JP3214091B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP3214091B2
JP3214091B2 JP24907592A JP24907592A JP3214091B2 JP 3214091 B2 JP3214091 B2 JP 3214091B2 JP 24907592 A JP24907592 A JP 24907592A JP 24907592 A JP24907592 A JP 24907592A JP 3214091 B2 JP3214091 B2 JP 3214091B2
Authority
JP
Japan
Prior art keywords
gate electrode
thin film
forming
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24907592A
Other languages
Japanese (ja)
Other versions
JPH06104279A (en
Inventor
浩 佐野
守 古田
達男 ▲よし▼岡
哲也 川村
豊 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24907592A priority Critical patent/JP3214091B2/en
Priority to EP19930115113 priority patent/EP0588370A3/en
Publication of JPH06104279A publication Critical patent/JPH06104279A/en
Application granted granted Critical
Publication of JP3214091B2 publication Critical patent/JP3214091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78624Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile the source and the drain regions being asymmetrical

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置やイメー
ジセンサ等に応用される薄膜トランジスタの製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor applied to a liquid crystal display, an image sensor, and the like.

【0002】[0002]

【従来の技術】薄膜トランジスタ(Thin Film
Transistor:以下では、TFTと略記す
る)を例えば液晶表示装置の画素のスイッチング素子と
して用いる場合、TFTの逆バイアス時のリーク電流
(以下では、オフ電流と記す)は映像信号の保持特性を
悪化させることから、このオフ電流を低減する必要があ
る。また、TFTの信頼性を向上させることも重要であ
り、そのためにLSI技術として培われてきたライトリ
ィー・ドープト・ドレイン(Lightly Dope
d Drain,以下LDDと略す)構造がTFTにも
応用されている。その例が、イクステンテ゛ィット゛・アフ゛ストラクツ・オフ゛
・サ゛・1991・インターナショナル・コンファレンス・オン・ソリット゛・ステート・テ゛ハ゛イセス゛・
アント゛・マテリアルス゛(1991年)第641頁から第643頁(Extended Ab
stracts of the1991 International Conference on Sol
id State Devices and Materials (1991) P641-643)に
記載されている。
2. Description of the Related Art Thin film transistors (Thin Film)
When a transistor (hereinafter abbreviated as TFT) is used, for example, as a switching element of a pixel of a liquid crystal display device, a leakage current (hereinafter, referred to as an off-state current) at the time of reverse bias of the TFT degrades a video signal holding characteristic. Therefore, it is necessary to reduce this off current. It is also important to improve the reliability of the TFT. For this purpose, a lightly doped drain (Lightly Dope) cultivated as an LSI technology has been developed.
d Drain (hereinafter abbreviated as LDD) structure is also applied to a TFT. An example is Extensible Affairs Off Support, 1991 International Conference on Solid State State Devices, Inc.
Ant Materials (1991) pp. 641-643 (Extended Ab
stracts of the1991 International Conference on Sol
id State Devices and Materials (1991) P641-643).

【0003】以下に、(図4)に示したLDD構造のコ
プレナ型TFTの製造方法について説明する。絶縁性基
板である透光性ガラス基板1上に活性半導体層2を形成
する。その上に、ゲート絶縁層5およびゲート電極6を
形成する。次に、ゲート電極6をマスクとしてイオン注
入法により低不純物濃度の半導体層を形成する。さら
に、(図5)に示すように、フォトレジスト11でマス
クを形成してイオン注入法により不純物を高濃度に添加
することによって、低不純物濃度の半導体層3の外側に
高不純物濃度の半導体層4を形成する。そして、フォト
レジスト11を除去した後、層間絶縁層8,コンタクト
ホール,ソース電極9,ドレイン電極10を形成してT
FTが完成する。このようにして、ドレイン領域が低不
純物濃度の半導体層と高不純物濃度の半導体層とか
らなるLDD構造を形成する。
A method of manufacturing a coplanar TFT having the LDD structure shown in FIG. 4 will be described below. Insulating group
An active semiconductor layer 2 is formed on a transparent glass substrate 1 which is a plate . A gate insulating layer 5 and a gate electrode 6 are formed thereon. Next, the semiconductor layer 3 having a low impurity concentration is formed by ion implantation using the gate electrode 6 as a mask. Further, as shown in FIG. 5, by forming a mask with the photoresist 11 and adding an impurity at a high concentration by ion implantation, a high impurity is formed outside the semiconductor layer 3 having a low impurity concentration. A semiconductor layer 4 having a concentration is formed. Then, after removing the photoresist 11, an interlayer insulating layer 8, a contact hole, a source electrode 9, and a drain electrode 10 are formed.
FT is completed. In this manner, the drain region is formed an LDD structure comprising a semiconductor layer 3 of a low impurity concentration higher impurity concentration of the semiconductor layer 4.

