JP3152088U - Electrical circuit composite radiator - Google Patents

Electrical circuit composite radiator Download PDF

Info

Publication number
JP3152088U
JP3152088U JP2009002928U JP2009002928U JP3152088U JP 3152088 U JP3152088 U JP 3152088U JP 2009002928 U JP2009002928 U JP 2009002928U JP 2009002928 U JP2009002928 U JP 2009002928U JP 3152088 U JP3152088 U JP 3152088U
Authority
JP
Japan
Prior art keywords
electric circuit
heat
layer
insulating layer
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009002928U
Other languages
Japanese (ja)
Inventor
范華珠
李秀▲ティン▼
Original Assignee
臣相科技実業股▲分▼有限公司
旭立科技股▲分▼有限公司
菁晟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臣相科技実業股▲分▼有限公司, 旭立科技股▲分▼有限公司, 菁晟科技有限公司 filed Critical 臣相科技実業股▲分▼有限公司
Priority to JP2009002928U priority Critical patent/JP3152088U/en
Application granted granted Critical
Publication of JP3152088U publication Critical patent/JP3152088U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】全面的に直接熱を拡散させて迅速な放熱を達成し、熱抵抗係数を大幅に低下させ、電子デバイスの機能と使用寿命を確保する、電気回路複合放熱体を提供する。【解決手段】放熱器10を含み、放熱器10の一側に複数の放熱フィン12または金属板、セラミック板等の放熱材が設置され、他側に熱伝導絶縁層20が設けられ、熱伝導絶縁層20は均一に分布された熱伝導パウダーを含み、熱伝導絶縁層20上に電気回路層30が設けられ、電気回路層30は均一に分布された接着材と低抵抗電導パウダーを含み、かつその上に接点31が設けられ、接点31を介して電子デバイス50が電気的に接続され、熱伝導絶縁層20と電気回路層30の外にソルダレジストとして作用する絶縁塗料層40が設けられる。【選択図】図4Disclosed is an electric circuit composite heat dissipator that achieves quick heat dissipation by diffusing heat directly over the entire surface, greatly reducing the thermal resistance coefficient, and ensuring the function and service life of an electronic device. A heat radiator includes a heat radiator, a plurality of heat radiating fins or a heat radiating material such as a metal plate and a ceramic plate on one side, and a heat conductive insulating layer on the other side. The insulating layer 20 includes a heat conductive powder that is uniformly distributed, and an electric circuit layer 30 is provided on the heat conductive insulating layer 20, and the electric circuit layer 30 includes an evenly distributed adhesive and a low resistance conductive powder, In addition, a contact 31 is provided thereon, the electronic device 50 is electrically connected through the contact 31, and an insulating paint layer 40 that functions as a solder resist is provided outside the heat conductive insulating layer 20 and the electric circuit layer 30. . [Selection] Figure 4

Description

本考案は電気回路複合放熱体に関し、特に、電気回路の発生する熱エネルギーを全面的に直接拡散して迅速に放熱を行い、大幅に熱抵抗係数を低下させ、電気・電子デバイスの機能および使用寿命を効果的に確保する、電気回路複合放熱体に関する。   The present invention relates to an electric circuit composite radiator, and in particular, directly dissipates heat energy generated by an electric circuit directly to dissipate it quickly, greatly reducing the thermal resistance coefficient, and the functions and use of electric / electronic devices. The present invention relates to an electric circuit composite heat dissipating body that effectively ensures a life.

現在、照明設備には街灯照明、広告照明、室内照明、機器設備照明等の種類があり、一般に照明設備の照明光源は多くが白熱灯、蛍光灯、水銀灯等の種類を採用しており、水銀蒸気が環境汚染を引き起こし、照明効率が悪く、消費電力が相対的に増加するほか、破損しやすく、使用寿命が短いため経常的に交換修理が必要であり、人力、物力、時間の無駄を招いているため、改善が必要である。   Currently, there are various types of lighting equipment such as street lighting, advertising lighting, indoor lighting, and equipment lighting. In general, many of the lighting sources for lighting equipment use incandescent lamps, fluorescent lights, mercury lamps, etc. Steam causes environmental pollution, lighting efficiency is poor, power consumption is relatively increased, and it is easy to break and has a short service life, so it needs to be replaced regularly, resulting in waste of manpower, physical strength, and time. Therefore, improvement is necessary.

