The solid electrolytic capacitor as described.
【請求項5】 前記電極部材がアルミニウムからなり、
前記電解質が二酸化マンガンから成ることを特徴とする
請求項1、請求項2、請求項3または請求項4に記載の
固体電解コンデンサ。
5. The electrode member is made of aluminum,
5. The solid electrolytic capacitor according to claim 1, wherein said electrolyte is made of manganese dioxide.
JP9206413A 1997-07-31 1997-07-31 Solid electrolytic capacitor Pending JPH1154380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9206413A JPH1154380A (en) 1997-07-31 1997-07-31 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9206413A JPH1154380A (en) 1997-07-31 1997-07-31 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH1154380A true JPH1154380A (en) 1999-02-26

Family

ID=16522964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9206413A Pending JPH1154380A (en) 1997-07-31 1997-07-31 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH1154380A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269089A (en) * 1999-03-15 2000-09-29 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2003151857A (en) * 2001-11-16 2003-05-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
US7440257B2 (en) 2002-10-18 2008-10-21 Epcos Ag Double-layer capacitor, use of the same, and method for increasing the maximum charges of double-layer capacitor electrodes
WO2014083765A1 (en) * 2012-11-28 2014-06-05 三洋電機株式会社 Electrolytic capacitor
US10734163B2 (en) 2016-03-25 2020-08-04 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
WO2021125182A1 (en) * 2019-12-17 2021-06-24 日本ケミコン株式会社 Hybrid electrolytic capacitor and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269089A (en) * 1999-03-15 2000-09-29 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2003151857A (en) * 2001-11-16 2003-05-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
US7440257B2 (en) 2002-10-18 2008-10-21 Epcos Ag Double-layer capacitor, use of the same, and method for increasing the maximum charges of double-layer capacitor electrodes
WO2014083765A1 (en) * 2012-11-28 2014-06-05 三洋電機株式会社 Electrolytic capacitor
JPWO2014083765A1 (en) * 2012-11-28 2017-01-05 パナソニックIpマネジメント株式会社 Electrolytic capacitor
US10734163B2 (en) 2016-03-25 2020-08-04 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
WO2021125182A1 (en) * 2019-12-17 2021-06-24 日本ケミコン株式会社 Hybrid electrolytic capacitor and method for manufacturing same
US11929214B2 (en) 2019-12-17 2024-03-12 Nippon Chemi-Con Corporation Hybrid electrolytic capacitor and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR100356194B1 (en) Solid electrolytic capacitor and method for maunfacturing the same
JP4587996B2 (en) Electrolytic capacitor
JP4592792B2 (en) Electrolytic capacitor
JPH05205984A (en) Laminated solid electrolytic capacitor
US20100020472A1 (en) Electrolytic capacitor and method of making the same
JPH1154380A (en) Solid electrolytic capacitor
WO2004077465A1 (en) Solid electrolytic capacitor
KR20050104368A (en) Solid electrolytic capacitor
JPH05234823A (en) Manufacture of solid electrolytic capacitor
JPS605572Y2 (en) Electrolytic capacitor
JPS58153322A (en) Condenser
JPS63299307A (en) Electrolytic capacitor
JPH07272979A (en) Electrolytic capacitor
EP0332253B1 (en) Electrolytic foil capacitor
JP3406245B2 (en) Aluminum electrolytic capacitor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JPH0669084A (en) Lamination type solid electrolytic capacitor
JPH0452610B2 (en)
JP3851128B2 (en) Electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JPS6116679Y2 (en)
JPS6317240Y2 (en)
JPH0821515B2 (en) Method for manufacturing laminated solid electrolytic capacitor
JP2502962Y2 (en) Valve metal winding foil for solid electrolytic capacitors
JP2943289B2 (en) Aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070718

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071019