【0004】[0004]

【発明が解決しようとする課題】不純物添加時のマスク
としてのフォトレジスト11の形成位置を、(図5
(a))と(図5(b))に比較して示している。設計
状態と実工程におけるこのような差異は、フォトリソグ
ラフィーのマスク合わせ精度の範囲で生じることは避け
られない。そのために、低不純物濃度の半導体層(図
5のLldd)を精度よく微細に形成することは難し
い。また、ガラス基板上に多くのTFTを作製する場
合などには、基板の熱収縮などの影響を受けるために、
一基板内でのフォトレジストの形成位置の均一性を得る
ことも容易ではなく、低不純物濃度の半導体層(図5
のLldd)を一基板内で均一に形成することは難し
い。また、ゲート電極をマスクとして低不純物濃度の
半導体層を形成した時点で、ゲート電極とドレイン
領域とのソース・ドレイン方向に対する重なり(図5の
Lgd)が決定するために、このLgdを容易に変化さ
せることはできない。
The formation position of the photoresist 11 as a mask at the time of impurity addition is shown in FIG.
(A) ) and (FIG. 5 (b) ). It is inevitable that such a difference between the design state and the actual process occurs within the range of mask alignment accuracy of photolithography. Therefore, it is difficult to form the semiconductor layer 3 (Lldd in FIG. 5) having a low impurity concentration with high precision and fineness. Further, when many TFTs are formed on the glass substrate 1 , the TFT is affected by heat shrinkage of the substrate and the like.
It is not easy to obtain uniformity of the photoresist formation position within one substrate, and the semiconductor layer 3 having a low impurity concentration (FIG. 5)
It is difficult to form Lldd) uniformly in one substrate. When the low impurity concentration semiconductor layer 3 is formed using the gate electrode 6 as a mask, the overlap between the gate electrode 6 and the drain region in the source / drain direction (Lgd in FIG. 5) is determined. It cannot be changed easily.

【0005】本発明においては、半導体層に不純物を添
加する際のマスクを精度よく、しかも基板内での均一性
を損なわずに形成すると同時に、ゲート電極とドレイン
領域とのソース・ドレイン方向に対する重なり(図5の
Lgdに相当する)を制御してLDD構造のTFTを作
製することを目的としている。
In the present invention, a mask for adding an impurity to a semiconductor layer is formed with high accuracy and without impairing uniformity in a substrate, and at the same time, an overlap of a gate electrode and a drain region in a source / drain direction. (Corresponding to Lgd in FIG. 5) to manufacture a TFT having an LDD structure.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、ゲート電極をマスクとして低不純物濃度の
半導体層を形成した後、前記ゲート電極の一部を改質層
とする。次に、前記ゲート電極および前記改質層をマス
クとして高不純物濃度の半導体層を形成する。そしてそ
の際、ゲート電極の端部の形状をテーパー状としておく
ものである。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
According to the present invention, after a semiconductor layer having a low impurity concentration is formed using a gate electrode as a mask, a part of the gate electrode is used as a modified layer. Next, a semiconductor layer having a high impurity concentration is formed using the gate electrode and the modified layer as a mask. And that
In this case, the shape of the end of the gate electrode is tapered.
Things.