現今室内外、機器、広告等の照明設備の照明光源はすでに固体光源の発光ダイオードを採用し、照明効率を高め、電力を節約することを考慮している。この照明光源は回路基板上に複数個の発光ダイオードを配置する必要があるが、発光ダイオードの設置数量と出力電力の増加に伴い、電力>光>熱の変換過程において、相対して高い温度の熱が発生するため、回路基板の絶縁層を介して放熱器とそのフィンに伝導し、放熱を行う必要がある。   Nowadays, the light sources of indoor and outdoor lighting equipment such as equipment and advertisements are already using solid-state light emitting diodes to increase lighting efficiency and save power. In this illumination light source, it is necessary to arrange a plurality of light emitting diodes on a circuit board. However, as the number of light emitting diodes installed and the output power increase, the power> light> heat conversion process causes a relatively high temperature. Since heat is generated, it is necessary to conduct heat to the radiator and its fin through the insulating layer of the circuit board.

しかしながら、LED発光ダイオードの回路基板は接着剤で放熱器の表面に貼り合わせる必要があるため、全面的にしっかりと密着固定させることができず、熱伝導効率に影響し、さらには劣化して脱落しやすいため、放熱効率が悪く、放熱速度が遅い。このため、発光ダイオードを長期間使用すると、温度が高くなり過ぎ、発光ダイオードの照明効果に大きく影響し、光が減衰して使用寿命が短縮されてしまう。従って、改良が必要である。   However, the LED light-emitting diode circuit board needs to be bonded to the surface of the heatsink with an adhesive, so it cannot be firmly and firmly fixed over the entire surface, which affects the heat conduction efficiency and further deteriorates and drops off. The heat dissipation efficiency is poor and the heat dissipation speed is slow. For this reason, when the light emitting diode is used for a long period of time, the temperature becomes too high, greatly affecting the illumination effect of the light emitting diode, and the light is attenuated to shorten the service life. Therefore, improvements are needed.

上述の問題を克服するため、現在用いられている放熱機能を備えた回路板材料の種類と構造は次のとおりである。
種類一、FR4基材のプリント配線板:其板材は熱伝導及び放熱機能を具備していない。
種類二、メタルコアプリント配線板Metal Core PCB(MCPCB):その構造は銅箔(回路)層、絶縁(誘電)層、アルミニウム基板(メタルコア)層の3種類の異なる材質層を重ねて構成される。
種類三、セラミック基板:その構造は回路を直接導電性銀ペーストで基板の表面に形成して成る。
In order to overcome the above-mentioned problems, the types and structures of circuit board materials having a heat dissipation function that are currently used are as follows.
Type 1, FR4 base printed wiring board: The board material does not have heat conduction and heat dissipation functions.
Type 2, metal core printed wiring board Metal Core PCB (MCPCB): The structure is formed by stacking three different material layers of a copper foil (circuit) layer, an insulating (dielectric) layer, and an aluminum substrate (metal core) layer.
Type 3, ceramic substrate: The structure is formed by forming the circuit directly on the surface of the substrate with conductive silver paste.

LEDの放熱を強化するには、種類一のFR4プリント配線板ではすでに対応できない。種類二のメタルコアを備えたプリント配線板(MCPCB)は回路板底部に設置されたアルミニウムまたは銅等の熱伝導性に優れた金属を利用して放熱を加速しているが、この種類二の(MCPCB)は放熱効果を達することはできるものの、絶縁層の特性によってその熱伝導性が制限される。種類三のセラミック基板は寸法が小さく、操作温度が極めて高く、高電力を容易に処理できる素子上にのみ適用可能である。   In order to enhance the heat dissipation of the LED, the FR4 printed wiring board of the same type cannot already cope with it. A printed wiring board (MCPCB) with a type 2 metal core accelerates heat dissipation by using a metal with excellent thermal conductivity such as aluminum or copper installed at the bottom of the circuit board. MCPCB) can achieve a heat dissipation effect, but its thermal conductivity is limited by the characteristics of the insulating layer. Type 3 ceramic substrates are applicable only to devices that have small dimensions, extremely high operating temperatures, and that can easily handle high power.

このことから分かるように、上述の物品にはまだ多くの欠点があり、完全であるとは言えず、改良が待たれている。   As can be seen, the articles described above still have a number of drawbacks and are not complete and awaiting improvement.

本考案の考案者は、上述の従来品から派生する各欠点に鑑みて、長年の研究を経た後、ついに本考案の電気回路複合放熱体の開発成功に至ったものである。   The inventor of the present invention has succeeded in developing the electric circuit composite heat dissipating body of the present invention after many years of research in view of the respective disadvantages derived from the above-mentioned conventional products.

本考案の目的は、熱伝導絶縁層の設置により、電気回路層を放熱器の表面上に結合させ、さらに熱伝導絶縁層を介して電気回路層を放熱器表面に結合させることで、全面的に直接熱を拡散させて迅速な放熱を達成し、熱抵抗係数を大幅に低下させ、電気・電子デバイスの機能と使用寿命を確保する、電気回路複合放熱体を提供することにある。   The purpose of the present invention is to connect the electric circuit layer on the surface of the radiator by installing a heat conductive insulating layer, and further connect the electric circuit layer to the surface of the radiator through the heat conductive insulating layer. It is an object of the present invention to provide an electric circuit composite heat dissipating body that diffuses heat directly to achieve rapid heat dissipation, greatly reduces the thermal resistance coefficient, and ensures the function and service life of electric / electronic devices.