【0007】[0007]

【作用】以下に、本発明による作用について説明する。
まず、最大の要所であるゲート電極の一部(表面と考え
ると理解し易い)を改質層とする工程について説明す
る。ゲート電極の表面側から他元素を取り込むことや原
子の結合状態を変えること等により改質層を形成するこ
とによって、改質層形成前のゲート電極よりも改質層形
成後のゲート電極および改質層の体積を膨張させる。つ
まり、改質層の形成によって、低不純物濃度の半導体層
を形成する際のマスク(ゲート電極)面積よりも高不純
物濃度の半導体層を形成する際のマスク(ゲート電極お
よび改質層)面積は拡大する。この改質層は精度よく微
細にしかも基板内で均一に形成できるために、不純物を
添加する際のマスクも精度よく微細に形成することがで
きると同時に、一枚の基板上の異なる位置においても均
一に形成することができる。さらに、改質層を絶縁性物
質とすることにより、ゲート電極自身は小さくなるため
に、ゲート電極とドレイン領域とのソース・ドレイン方
向に対する重なりを小さくすることができる。その上、
端部がテーパー状のゲート電極を用いた場合には、ゲー
ト電極もしくはゲート電極および改質層の厚みが小さい
部分では、それらが完全なマスクとして働かないことか
ら、ゲート電極とドレイン領域とのソース・ドレイン方
向に対する重なりを大きくすることもできる。
The operation of the present invention will be described below.
First, a process of forming a part of the gate electrode (which is easy to understand when considered as a surface), which is the most important point, as a modified layer will be described. By forming the modified layer by taking in other elements from the surface side of the gate electrode or changing the bonding state of atoms, the gate electrode after the formation of the modified layer and the gate electrode after the formation of the modified electrode are formed more than the gate electrode before the formation of the modified layer. The volume of the porous layer is expanded. In other words, by forming the modified layer, the area of the mask (gate electrode and modified layer) when forming the semiconductor layer with a higher impurity concentration is larger than the area of the mask (gate electrode) when forming the semiconductor layer with a lower impurity concentration. Expanding. Since this modified layer can be formed precisely and finely and uniformly within the substrate, the mask for adding the impurity can be formed precisely and finely, and at the same time, even at different positions on one substrate. It can be formed uniformly. Further, by using an insulating material for the modified layer, the size of the gate electrode itself is reduced, so that the overlap between the gate electrode and the drain region in the source / drain direction can be reduced. Moreover,
When a gate electrode having a tapered end is used, the gate electrode or the gate electrode and the modified layer do not function as a complete mask at a small thickness, so that the source electrode between the gate electrode and the drain region is not formed. -The overlap in the drain direction can be increased.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。そ
の前に、本発明に先行して開発した先行開発例について
説明する。
Embodiments of the present invention will be described below. So
Before, about the example of the prior development developed prior to the present invention
explain.

【0009】(先行開発例) (図1)は本発明より先に開発したコプレナ型TFT
作製工程図であり、(図2)はコプレナ型TFTの断
面図である。以下に、これらの図を用いて説明する。ま
ず、絶縁性基板としての透光性ガラス基板1上に活性半
導体層2として例えばプラズマCVD法により非晶質シ
リコンを成膜し、フォトリソグラフィーおよびエッチン
グを用いて島状に加工する。その上に、ゲート絶縁層5
として例えば常圧CVD法により二酸化シリコンを形成
する。さらに、ゲート電極6として例えばアルミニウム
を成膜し、フォトリソグラフィーおよびエッチングを用
いて加工する。そして、ゲート電極6をマスクとして、
例えばイオン注入法により燐を不純物として導入して低
不純物濃度の半導体層3を形成する。次に、例えば陽極
酸化法によってゲート電極6の表面に絶縁性物質である
陽極酸化層7例えば酸化アルミニウムを形成する。そし
て、ゲート電極6および陽極酸化層7をマスクとして、
例えばイオン注入法により燐を不純物として導入して高
不純物濃度の半導体層4を形成する。その上に、層間絶
縁層8として例えば常圧CVD法により二酸化シリコン
を形成した後、フォトリソグラフィーおよびエッチング
によってコンタクトホールを形成する。さらに、ソース
電極9およびドレイン電極10を例えばチタン,アルミ
ニウムの順で成膜,加工してTFTが完成する。
[0009] (Advanced Development Example) (Figure 1) is coplanar type TFT was developed before the present invention
It is a manufacturing process figure , (FIG. 2) is sectional drawing of the same coplanar TFT. Hereinafter, description will be made with reference to these drawings. First, amorphous silicon is formed as an active semiconductor layer 2 on a translucent glass substrate 1 as an insulating substrate by, for example, a plasma CVD method, and is processed into an island shape using photolithography and etching. On top of that, the gate insulating layer 5
For example, silicon dioxide is formed by a normal pressure CVD method. Further, for example, an aluminum film is formed as the gate electrode 6 and processed using photolithography and etching. Then, using the gate electrode 6 as a mask,
For example, phosphorus is introduced as an impurity by an ion implantation method to form the semiconductor layer 3 having a low impurity concentration. Next, an anodic oxide layer 7 made of an insulating material, for example, aluminum oxide is formed on the surface of the gate electrode 6 by, for example, an anodizing method. Then, using the gate electrode 6 and the anodic oxide layer 7 as a mask,
For example, phosphorus is introduced as an impurity by an ion implantation method to form the semiconductor layer 4 having a high impurity concentration. After that, silicon dioxide is formed as the interlayer insulating layer 8 by, for example, normal pressure CVD, and then a contact hole is formed by photolithography and etching. Further, the source electrode 9 and the drain electrode 10 are formed and processed in the order of, for example, titanium and aluminum to complete the TFT.

【0010】この先行開発例により作製したLDD構造
のコプレナ型TFTには、次の2つの効果がある。一つ
は、低不純物濃度の半導体層3を精度よく微細に形成す
ることができることである。もう一つは、ゲート電極6
と低不純物濃度の半導体層3とのソース・ドレイン方向
に対する重なりを制御できることであり、陽極酸化層7
の厚みによって前記重なりの度合を変化させることがで
きる。このように作製したTFTでは、オフ電流の低減
および信頼性の向上が実現できる。
The coplanar TFT having the LDD structure manufactured according to this prior development example has the following two effects. One is that the semiconductor layer 3 having a low impurity concentration can be finely formed with high precision. The other is the gate electrode 6
And the semiconductor layer 3 having a low impurity concentration can be controlled in the source / drain direction.
The degree of the overlap can be changed by the thickness of the sheet. In the TFT manufactured as described above, reduction in off current and improvement in reliability can be realized.

【0011】次に、上記先行開発例を基礎として開発し
た本発明の実施例につて説明する。第1の実施例)本実施例 におけるTFTの作製方法は、上記先行開発例
と次の点についてのみ異なる。以下に、(図3)の本発
明により作製したテーパー状のゲート電極を有するコプ
レナ型TFTの断面図を用いて説明する。ゲート絶縁層
5として例えば常圧CVD法により二酸化シリコンを形
成した上に、ゲート電極6として例えばアルミニウムを
成膜し、フォトリソグラフィーおよびテーパーエッチン
グを用いて加工する。テーパーエッチングを用いること
によって、(図3)のようにゲート電極6の端部を勾配
をもったテーパー状に形成する。この工程以降は、上記
先行開発例と同様である。
Next, based on the preceding development example,
An embodiment of the present invention will be described. ( First Embodiment) The method of manufacturing a TFT in this embodiment is different from the above-mentioned prior development example only in the following points. Hereinafter, a cross-sectional view of a coplanar TFT having a tapered gate electrode manufactured according to the present invention (FIG. 3) will be described. For example, after silicon dioxide is formed as the gate insulating layer 5 by a normal pressure CVD method, for example, aluminum is formed as the gate electrode 6 and processed using photolithography and taper etching. By using taper etching, the end of the gate electrode 6 is formed in a tapered shape having a gradient as shown in FIG. After this process, the above-mentioned
It is the same as the preceding development example .