本考案の電気回路複合放熱体は、放熱器、熱伝導絶縁層、電気回路層、絶縁塗料層を含む。   The electric circuit composite radiator of the present invention includes a radiator, a heat conductive insulating layer, an electric circuit layer, and an insulating paint layer.

前記放熱器は一側に複数の放熱フィンまたは金属板、セラミック板、グラファイト板等の放熱材が設置され、放熱器の設置により、電気・電子デバイスの発生する熱エネルギーを効果的に排出させる。   The heat radiator is provided with a plurality of heat radiating fins or a heat radiating material such as a metal plate, a ceramic plate, and a graphite plate on one side, and the heat energy generated by the electric / electronic device is effectively discharged by installing the heat radiating device.

前記熱伝導絶縁層は均一に分布された熱伝導パウダーを含有し、かつ前記放熱器の他側の表面上に結合され、前記熱伝導パウダーは表面処理を経てパウダーの表面を一層のフッ素化合物や有機シリコン等の高分子材料で完全に被覆し、ベーキング後その表面の空気と水の分子をきれいに除去して乾燥させた熱伝導セラミックパウダーとする。さらにこのパウダーを調製済みの液体に加えて分散処理する。この液体は、アルコール、メチルエタン、ケトン、ジエチルエーテル等を含み、さらに水酸化アルミニウム(AlOH)と少量のニトリル、クロロプレン、ポリスルフィド等弾性ゲルの充填物を加える。その後、放熱器の表面上に均一に塗布し、加熱して放熱器の表面に焼結させる。   The heat conductive insulating layer contains heat conductive powder that is uniformly distributed, and is bonded to the other surface of the radiator, and the heat conductive powder is subjected to a surface treatment so that the surface of the powder is further coated with one fluorine compound or the like. Completely covered with a polymer material such as organic silicon, and after baking, the air and water molecules on the surface are completely removed and dried to obtain a thermally conductive ceramic powder. Further, this powder is added to the prepared liquid and dispersed. This liquid contains alcohol, methyl ethane, ketone, diethyl ether and the like, and is further added with a filler of elastic gel such as aluminum hydroxide (AlOH) and a small amount of nitrile, chloroprene, polysulfide. Thereafter, it is uniformly applied on the surface of the radiator and heated to sinter the surface of the radiator.

前記電気回路層は均一に分布された接着材と、低抵抗電導パウダーを含み、かつ前記熱伝導絶縁層の表面上に結合される。前記電気回路層上には接点が設けられ、該接点を介して電子デバイスが電気的に接続される。前記電導パウダーは粒径が10〜4000nm、金属抵抗値が10Ω〜10-6Ωとすることができる。 The electrical circuit layer includes a uniformly distributed adhesive and a low resistance conductive powder and is bonded onto the surface of the thermally conductive insulating layer. A contact is provided on the electric circuit layer, and an electronic device is electrically connected through the contact. The conductive powder may have a particle size of 10 to 4000 nm and a metal resistance value of 10 1 Ω to 10 −6 Ω.

前記電気回路層は前記熱伝導絶縁層の表面上に結合され、表面処理が行われる。この表面処理工程はニッケル化学めっきおよび金化学めっき等の工程とし、この工程の特性は電子産業におけるRoHs/WEEE等の規格を満たすことができ、かつその硬度、耐摩耗性、はんだ付けの容易さを強化し、かつ前記電気回路層の電気抵抗係数を低下させ、電気回路設計のパラメータ値を満たすことができるものとする。このニッケル化学めっき工程は選択的に均一に分布された接着材及び低抵抗電導パウダーを含む電気回路層上にのみ行うことができる。   The electric circuit layer is bonded onto the surface of the heat conductive insulating layer, and surface treatment is performed. This surface treatment process is a process such as nickel chemical plating and gold chemical plating, and the characteristics of this process can meet the standards of RoHs / WEEE etc. in the electronics industry, and its hardness, wear resistance, and ease of soldering , And the electric resistance coefficient of the electric circuit layer can be reduced to satisfy the electric circuit design parameter value. This nickel chemical plating process can be performed only on the electric circuit layer including the adhesive and the low-resistance conductive powder distributed selectively and uniformly.

前記絶縁塗料層は前記熱伝導絶縁層と電気回路層の表面上に結合され、該絶縁塗料層はソルダレジストとして作用する。   The insulating paint layer is bonded onto the surfaces of the heat conductive insulating layer and the electric circuit layer, and the insulating paint layer acts as a solder resist.