【0012】この第1の実施例により作製したLDD構
造のコプレナ型TFTには、次の2つの効果がある。一
つは、低不純物濃度の半導体層3を精度よく微細に形成
することができることである。もう一つは、ゲート電極
6のテーパーの角度および陽極酸化層7の厚みを変化さ
せることによって、ゲート電極6と低不純物濃度の半導
体層3とのソース・ドレイン方向に対する重なりおよび
低不純物濃度の半導体層3の領域の大きさをそれぞれ制
御できることである。これは、ゲート電極6のテーパー
状の膜厚が薄い部分は不純物添加時に完全なマスクとし
て働かず、その下の半導体層にも不純物が添加されるこ
とを利用しているのである。
The coplanar TFT having the LDD structure manufactured according to the first embodiment has the following two effects. One is that the semiconductor layer 3 having a low impurity concentration can be finely formed with high precision. The other is to change the taper angle of the gate electrode 6 and the thickness of the anodic oxide layer 7 so that the gate electrode 6 and the low impurity concentration semiconductor layer 3 overlap in the source / drain direction and the low impurity concentration semiconductor layer. That is, the size of the region of the layer 3 can be controlled. This is based on the fact that the tapered portion of the gate electrode 6 where the film thickness is small does not function as a complete mask when the impurity is added, and the impurity is also added to the underlying semiconductor layer.

【0013】(第2の実施例) 上記第1の実施例と同様に、ゲート電極6の端部の形状
をテーパー状として、先行開発例のTFT作製工程にお
いて、絶縁層5上に所定の形状のゲート電極6を形成す
る工程からゲート電極6の一部を改質層とする工程まで
を、絶縁層5上に導電層を形成する工程、前記導電層上
に所定形状のフォトレジストを形成する工程、前記フ
ォトレジストを用いて前記導電層を所定の形状に加工し
てゲート電極6を形成する工程、前記ゲート電極6およ
び前記ゲート電極6上のフォトレジストをマスクとして
半導体薄膜2の一部の領域に不純物を添加する工程、前
記フォトレジストを除去する工程、前記ゲート電極6の
一部を改質層とする工程の順にすることもできる。この
ようにフォトレジストをマスクとして利用することによ
りチャンネルへの不純物阻止能力をより一層高めること
できる。
[0013] Similar to the Second Embodiment The above first embodiment, the shape of the end portion of the gate electrode 6 as a tapered, in the TFT manufacturing process of advanced development example, the predetermined on the insulating layer 5 form forming a step of forming a gate electrode 6 up to the step of the part of the gate electrode 6 and the modified layer, forming a conductive layer over the insulating layer 5, a photoresist having a predetermined shape on the conductive layer of the Forming a gate electrode 6 by processing the conductive layer into a predetermined shape using the photoresist; and forming a part of the semiconductor thin film 2 using the gate electrode 6 and the photoresist on the gate electrode 6 as a mask. The step of adding an impurity to the region, the step of removing the photoresist, and the step of forming a part of the gate electrode 6 as a modified layer. By using the photoresist as a mask in this way, the ability to block impurities in the channel can be further enhanced .

【0014】なお、本実施例では、先行開発例に準じて
ゲート電極6としてアルミニウムを用いたが、これは陽
極酸化が可能であり、また端部の形状をテーパー状に
成することが可能で、不純物導入時のマスクとなる導電
層なら何でもよく、例えばアルミニウムを主成分とする
金属やタンタルを主成分とする金属などでもよい。
In this embodiment, aluminum is used as the gate electrode 6 according to the prior development example, but this can be anodized and the end portion is formed in a tapered shape. Any conductive layer serving as a mask for introducing impurities can be used. For example, a metal containing aluminum as a main component or a metal containing tantalum as a main component may be used.

【0015】なお、本実施例では、先行開発例に準じて
ゲート電極6の一部を改質層とする方法として陽極酸化
法を用いたが、これは熱酸化法やプラズマ酸化法やプラ
ズマ窒化法など改質層として絶縁性物質を形成し、改質
層形成前のゲート電極よりも改質層形成後のゲート電極
および改質層の体積を膨張させる方法ならば何でもよ
い。
In this embodiment , the anodic oxidation method is used as a method for forming a part of the gate electrode 6 as a modified layer in accordance with the preceding development example. Any method may be used as long as an insulating material is formed as a modified layer, such as a method or a plasma nitridation method, and the volumes of the gate electrode and the modified layer after the modified layer are formed are expanded more than the gate electrode before the modified layer is formed.

【0016】なお、本実施例では、先行開発例に準じて
不純物として燐を用いたが、これはnチャネルのTFT
を作製する場合にはひ素などドナーとして働くものなら
何でもよく、pチャネルのTFTを作製する場合にはほ
う素などアクセプターとして働くものならば何でもよ
い。
In this embodiment , phosphorus is used as an impurity according to the prior development example.
If you work as a donor such as arsenic
Any material may be used, and in the case of manufacturing a p-channel TFT, any material that works as an acceptor, such as boron, may be used.

【0017】なお、本実施例では、先行開発例に準じて
絶縁層5および層間絶縁層8として常圧CVD法により
作製した二酸化シリコンを用いたが、これはプラズマC
VD法により作製した窒化シリコンなど絶縁層として働
くものならば何でもよい。
In this embodiment, silicon dioxide produced by the normal pressure CVD method is used as the insulating layer 5 and the interlayer insulating layer 8 according to the preceding development example.
Any material that functions as an insulating layer, such as silicon nitride manufactured by the VD method, may be used.

【0018】なお、本実施例では、先行開発例に準じて
活性半導体層2として非晶質シリコンを用いたが、これ
は多結晶シリコン,単結晶シリコン,化合物半導体など
活性半導体として働くものならば何でもよい。
In this embodiment, amorphous silicon is used as the active semiconductor layer 2 in accordance with the preceding development example, but this is used as an active semiconductor such as polycrystalline silicon, single crystal silicon, or a compound semiconductor. Anything that works.

【0019】なお、本実施例では、先行開発例に準じて
不純物を添加する方法としてイオン注入法を用いたが、
高周波放電により添加すべき不純物を少なくとも含むイ
オンを生成して質量分離せずに加速して不純物イオンを
添加する方法など不純物を添加できる方法ならば何でも
よい。
In this embodiment, an ion implantation method is used as a method for adding impurities according to the prior development example .
Any method can be used as long as it can add impurities, such as a method of generating ions containing at least impurities to be added by high-frequency discharge and accelerating without mass separation to add impurity ions.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、半
導体層に不純物を添加する際のマスクを精度よく微細
に、しかも絶縁性基板内での均一性を損なわずに形成す
ると同時に、ゲート電極とドレイン領域とのソース・ド
レイン方向に対する重なりを制御してLDD構造のTF
Tを作製することができる。
As described above, according to the present invention, a mask for adding an impurity to a semiconductor layer is formed precisely and finely without impairing uniformity in an insulating substrate, and at the same time, a gate is formed. By controlling the overlap between the electrode and the drain region in the source / drain direction, the TF having the LDD structure is formed.
T can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に先行して開発した先行開発例としての
コプレナ型薄膜トランジスタの作製工程図
FIG. 1 is a manufacturing process diagram of a coplanar thin film transistor as a development example developed prior to the present invention .

【図2】コプレナ型薄膜トランジスタの断面図2 is a cross-sectional view of the coplanar type thin film transistor

【図3】本発明により作製した端部がテーパー状のゲー
ト電極を有するコプレナ型薄膜トランジスタの断面図
FIG. 3 is a cross-sectional view of a coplanar thin film transistor having a tapered gate electrode manufactured according to the present invention.

【図4】LDD構造のコプレナ型薄膜トランジスタの断
面図
FIG. 4 is a cross-sectional view of a coplanar thin film transistor having an LDD structure.