本考案は一般の回路上の熱源となる素子やICの熱を全面的に直接拡散させて迅速に放熱し、熱抵抗係数を大幅に低下させ、電気・電子デバイスの機能と使用寿命を確保することができる。   The present invention directly diffuses the heat of elements and ICs, which are heat sources on general circuits, to quickly dissipate them, greatly reducing the thermal resistance coefficient, and ensuring the functions and service life of electrical and electronic devices. be able to.

本考案の電気回路複合放熱体の放熱器及び熱伝導絶縁層の構造を示す側面図である。It is a side view which shows the structure of the heat radiator and heat conductive insulating layer of the electric circuit composite heat radiator of this invention. 本考案の電気回路複合放熱体の電気回路層の結合構造を示す側面図である。It is a side view which shows the coupling structure of the electric circuit layer of the electric circuit composite heat radiator of this invention. 本考案の電気回路複合放熱体の絶縁塗料層の結合構造を示す側面図である。It is a side view which shows the coupling | bonding structure of the insulating coating layer of the electric circuit composite heat radiator of this invention. 本考案の電気回路複合放熱体の電気・電子デバイスの結合構造を示す側面図である。It is a side view which shows the coupling | bonding structure of the electric / electronic device of the electric circuit composite heat radiator of this invention. 本考案の電気回路複合放熱体の放熱体の立体図である。It is a three-dimensional view of the heat radiator of the electric circuit composite heat radiator of the present invention. 本考案の電気回路複合放熱体の放熱体の反対面の立体図である。It is a three-dimensional view of the opposite surface of the radiator of the electric circuit composite radiator of the present invention. 本考案の電気回路複合放熱体の立体図である。It is a three-dimensional view of the electric circuit composite radiator of the present invention.

図1から図7に本考案の電気回路複合放熱体の平面構造、立体構造、実施作動状態を表す図をそれぞれ示す。本考案の電気回路複合放熱体は実用新案の目的を達することができ、該電気回路複合放熱体は、放熱器10、熱伝導絶縁層20、電気回路層30、絶縁塗料層40を含む。   FIGS. 1 to 7 show a plan structure, a three-dimensional structure, and an operating state of the electric circuit composite radiator according to the present invention. The electric circuit composite radiator of the present invention can achieve the purpose of the utility model, and the electric circuit composite radiator includes the radiator 10, the heat conductive insulating layer 20, the electric circuit layer 30, and the insulating paint layer 40.

前記放熱器10は複数の放熱フィン12または金属板、セラミック板、グラファイト板等の放熱材が設置され、放熱器10の設置により、電気・電子デバイス50の発生する熱エネルギーを効果的に排出し、他側の表面11に前記熱伝導絶縁層20が設置される。   The heat radiator 10 is provided with a plurality of heat radiating fins 12 or heat radiating materials such as a metal plate, a ceramic plate, and a graphite plate. By installing the heat radiating device 10, the heat energy generated by the electric / electronic device 50 is effectively discharged. The heat conductive insulating layer 20 is disposed on the other surface 11.

前記熱伝導絶縁層20は均一に分布された熱伝導パウダーを含有し、かつ前記放熱器10の他側の表面11上に結合される。前記熱伝導絶縁層20は熱伝導パウダーと、該熱伝導パウダー微粒子の結合に用いる分散液体を含み、かつ混練プロセスを利用して該熱伝導パウダーを前記分散液体中に均一に分布させる。該熱伝導パウダーは、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、シリコンカーバイド等の高電気抵抗パウダーを選択して用いることができ、かつ該熱伝導パウダーは前述の材料のいずれか、または2種類以上の材料を混合して成るものとし、該熱伝導絶縁層20に高い絶縁性の電気抵抗106〜1019Ω.cmを具備させる。該熱伝導パウダーの材料は、球形または不規則の結晶顆粒とし、平均粒度約0.01〜100μmで適宜に選択して用いることができる。 The heat conductive insulating layer 20 contains a uniformly distributed heat conductive powder and is bonded onto the surface 11 on the other side of the radiator 10. The thermally conductive insulating layer 20 includes a thermally conductive powder and a dispersion liquid used for bonding the thermally conductive powder particles, and the thermally conductive powder is uniformly distributed in the dispersed liquid using a kneading process. The heat conductive powder may be selected from high electrical resistance powders such as aluminum oxide, aluminum nitride, boron nitride, silicon carbide, etc., and the heat conductive powder may be one of the above-mentioned materials or two or more kinds of the heat conductive powder. The heat conductive insulating layer 20 is provided with a high insulating electric resistance of 10 6 to 10 19 Ω · cm. The material of the heat conductive powder is a spherical or irregular crystal granule, and can be appropriately selected and used with an average particle size of about 0.01 to 100 μm.

上述の熱伝導パウダーは技術処理を経るものとし、その方法はエタノール、イソプロパノール等のアルコール類でフッ素化合物または有機シリコン等を溶解し水解させ(例:浸漬)、前述の材料のいずれかまたは2種類以上の熱伝導パウダー材料の混合を加えて約60℃〜150℃の低温でベーキングし、表面の空気及び水の分子をきれいに取り除いて乾燥した熱伝導セラミックパウダーを得る。該熱伝導パウダーの表面処理後、良好な分散性が得られるほか、その表面が一層のフッ素化合物または有機シリコン等で完全に被覆され、パウダーの分散及び結晶焼結、分子間の架橋に有利である。   The above-mentioned heat conductive powder is subjected to technical treatment, and the method is to dissolve a fluorine compound or organic silicon with alcohols such as ethanol and isopropanol to hydrolyze (eg, immersion), and to use one or two of the above materials The above heat conductive powder material is mixed and baked at a low temperature of about 60 ° C. to 150 ° C., and the air and water molecules on the surface are removed cleanly to obtain a dry heat conductive ceramic powder. After surface treatment of the heat conductive powder, good dispersibility is obtained, and the surface is completely covered with a single fluorine compound or organic silicon, which is advantageous for powder dispersion and crystal sintering, and cross-linking between molecules. is there.

前記熱伝導パウダーの表面焼結液体材料の調製は、次の方法を選択的に使用することができる。   The following method can be selectively used for the preparation of the surface-sintered liquid material of the heat conductive powder.

この溶液の液体はアルコール類及びメチルエタン及びケトン(メチルエチルケトン)、ジエチルエーテル等の溶剤であり、有機シリコンフェノール(フェノール変性有機シリコン単体)、または有機シリコン(エポキシ-フェノール-ポリエステル等変性有機シリコン)及びニトリル或いはクロロプレン、ポリスルフィド等の弾性ゲルを順に溶解させ、さらにゾル(AlOH+H2O+エタノール)の少量の充填物を加えて完全に溶かし、該熱伝導パウダー表面の焼結液体材料の調製が完了する。   Liquids in this solution are alcohols, solvents such as methyl ethane, ketones (methyl ethyl ketone), diethyl ether, etc., organic silicon phenol (phenol-modified organic silicon alone), or organic silicon (modified organic silicon such as epoxy-phenol-polyester) and nitrile. Alternatively, elastic gels such as chloroprene and polysulfide are dissolved in order, and a small amount of sol (AlOH + H 2 O + ethanol) is added and completely dissolved to complete the preparation of the sintered liquid material on the surface of the heat conductive powder.

さらに、前記熱伝導絶縁層20は上述の表面焼結液体材料と熱伝導パウダーの重量比率の混合により、必要な高熱伝導性及び可撓性、耐熱性、せん断強度、耐劣化性、引き剥し強度、耐摩耗性、耐衝撃性等の材料物性を得ることができる。   Furthermore, the heat conductive insulating layer 20 has the necessary high thermal conductivity and flexibility, heat resistance, shear strength, deterioration resistance, and peel strength by mixing the above-mentioned surface sintered liquid material and heat conductive powder in a weight ratio. Further, material properties such as wear resistance and impact resistance can be obtained.

一般に、前記熱伝導絶縁層20は通常3%〜15%の重量比の間の表面焼結液体材料と97%〜85%間の熱伝導パウダーを組み合わせて使用し、約3w/mk〜150w/mkの熱伝導係数の熱伝導材料層を得る。   In general, the heat conductive insulating layer 20 is formed by combining a surface sintered liquid material having a weight ratio of 3% to 15% and a heat conductive powder of 97% to 85%, and having a weight ratio of about 3 w / mk to 150 w / A heat conducting material layer having a heat conduction coefficient of mk is obtained.

上述の熱伝導パウダーと表面焼結液体は混練プロセス後、塗布または噴き付け、スクリーン印刷等で繰り返し複数回重ねる方式で成型し、放熱器10の他側の表面11に0.01〜15mmの厚さの熱伝導絶縁層20を形成する。前記表面焼結液体材料の分子構造により緊密かつしっかりと結合される。   After the kneading process, the heat conductive powder and the surface sintered liquid are molded by repeatedly applying or spraying, screen printing, etc., and repeatedly stacked several times, and have a thickness of 0.01 to 15 mm on the surface 11 on the other side of the radiator 10. The heat conductive insulating layer 20 is formed. The surface sintered liquid material is bonded tightly and firmly by the molecular structure.

前記電気回路層30は均一に分布された接着材と低抵抗電導パウダーを含み、前記熱伝導絶縁層20の他側の表面21上に結合される。該電気回路層30上には接点31が設けられ、該接点31を介して電子デバイス50の相対するピン51が電気的に接続される。そのうち、前記接着材と低抵抗電導パウダーは異なる比率で混合されて成り、電気回路層30の金属抵抗値は101Ω〜10-6Ωとする。 The electric circuit layer 30 includes a uniformly distributed adhesive and low-resistance conductive powder, and is bonded on the surface 21 on the other side of the heat conductive insulating layer 20. A contact 31 is provided on the electric circuit layer 30, and the opposing pin 51 of the electronic device 50 is electrically connected through the contact 31. Among them, the adhesive and the low resistance conductive powder are mixed at different ratios, and the metal resistance value of the electric circuit layer 30 is set to 10 1 Ω to 10 −6 Ω.

上述の電気回路層30は前記熱伝導絶縁層20の表面上に結合され、かつ表面処理が施される。この表面処理工程はニッケル化学めっき工程であり、この工程の特性は電子産業におけるRoHs/WEEE等の規格を満たすことができ、かつその硬度、耐摩耗性を強化し、上述の前記電気回路層30の電気抵抗係数を低下させて電気回路設計のパラメータ値を満たすことができるものとする。このニッケル化学めっき工程は選択的に均一に分布された接着材及び低抵抗電導パウダーを含む電気回路層30上にのみ行うことができる。前記表面処理プロセスは次のとおりである。   The electric circuit layer 30 described above is bonded onto the surface of the heat conductive insulating layer 20 and subjected to a surface treatment. This surface treatment process is a nickel chemical plating process, and the characteristics of this process can satisfy the standards such as RoHs / WEEE in the electronics industry, and the hardness and wear resistance thereof are enhanced. It is assumed that the electric circuit design parameter value can be satisfied by reducing the electric resistance coefficient of the electric circuit. This nickel chemical plating process can be performed only on the electric circuit layer 30 including the adhesive and the low-resistance conductive powder distributed selectively and uniformly. The surface treatment process is as follows.

1.脱脂して放熱器表面に残った油脂を取り除く。
2.活性化剤で電気回路層表面を活性化する。
3.無電解ニッケル処理:無電解ニッケル浸漬めっき液は硫酸ニッケルを主剤とした錯化剤である。
4.温水で洗浄する。
1. Degrease and remove the oil remaining on the radiator surface.
2. Activate the surface of the electric circuit layer with an activator.
3. Electroless nickel treatment: The electroless nickel immersion plating solution is a complexing agent based on nickel sulfate.
4. Wash with warm water.

一般に、電気回路層30は5%〜70%の間の接着材と95%〜30%の間の低抵抗電導パウダーを組み合わせて使用することを最良とし、この低抵抗電導パウダーは銀パウダー、銀銅パウダー、銀アルミニウムパウダー、銀ニッケルパウダー、銅パウダー等、不規則な形状の顆粒を組み合わせて用いることができ、最良の平均粒度は約10〜4000nmである。   Generally, the electric circuit layer 30 is best used by combining 5% to 70% adhesive and 95% to 30% low resistance conductive powder, which is silver powder, silver Irregularly shaped granules such as copper powder, silver aluminum powder, silver nickel powder and copper powder can be used in combination, and the best average particle size is about 10 to 4000 nm.

前記接着材は、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリ酢酸ビニル樹脂(PVAC)、シリコン(Silicon)樹脂、合成ゴム等を選択して用いることができ、かつ該接着材は前述の材料のいずれかまたは2種類以上の材料を混合して成るものとすることができる。   As the adhesive, an epoxy resin, a phenol resin, an acrylic resin, a polyvinyl acetate resin (PVAC), a silicon resin, a synthetic rubber, or the like can be selected and used. Or a mixture of two or more kinds of materials.

実際のプロセスにおいて、前記低抵抗電導パウダーと接着材は混練プロセスを経た後、塗布または噴き付け、スクリーン印刷の方式で、前記熱伝導絶縁層20の他側の表面21に0.005〜0.1mmの厚さの電気回路層30を形成し、かつ前記接着材の分子構造により緊密かつしっかりと結合され、一般のプリント配線板の銅箔層の機能が達せられる。   In an actual process, the low-resistance conductive powder and the adhesive are subjected to a kneading process, and then applied or sprayed, and screen printing is performed on the surface 21 on the other side of the heat-conducting insulating layer 20 with 0.005 to 0.00. The electric circuit layer 30 having a thickness of 1 mm is formed, and is closely and firmly bonded by the molecular structure of the adhesive, thereby achieving the function of a copper foil layer of a general printed wiring board.

前記絶縁塗料層40は前記熱伝導絶縁層20の他側の表面及び電気回路層30の他側の表面21、32上に結合される。該絶縁塗料層40の設置により、ソルダレジストとして作用させることができる。一般の回路上の熱源となる素子またはICの熱を全面的に直接拡散させて迅速に放熱し、熱抵抗係数を大幅に低下させ、電気・電子デバイス50の機能と使用寿命を確保することができる。上述の電子デバイス50は発光ダイオードとすることができる。   The insulating paint layer 40 is bonded onto the other surface of the heat conductive insulating layer 20 and the other surfaces 21 and 32 of the electric circuit layer 30. By installing the insulating paint layer 40, it can act as a solder resist. It is possible to directly diffuse the heat of the element or IC as a heat source on a general circuit and dissipate it quickly, greatly reduce the thermal resistance coefficient, and ensure the function and service life of the electric / electronic device 50 it can. The electronic device 50 described above can be a light emitting diode.

本考案の電気回路複合放熱構造体の設計は、主に放熱器10を直接熱伝導絶縁層20及びその電気回路層30と絶縁塗料層40に結合させ、電気・電子回路の複合放熱効果を達成することができ、全面的に直接熱を拡散させて迅速に放熱し、熱抵抗係数を大幅に低下させ、電気・電子デバイス50の機能と使用寿命を確保することができる。   The design of the electric circuit composite heat dissipation structure of the present invention mainly achieves the combined heat dissipation effect of the electric / electronic circuit by coupling the radiator 10 directly to the heat conductive insulating layer 20 and its electric circuit layer 30 and the insulating paint layer 40. It is possible to diffuse heat directly over the entire surface to quickly dissipate heat, greatly reduce the thermal resistance coefficient, and ensure the function and service life of the electric / electronic device 50.

上述の詳細な説明は本考案の最良の実施例の具体的な説明であり、この実施例は本考案の特許範囲を制限するために用いられず、本考案の技術的要旨を逸脱しない同等効果の実施や変更はすべて本考案の特許範囲に含まれるものとする。   The above detailed description is a specific description of the best embodiment of the present invention, and this embodiment is not used to limit the patent scope of the present invention, and does not depart from the technical spirit of the present invention. All implementations and modifications are intended to be included in the patent scope of the present invention.

10 放熱器
11 他側の表面
12 放熱フィン
20 熱伝導絶縁層
21 他側の表面
30 電気回路層
31 接点
32 他側の表面
40 絶縁塗料層
50 電気・電子デバイス
51 ピン
DESCRIPTION OF SYMBOLS 10 Radiator 11 Surface 12 of other side Radiation fin 20 Thermal insulation layer 21 Surface 30 of other side Electric circuit layer 31 Contact surface 32 Surface 40 of other side Insulating paint layer 50 Electrical / electronic device 51 Pin

Claims (6)

電気回路複合放熱体であって、放熱器、熱伝導絶縁層、電気回路層、絶縁塗料層を含み、
前記放熱器が電気・電子デバイスの発生する熱エネルギーを効果的に排出し、
前記熱伝導絶縁層は前記放熱器の他側の表面上に結合され、均一に分布された熱伝導パウダーと、前記熱伝導パウダーを表面処理する前の表面処理技術に用いる、前記熱伝導パウダー微粒子を結合する焼結分散の液体材料を含み、
前記電気回路層は前記熱伝導絶縁層の他側の表面上に結合され、均一に分布された接着材と低抵抗電導パウダーを含み、かつ前記電気回路層上に接点が設けられ、前記接点を介して前記電子デバイスの相対するピンと電気的に接続され、前記電気回路層は前記熱伝導絶縁層の表面上に結合され、かつニッケル化学めっきで表面処理され、
前記絶縁塗料層は前記熱伝導絶縁層の他側の表面及び前記電気回路層の他側の表面上結合にされ、熱抵抗係数を低下させることを特徴とする、電気回路複合放熱体。
An electric circuit composite radiator including a radiator, a heat conduction insulating layer, an electric circuit layer, an insulating paint layer,
The radiator effectively discharges the thermal energy generated by the electric / electronic device,
The thermally conductive insulating layer is bonded on the other surface of the radiator, and the thermally conductive powder finely distributed, and the thermally conductive powder fine particles used in the surface treatment technique before the thermal conductive powder is surface treated. Including a sintered dispersion of liquid material,
The electrical circuit layer is bonded onto the other surface of the thermally conductive insulating layer, includes a uniformly distributed adhesive and low-resistance conductive powder, and a contact is provided on the electrical circuit layer. Electrically connected to opposite pins of the electronic device, the electrical circuit layer is bonded onto the surface of the thermally conductive insulating layer, and surface-treated with nickel chemical plating,
The electric circuit composite radiator is characterized in that the insulating paint layer is bonded on the other surface of the heat conductive insulating layer and the other surface of the electric circuit layer to reduce a thermal resistance coefficient.
前記熱伝導パウダー材料が球形または不規則の結晶顆粒であることを特徴とする、請求項1に記載の電気回路複合放熱体。 The electric circuit composite radiator according to claim 1, wherein the heat conductive powder material is a spherical or irregular crystal granule. 前記熱伝導パウダー材料の粒度が0.01〜100μmの間であることを特徴とする、請求項1に記載の電気回路複合放熱体。 2. The electric circuit composite radiator according to claim 1, wherein the heat conductive powder material has a particle size of 0.01 to 100 μm. 前記熱伝導絶縁層が前記放熱器の表面に塗布され、その厚さを0.01〜15mmとできることを特徴とする、請求項1に記載の電気回路複合放熱体。 2. The electric circuit composite radiator according to claim 1, wherein the heat conductive insulating layer is applied to a surface of the radiator and has a thickness of 0.01 to 15 mm. 前記低抵抗電導パウダーの最良の平均粒度が約0.01〜400μmであることを特徴とする、請求項1に記載の電気回路複合放熱体。 The electric circuit composite radiator according to claim 1, wherein the best average particle size of the low-resistance conductive powder is about 0.01 to 400 µm. 前記電気回路層が前記熱伝導絶縁層に結合され、その厚さを0.005〜0.2mmとできることを特徴とする、請求項1に記載の電気回路複合放熱体。
The electric circuit composite radiator according to claim 1, wherein the electric circuit layer is bonded to the heat conductive insulating layer and has a thickness of 0.005 to 0.2 mm.
JP2009002928U 2009-05-07 2009-05-07 Electrical circuit composite radiator Expired - Lifetime JP3152088U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002928U JP3152088U (en) 2009-05-07 2009-05-07 Electrical circuit composite radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002928U JP3152088U (en) 2009-05-07 2009-05-07 Electrical circuit composite radiator

Publications (1)

Publication Number Publication Date
JP3152088U true JP3152088U (en) 2009-07-16

Family

ID=54856429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002928U Expired - Lifetime JP3152088U (en) 2009-05-07 2009-05-07 Electrical circuit composite radiator

Country Status (1)

Country Link
JP (1) JP3152088U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109314A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Corp Power module substrate, power module substrate with cooler, and manufacturing methods of the power module and the power module substrate
JP2012109315A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Corp Power module substrate, power module substrate with cooler, and manufacturing methods of the power module and the power module substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109314A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Corp Power module substrate, power module substrate with cooler, and manufacturing methods of the power module and the power module substrate
JP2012109315A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Corp Power module substrate, power module substrate with cooler, and manufacturing methods of the power module and the power module substrate

Similar Documents

Publication Publication Date Title
CN101737750A (en) Composite heat sink of electrical circuit
CN102184915A (en) High-power base plate effectively integrating circuit board and radiator and manufacturing method thereof
CN101321428A (en) High cooling circuit board and preparation thereof
CN102980159A (en) Heat dissipation device and manufacture method thereof and light-emitting diode (LED) light source provided with the same
TW201103381A (en) High heat dissipation circuit board and fabrication method thereof
US20150040388A1 (en) Application of Dielectric Layer and Circuit Traces on Heat Sink
JP3152088U (en) Electrical circuit composite radiator
JP3211676U (en) Radiator with circuit by screen printing or spray painting
TW201012372A (en) Thermal conductive insulation material capable of manufacturing composite heat dissipater with electrical circuit
WO2014127594A1 (en) Light-emitting device having light-emitting diode
CN102724805A (en) Composite ceramic substrate with characteristics of high heat radiation and high heat conduction
CN203521463U (en) High-thermal conductivity LED-COB packaging substrate
CN206430068U (en) Radiator with wire mark or spraying circuit
KR101121707B1 (en) Printed circuit board for high efficiency radiant heat and manufacturing method thereof
JP2007084704A (en) Resin composition and circuit board and package using the same
CN201267086Y (en) Composite heat radiation body of electric line
CN201490177U (en) Metal-based copper clad laminate for mounting semiconductor power devices
TWM502251U (en) LED heat dissipation substrate
CN202101047U (en) High-power LED (light-emitting diode) light source module with excellent heat dissipation performance
TWI358515B (en) Heat dissipation structure for light-emitting comp
CN110951199A (en) Insulating heat conduction material for semiconductor and preparation method thereof
Park et al. Fabrication of Al-Based Metal Printed Circuit Board Having Excellent Heat Dissipation Characteristics Using Polyimide/AlN Powder and Evaluation of Thermal Resistance of Light-Emitting Diode Module
CN208352293U (en) Wiring board and lighting device
CN201888022U (en) LED circuit board adopting aluminum substrate and filled with ceramic powder
CN217306486U (en) Double-sided heat dissipation aluminum substrate

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term