【図5】LDD構造のコプレナ型薄膜トランジスタの作
製工程において、フォトレジストをマスクとして高不純
物濃度の半導体層を形成した後の断面図
FIG. 5 is a cross-sectional view after a semiconductor layer with a high impurity concentration is formed using a photoresist as a mask in a manufacturing process of a coplanar thin film transistor having an LDD structure.

【符号の説明】[Explanation of symbols]

1 透光性ガラス基板(絶縁性基板) 2 活性半導体層 3 低不純物濃度の半導体層 4 高不純物濃度の半導体層 5 ゲート絶縁層 6 ゲート電極 7 陽極酸化層 8 層間絶縁層 9 ソース電極 10 ドレイン電極 11 フォトレジストDESCRIPTION OF SYMBOLS 1 Translucent glass substrate (insulating substrate) 2 Active semiconductor layer 3 Low impurity concentration semiconductor layer 4 High impurity concentration semiconductor layer 5 Gate insulating layer 6 Gate electrode 7 Anodized layer 8 Interlayer insulating layer 9 Source electrode 10 Drain electrode 11 Photoresist

フロントページの続き (72)発明者 川村 哲也 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 宮田 豊 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−114724(JP,A) 特開 平1−173647(JP,A) 特開 昭62−214669(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/336 Continued on the front page (72) Inventor Tetsuya Kawamura 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. References JP-A-5-114724 (JP, A) JP-A-1-173647 (JP, A) JP-A-62-214669 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) H01L 29/786 H01L 21/336

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に半導体薄膜を形成する工程
と、前記半導体薄膜上に絶縁層を形成する工程と、前記
絶縁層上に所定の形状のゲート電極を形成する工程と、
前記ゲート電極をマスクとして前記半導体薄膜の一部の
領域に不純物を添加する工程と、前記ゲート電極の一部
を改質層とする工程と、前記ゲート電極および前記改質
層をマスクとして前記半導体薄膜の一部の領域に2度目
の不純物を添加する工程と、前記2度目の不純物を添加
した半導体薄膜にソース電極およびドレイン電極を形成
する工程とを有する薄膜トランジスタの製造方法であっ
て、前記ゲート電極の端部の形状をその形成時にテーパ
ー状としておくことを特徴とする薄膜トランジスタの製
造方法。
A step of forming a semiconductor thin film on an insulating substrate; a step of forming an insulating layer on the semiconductor thin film; and a step of forming a gate electrode having a predetermined shape on the insulating layer.
Adding an impurity to a part of the semiconductor thin film using the gate electrode as a mask, forming a part of the gate electrode as a modified layer, and using the gate electrode and the modified layer as a mask to form the semiconductor. A method for manufacturing a thin film transistor, comprising: a step of adding a second impurity to a partial region of a thin film; and a step of forming a source electrode and a drain electrode in the semiconductor thin film to which the second impurity is added, wherein A method of manufacturing a thin film transistor, wherein an end of an electrode is tapered at the time of forming the electrode.
【請求項2】絶縁性基板上に半導体薄膜を形成する工程
と、前記半導体薄膜上に絶縁層を形成する工程と、前記
絶縁層上に導電層を形成する工程と、前記導電層上に所
定の形状のフォトレジストを形成する工程と、前記フォ
トレジストを用いて前記導電層を所定の形状に加工して
ゲート電極を形成する工程と、前記ゲート電極および前
記ゲート電極上のフォトレジストをマスクとして前記半
導体薄膜の一部の領域に不純物を添加する工程と、前記
フォトレジストを除去する工程と、前記ゲート電極の一
部を改質層とする工程と、前記ゲート電極および前記改
質層をマスクとして前記半導体薄膜の一部の領域に2度
目の不純物を添加する工程と、前記2度目の不純物を添
加した半導体薄膜にソース電極およびドレイン電極を形
成する工程とを有する薄膜トランジスタの製造方法であ
って、前記ゲート電極の端部の形状をその形成時にテー
パー状としておくことを特徴とする薄膜トランジスタの
製造方法。
A step of forming a semiconductor thin film on the insulating substrate; a step of forming an insulating layer on the semiconductor thin film; a step of forming a conductive layer on the insulating layer; Forming a photoresist of a shape, forming the gate electrode by processing the conductive layer into a predetermined shape using the photoresist, and using the photoresist on the gate electrode and the gate electrode as a mask. Adding an impurity to a partial region of the semiconductor thin film, removing the photoresist, forming a part of the gate electrode as a modified layer, and masking the gate electrode and the modified layer. Yes adding an second time impurities in a partial region of the semiconductor thin film, and forming a source electrode and a drain electrode on the semiconductor thin film obtained by adding the second time impurities as Manufacturing method der of that thin film transistor
Therefore, the shape of the end portion of the gate electrode is tapered during its formation.
A method for manufacturing a thin film transistor, wherein the thin film transistor is formed in a par shape .
JP24907592A 1992-09-18 1992-09-18 Method for manufacturing thin film transistor Expired - Fee Related JP3214091B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24907592A JP3214091B2 (en) 1992-09-18 1992-09-18 Method for manufacturing thin film transistor
EP19930115113 EP0588370A3 (en) 1992-09-18 1993-09-20 Manufacturing method of thin film transistor and semiconductor device utilized for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24907592A JP3214091B2 (en) 1992-09-18 1992-09-18 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH06104279A JPH06104279A (en) 1994-04-15
JP3214091B2 true JP3214091B2 (en) 2001-10-02

Family

ID=17187636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24907592A Expired - Fee Related JP3214091B2 (en) 1992-09-18 1992-09-18 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3214091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192132B1 (en) * 2018-02-09 2020-12-18 주식회사 블러썸엠앤씨 A three-dimensional puff with a film attached to some surface and a method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762002B2 (en) 1996-11-29 2006-03-29 株式会社東芝 Thin film transistor and liquid crystal display device
GB2393575B (en) * 1999-03-10 2004-06-02 Matsushita Electric Ind Co Ltd Method of manufacturing a thin film transistor
JP5977804B2 (en) * 2014-11-18 2016-08-24 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192132B1 (en) * 2018-02-09 2020-12-18 주식회사 블러썸엠앤씨 A three-dimensional puff with a film attached to some surface and a method for manufacturing the same

Also Published As

Publication number Publication date
JPH06104279A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
US7227229B2 (en) Active matrix display device comprising an inverter circuit
KR950002202B1 (en) Making method of stack tft
KR100257070B1 (en) Thin film transistor and method fabricating the same
JPH03161938A (en) Manufacture of thin-film transistor
JP3214091B2 (en) Method for manufacturing thin film transistor
JPH07273349A (en) Semiconductor integrated circuit
KR940002952A (en) Semiconductor device and manufacturing method thereof
JPH05182983A (en) Manufacture of thin-film transistor
JPH04196328A (en) Field-effect transistor
JP3391176B2 (en) Method for manufacturing thin film transistor
KR100290899B1 (en) Semiconductor device and method for fabricating the same
JPH01302768A (en) Inverse stagger type si-thin film transistor
KR100351869B1 (en) Method for fabricating tft-lcd having built-in circuits
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
JPS6380570A (en) Manufacture of thin film transistor
JPH06232398A (en) Manufacture of thin film transistor and manufacture of semiconductor device
JP2001177104A (en) Thin film transistor, method of manufacturing the same, and liquid crystal display device equipped therewith
JP3206069B2 (en) Method for manufacturing thin film transistor
JPH03142418A (en) Image display device and production thereof
JP3087363B2 (en) Method for manufacturing thin film transistor
JP3312617B2 (en) Active matrix substrate manufacturing method
JP3163711B2 (en) Method for manufacturing thin film transistor
KR950005486B1 (en) Tft and its making method
JPS5821868A (en) Manufacture of thin polycrystalline silicon film transistor
JP3221777B2 (en) Manufacturing method of thin film transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees