JP3146903B2 - 車載用レーダ装置 - Google Patents

車載用レーダ装置

Info

Publication number
JP3146903B2
JP3146903B2 JP01537495A JP1537495A JP3146903B2 JP 3146903 B2 JP3146903 B2 JP 3146903B2 JP 01537495 A JP01537495 A JP 01537495A JP 1537495 A JP1537495 A JP 1537495A JP 3146903 B2 JP3146903 B2 JP 3146903B2
Authority
JP
Japan
Prior art keywords
detection
target object
vehicle
moving object
existence probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01537495A
Other languages
English (en)
Other versions
JPH08211144A (ja
Inventor
幸則 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP01537495A priority Critical patent/JP3146903B2/ja
Publication of JPH08211144A publication Critical patent/JPH08211144A/ja
Application granted granted Critical
Publication of JP3146903B2 publication Critical patent/JP3146903B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は車載用レーダ装置に関
し、特に先行車両や路側物等の目標物体を検出する車載
用レーダ装置に関する。
【0002】
【従来の技術】従来より、自車両の前方にレーダビーム
を照射して、先行車両等の目標物体を検出する車載用レ
ーダ装置が開発されている。例えば、特開平2−259
586号公報には、FM−CW方式のレーダで得られた
ビート信号を複数のバンドパスフィルタで探知距離の異
なる複数の領域に区分し、上記複数のバンドパスフィル
タの出力を閾値の異なる複数のコンパレータで夫々判別
して、複数の領域の幅を同様とすること、つまり探知領
域を近距離では幅広く、遠距離では狭くしてビーム形状
を最適化することが開示されている。
【0003】
【発明が解決しようとする課題】レーダ装置のパワーは
温度、湿度、天候といった環境条件により変動する。例
えば温度が低いと送信パワーは増大し、雨ではレーダビ
ームが減衰し、また送信アンテナに水滴が付着すると出
力パワーが低下する等である。
【0004】レーダ装置が通常の送信パワーであるとき
の受信レベルが図27に破線で示すものであり、これに
対して閾値LTHで検波を行うものとする。この場合、送
信パワーが小となったときの受信レベルは一点鎖線に示
す如くなり、検知領域(幅)θS は狭くなる。また送信
パワーが大となったときの受信レベルは実線に示す如く
なり、検知領域θL は広くなる。
【0005】つまり、送信パワーが大となると検知領域
が広くなり、路側物や隣接車線の車両を誤検出すること
が増え、送信パワーが小となると検知領域が狭くなり、
自車の走行車線上の先行車を検出しにくくなるという問
題があった。本発明は上記の点に鑑みなされたもので、
路側物及び移動物の検出状況に応じてレーダ装置の検知
領域を可変制御することにより、環境条件に拘らず常時
最適の検知領域を設定して誤検出の発生を低減できる車
載用レーダ装置を提供することを目的とする。
【0006】
【課題を解決するための手段】請求項1に記載の発明
は、図1に示す如く、レーダ装置本体M1で周波数変調
された搬送波を送受信し、周波数上昇部分及び周波数下
降部分夫々のビート信号のパワースペクトラムで対をな
すピークの周波数から目標物体との相対距離及び相対速
度を算出する車載用レーダ装置において、上記目標物体
として検出された路側物及び移動物の検出状況を認識す
る検出状況認識手段M2と、上記認識された路側物及び
移動物の検出状況から移動物の見失いを検出し、検出さ
れた見失い状況に応じて検知領域を可変する検知領域制
御手段M3とを有する。
【0007】請求項2に記載の発明では、前記検出状況
認識手段は、移動物の検出状況を距離に応じて認識す
る。請求項3に記載の発明では、前記検知領域制御手段
は、路側物及び移動物夫々の検出状況を入力とするファ
ジィ演算を行って前記レーダ装置の検知領域の可変制御
を行うことを特徴とする請求項1又は2記載の車載用レ
ーダ装置。
【0008】
【作用】請求項1に記載の発明においては、目標物体と
して検出された路側物及び移動物の検出状況を認識し、
認識された路側物及び移動物の検出状況から移動物の見
失いを検出し、検出された見失い状況に応じて検知領域
を可変するため、路側物及び移動物の検出状況から検出
領域の変動を知ることができ、これに応じて検知領域を
可変制御して最適な検知領域を設定することができ、誤
検出の発生を低減できる。
【0009】請求項2に記載の発明においては、移動物
の検出状況を距離に応じて認識するため、移動物の遠距
離での検出回数が多い場合に、検知領域が広いことを知
ることができ、移動物の近距離での検出もれが多い場合
に検知領域が狭いことを知ることができる。
【0010】請求項3に記載の発明においては、路側物
及び移動物の検出状況を入力とするファジィ演算で検知
領域の可変制御を行うため、各検出状況に応じて最適の
検出領域の設定を行うことができる。
【0011】
【実施例】図2は本発明装置のブロック図を示す。同図
中、送信側回路は、搬送波発生器10,周波数変調器1
2,変調電圧発生器14,方向性結合器16,及び送信
アンテナ18から構成される。搬送波発生器10からは
搬送波が出力され、周波数変調器12に供給される。一
方、変調電圧発生器14からは振幅が三角形状に変化す
る三角波が出力され、変調波として周波数変調器12に
供給される。これによって、搬送波発生器10からの搬
送波は周波数変調され、時間経過に伴って周波数が三角
形状に変化する送信信号が出力される。この送信信号は
方向性結合器16を介して送信アンテナ18に供給さ
れ、被検出物体に向けて放射される。一方、方向性結合
器16を介して、送信信号の一部は後述する受信側回路
のミキサ22に供給される。
【0012】受信側回路は、受信アンテナ20,ミキサ
22,増幅器24,フィルタ26,高速フーリエ変換処
理器(FFT信号処理器)28,ターゲット認識器3
0,危険判定器32,及び警報器34から構成される。
被検出物体からの反射波は受信アンテナ20で受信さ
れ、ミキサ22に供給される。ミキサ22では受信信号
と方向性結合器16からの送信信号の一部が差分演算に
より結合され、ビート信号が生成される。ミキサ22か
らのビート信号は増幅器24で増幅され、アンチエリア
シングフィルタ26を介してFFT信号処理器28及び
ターゲット認識器30に供給される。FFT信号処理器
28は周波数上昇部分及び周波数下降部分夫々のパワー
スペクトラムを得て、ターゲット認識器30に供給す
る。
【0013】ターゲット認識器30は周波数上昇部分,
下降部分夫々のパワースペクトラムのピークを検出して
ペアリングを行ない、各目標物体に対応するピーク対を
形成する。このピーク対の周波数上昇部分のピーク周波
数fup と周波数下降部分のピーク周波数fdown とから得
られる相対速度周波数fd, 距離周波数fr fd=(fdown-fup)/2 …(1) fr=(fdown+fup)/2 …(2) 及び fd=2・V/C・f0 …(3) fr=4・fm・Δf/C・R …(4) 但し、V:相対速度、C:光速、f0:中心周波数、f
m:変調周波数、Δf:周波数変移幅、R:相対距離 により相対距離R及び相対速度Vを同時に求める。この
後、危険判定器32で予め定められた、又は自車の走行
状態に応じて算出される安全距離と上記相対距離の大小
比較を行ない、安全距離以下である場合には危険と判定
し、警報器34により運転者に報知する。
【0014】また、ステア制御回路40は車速センサ4
2から自車速度VS を供給され、操舵角センサ44から
操舵角θH を供給され、ターゲット認識器30から相対
距離Rを供給されており、次式によりカーブの曲率半径
ρ及び送信アンテナ18及び受信アンテナ20の回動角
であるステア角θS を算出する。
【0015】 θS = sin-1(R/2ρ) …(a) ρ=(1+K1 ×VS 2 )×K2 /θH …(b) 但し、K1 ,K2 は定数であり、ステア角θS は例えば
車両の進行方向を0として左側を正、右側を負としてい
る。ステア制御回路40は(a)式で算出したステア角
θS となるようにステア機構46を駆動して送信アンテ
ナ18及び受信アンテナ20の回動を制御する。また、
車速センサ42で検出した自車速度はターゲット認識器
30にも供給されている。
【0016】図3乃至図6はターゲット認識器30が実
行する認識処理の第1実施例のフローチャートを示す。
この処理は数十msec毎に実行される。同図中、ステップ
S10ではFFT信号処理器28より供給されるパワー
スペクトラムを取り込む。次にステップS12で、ピー
ク対毎つまり目標物体毎に(1)式〜(4)式を用いて
目標物体の相対距離R及び相対速度V(Vは接近方向を
正とする)、及びピーク対の平均レベルである反射強度
LVLを計算する。この反射強度LVLは周波数上昇部
分,周波数下降部分夫々のピークのレベルを別々に用い
ても良いが、計算が複雑になるため平均レベルを用い
る。なお、目標物体の数nは車両だけであれば5程度で
あるが、路側物等からの反射があるので20程度とな
る。
【0017】ステップS14では保存データが有るか、
つまり前回既に目標物体が存在していたか否かを判別
し、保存データがなければステップS16に進み、ステ
ップS12において検出された新たな目標物体のR,
V,LVLのデータを新保存データとして全て保存し、
図5のステップS60に進む。このときの新たな目標物
体の存在確率は基本的に例えば5%等の一定値とする。
【0018】また、保存データが存在する場合には、ス
テップS18で新データつまり新たな目標物体i(iは
1〜nのいずれか)を選択し、その相対距離Ri,相対
速度Viを中心とする範囲Ri±α,Vi±βを計算す
る。上記の範囲±α,±β夫々は車両が急加減速を行な
ったときの限界値とレーダ装置の誤差を含んだ値であ
る。そしてステップS20で全ての保存データの相対距
離R’m,相対速度V’mとi番目の新データの範囲R
i±α,Vi±βとの比較を、全ての保存データについ
て行なう。なお、保存データに範囲を設けて新データと
比較しても良く、また、保存データのR’m,V’mと
V’mの増分ΔV’m及びR’mの増分ΔR’mとから
次のR’m,V’mを予測して、この予測値を上記保存
データの代りに用いても良い。
【0019】次にステップS22では範囲Ri±α又は
Vi±β内に2つ以上の保存データがあるか否かを判別
し、あればステップS24に進み、なければ図4のステ
ップS40に進む。ステップS24では範囲内に存在し
た2つ以上の保存データの反射強度LVL’m,LV
L’p,…と範囲の中心である新データの反射強度LV
Liとの差を求め、この差が最小の保存データを選択す
る。更にステップS26で選択された差が最小となる保
存データが2つ以上あるか否かを判別し、あればステッ
プS28に進み、なければステップS40に進む。ここ
で、反射強度の差を比較するのは、検出周期が短かい場
合は同一の目標物体の反射強度は急激に変化しないため
である。
【0020】ステップS28では差が最小の2つ以上の
保存データについて、新データとの相対距離の差の2乗
と、相対速度の差の2乗との和、例えば(R’m−R
i)2+(V’m−Vi)2 を求め、2乗の和が最小と
なる保存データを選択する。この後、ステップS30で
選択した保存データを他の新データが選択していないか
どうかを確認して図4のステップS40に進む。ステッ
プS40ではステップS30の確認によって選択した保
存データを他の新データが選択しているかどうかを判別
し、他が選択していればステップS42に進み、他が選
択していなければステップS43でi番目の新データに
対する保存データの選択を終了してステップS48に進
む。
【0021】ステップS42では選択された保存データ
の反射強度LVL’mと、これを選択した複数の新デー
タの反射強度LVLi,LVLj,…との差を求め、こ
の差が最小の新データを選択する。更にステップS44
で選択された差が最小となる新データが2つ以上あるか
否かを判別し、あればステップS46に進み、なければ
ステップS48に進む。
【0022】ステップS46では差が最小の2つ以上の
新データについて、保存データとの相対距離の差の2乗
と、相対速度の差の2乗の和、例えば(R’m−Ri)
2 +(V’m−Vi)2 を求め、2乗の和が最小となる
新データを選択する。この後、ステップS48でi番目
の新データが今回得られた新データの最後のものかどう
かを判別し、最後でなければステップS50で範囲Ri
±α,Vi±β内で選択された保存データを選択済みと
してステップS18に戻り処理を繰り返す。また、ステ
ップS48でi番目が新データの最後と判別されるとス
テップS52に進み、保存データを選択できなかった新
データを新保存データとして保存して図5のステップS
60に進む。
【0023】図5のステップS60,S62では全ての
保存データについて新保存データか否か、新データに選
択された保存データか否かを判別する。新保存データ、
つまり新たに検出された目標物体iについてはステップ
S64に進んで図7に示すマップを新データの反射強度
LVLiで参照して補正係数γiを演算する。ミリ波レ
ーダでは反射強度LVLはセンサ能力と目標物体の大き
さ(反射しやすさ)によって決まるためLVLが大きい
と誤検出しにくいのでγを大きくして存在確率の増加率
を速くする。次にステップS66で(1)式により確信
度としての存在確率EXiを演算し、Ri,Vi,LV
Liと共に保存してステップS80に進む。
【0024】 Ai=B×γi EXi=Ai …(1) 但し、Bは例えば5%等の所定増減値 また、新データに選択された保存データつまり以前から
検出されている目標物体iについては、基本的に長時間
検出され続けたとき存在確率を高くする。このため、ス
テップS68で図7のマップを新データの反射強度LV
Liで参照して補正係数γiを求め、ステップS70で
(2)式により存在確率EXiを演算し、ステップS8
0に進む。
【0025】 Ai=B×γi EXi=EXir+Ai …(2) 但し、EXirは前回保存した存在確率である。また、
新データに選択されてない保存データ、つまり目標物体
iを見失った場合はステップS72に進み、目標物体i
の保存データ(前回検出された値)の反射強度LVLi
で図8に示すマップを参照して補正係数ηiを演算す
る。このマップで、前回のLVLiが大であると、見失
うことが生じる可能性が低く、目標物体iが車線変更等
で自車前方に存在しなくなった可能性が高いためであ
る。次にステップS74で(3)式により存在確率EX
iを演算する。
【0026】 Ci=B×ηi EXi=EXir−Ci …(3) この後、ステップS76では(3)式で得たEXiが0
以下か否かを判別し、EXi≦0のときはステップS7
8で目標物体iの保存データを消去し、EXi>0のと
きはステップS80に進む。
【0027】図6のステップS80では自車の操舵角又
はヨーレート等から旋回半径を計算し、この旋回半径で
図9のマップを参照してしきい値Zを計算する。これは
直線路ではレーダビーム幅を1車線幅程度にしぼってお
り、存在確率が低くても誤検出の可能性が低く、カーブ
ではビームを偏向させたとしても離接車両を検出する確
率が高くなるため旋回半径が小さい程しきい値を高くし
ている。
【0028】この後ステップS84で全ての目標物体i
について、存在確率EXiをしきい値Zと比較し、EX
i≧Zの目標物体iについてはステップS86で制御・
警報対象のデータとして次処理に進み、またEXi<Z
の目標物体iについてはステップS88で制御・警報対
象のデータから除いて次処理に進む。
【0029】これにより、ノイズ、路側物、隣接車線の
車両等の短時間しか自車の前方に存在しない目標物体を
除去することができ、ノイズ等により目標物体を見失う
ことが防止できる。これは上記実施例では存在確率計算
に反射強度を用いているために適確な判断が可能となっ
ている。
【0030】ところで、反射強度LVLを用いてセンサ
能力に従って目標物体の存在確率を計算することができ
るが、反射強度LVLの変化する大きな要因として目標
物体の大きさ及び材質で変わる反射断面積の大きさがあ
る。例えば大型のパネルトラックの如きものは相対距離
が遠くても存在確率が早く高くなり、2輪車の如きもの
は相対距離が近づかないと存在確率はなかなか高くなら
ず、制御・警報対象とはならない。このため、車間距離
(相対距離)及び自車速度によって存在確率を変化させ
ることにより、目標物体の物理的な危険性を存在確率に
反映させ、2輪車等の見失いを減少させるのが次の第2
実施例及び第3実施例である。
【0031】図10は認識処理の第2実施例の要部のフ
ローチャートであり、第1実施例の図5の代りに実行さ
れる。図10のステップS100,S102では全ての
保存データについて新保存データか否か、新データに選
択された保存データか否かを判別する。新保存データ、
つまり新たに検出された目標物体iについてはステップ
S104に進んで図7に示すマップを新データの反射強
度LVLiで参照して補正係数γiを演算し、図11に
示すマップを新データの相対距離Riで参照して補正係
数ν1iを演算し、図12に示すマップを自車の車速で
参照して補正係数ξ1iを演算する。
【0032】図11において相対距離Riが小なる程、
補正定数ν1は増加させ、補正係数ν2は逆に減少させ
ている。また、図12において車速が大な程、補正係数
ξ1は増加させ、補正係数ξ2は逆に減少させている。
次にステップ106で(4)式により存在確率EXiを
演算しRi,Vi,LVLiと共に保存してステップS
80に進む。
【0033】 Di=B×(γi+ν1i+ξ1i) EXi=Di …(4) また、新データに選択された保存データつまり以前から
検出されている目標物体iについては、基本的に長時間
検出され続けたとき存在確率を高くするためステップS
108で図7,図11,図12夫々のマップを新データ
の反射強度LVLi,相対距離Ri及び車速SPD夫々
で参照して補正係数γi,ν1i,ξ1iを求め、ステ
ップS110で(5)式により存在確率EXiを演算
し、ステップS80に進む。
【0034】 Di=B×(γi+ν1i+ξ1i) EXi=EXir+Di …(5) また、新データに選択されてない保存データ、つまり目
標物体iを見失った場合はステップS112に進み、目
標物体iの保存データ(前回検出された値)の反射強度
LVLi,相対距離Ri及び車速SPD夫々で図8,図
11,図12夫々に示すマップを参照して補正係数η
i,ν2i,ξ2i夫々を演算する。図11,図12で
ν2をRが小なる程減少させξ2をSPDが大なる程減
少させているのは物理的な危険性を表わすためである。
次にステップS114で(6)式により存在確率EXi
を演算する。
【0035】 Ei=B×(ηi+ν2i+ξ2i) EXi=EXir−Ei …(6) この後、ステップS76では(3)式で得たEXiが0
以下か否かを判別し、EXi≦0のときはステップS1
18で目標物体iの保存データを消去し、EXi>0の
ときはステップS80に進む。
【0036】目標物体の種類によって見失う確率に差が
あることは前述の通りである。この差を減らすため学習
により存在確率を計算し、2輪車等の反射強度の小さな
車両も確実に認識するようにしたのが第3実施例であ
る。同一物体からのレーダの反射強度は図13に示す如
く相対距離Rによって変化する。このため図14に実線
で示す如き乗用車相当の基準反射強度マップを予め実験
又はシミュレーョンにより作成しておく。これは一般道
路では乗用車が比較的多いため基準としている。この基
準レベルに対してトラック等の大型車両は一点鎖線に示
す如く平均的に高いレベルとなり、2輪車等は破線に示
す如く平均的に低いレベルとなる。このため、存在確率
が0以上の時間が一定時間以上となるまで基準レベルと
の差を平均化し、その平均値を現在のレベルに加算した
値を存在確率の増加率の補正量とする。見失った場合は
元のレベルに対して減少率の補正を行なう。
【0037】図15は認識処理の第3実施例の要部のフ
ローチャートであり、第1実施例の図5の代りに実行さ
れる。図15のステップS200,S202では全ての
保存データについて新保存データか否か、新データに選
択された保存データか否かを判別する。新保存データつ
まり新たに検出された目標物体iについてはステップS
204で図14のマップを新データの相対距離Riで参
照して基準レベルの反射強度LVLBを演算し、ステッ
プS206で基準レベルの反射強度LVLBから新デー
タの反射強度LVLiを減算して差TLVLiを求め
る。次にステップS208で図7に示すマップを新デー
タの反射強度LVLiで参照して補正係数γiを演算
し、図11に示すマップを新データの相対距離Riで参
照して補正係数ν1iを演算し、図12に示すマップを
車速SPDで参照して補正係数ξ1iを演算する。ステ
ップS210では(4)式より存在確率EXi=B×
(γi+ν1i+ξ1i)を演算しステップS80に進
む。
【0038】また、新データに選択された保存データ、
つまり以前から検出されている目標物体iについては、
図16のステップS212でLVL学習を終了したか否
かを判別する。終了していなければ、ステップS214
で図14のマップを新データの相対距離Riで参照して
基準レベルの反射強度LVLBを演算し、ステップS2
16で基準レベルの反射強度LVLBと新データの反射
強度LVLiとの差をTLVLiに加算する。次にステ
ップS218で上記加算を所定回数q回行なったかを判
別し、q回未満ではステップS220に進み図7のマッ
プを新データの反射強度LVLiで参照して補正係数γ
iを演算し、図11のマップを新データの相対距離Ri
で参照して補正係数ν1iを演算し、図12に示すマッ
プを車速SPDで参照して補正係数ξ1iを演算する。
ステップS222では(4)式より存在確率EXiを演
算しステップS80に進む。
【0039】ステップS218でq回加算したと判別さ
れるとステップS224でTLVLiをqで割算して平
均値DLVLiを求め、次のステップS226で新デー
タの反射強度LVLiにDLVLiを加算して補正反射
強度NLVLiを求める。これによりLVL学習が終了
する。次にステップS228で図7のマップをNLVL
iで参照して補正係数γiを演算し、図12のマップを
車速SPDで参照して補正係数ξ1iを演算する。ステ
ップS230では(7)式より存在確率EXiを演算
し、ステップS80に進む。
【0040】 Di=B×(γi+ξ1i) EXi=EXir+Di …(7) また、ステップS212でLVL学習を終らしたと判別
された場合はステップS232で図14のマップを新デ
ータの相対距離Riで参照して基準レベルの反射強度L
VLBを演算し、ステップS234で(8)式により平
均値DLVLiを更新する。
【0041】 DLVLi=(DLVLi×(q−1) +(LVLB−LVLi))/q …(8) ステップS236では新データの反射強度LVLiにD
LVLiを加算して補正反射強度NLVLiを求める。
次にステップS238で図7のマップをNLVLiで参
照して補正定数γiを演算し、図12のマップを車速S
PDで参照して補正係数ξ1iを演算する。ステップS
240では(7)式により存在確率EXiを演算し、ス
テップS80に進む。
【0042】図15のステップS202で新データに選
択されてない保存データつまり目標物体iを見失った場
合はステップS242でLVL学習を終了したか否かを
判別する。終了してなければステップS244で図8の
マップを保存データ(前回検出された値)の反射強度L
VLiで参照して補正係数ηiを演算し、図11のマッ
プを新データの相対距離Riで参照して補正係数ν2i
を演算し、図12に示すマップを車速SPDで参照して
補正係数ξ2iを演算する。ステップS246では
(6)式より存在確率EXiを演算する。この後、ステ
ップS250で存在確率EXiが0以下か否かを判別
し、EXi≦0のときはステップS252で目標物体i
の保存データを消去し、EXi>0のときはステップS
80に進む。ステップS242でLVL学習を終了して
なければステップS254で図8のマップを保存データ
(前回検出された値)の反射強度LVLiで参照して補
正係数ηiを演算し、図12に示すマップを車速SPD
で参照して補正係数ξ2iを演算する。ステップS25
6では(9)式より存在確率EXiを演算する。
【0043】 Ei=B×(ηi+ξ2i) EXi=EXir−Ei …(9) この後、ステップS260で存在確率EXiが0以下か
否かを判別し、EXi≦0のときはステップS262で
目標物体iの保存データを消去し、EXi>0のときは
ステップS80に進む。
【0044】ここで、全ての車両の反射強度LVLを基
準レベルに近づけることは、単に相対距離Rによる補正
であるだけではなく、実際にはマルチパス等で反射強度
が相対距離Rに対し一定ではないため、反射強度LVL
に対し、平均値DLVLを加算することに意味があり、
これによってセンサ能力を反映させている。
【0045】これによって図17に示す如く時点t0
新たに検出された目標物体の存在確率は連続して検出さ
れる時間が長くなるに従って高くなり、時点t2 〜t3
間の如く見失ったときに存在確率が低下する。しかし時
点t3 〜t4 間で再び検出されると存在確率は徐々に高
くなり、その後見失った時間が長くなると最後には存在
確率が0となる。また、時点t1 〜t5 間でこの存在確
率はしきい値Zを越え、この目標物体は、制御・警報対
象のデータとされている。
【0046】なお、上記の実施例では目標物体の検出強
度に応じて目標物体の存在確率を補正しているが、この
他にレーダ装置に故障が発生したとき、故障が軽微であ
れば補正量を小さくし故障が重大であれば補正量を大き
くして目標物体の存在確率を補正するように検出精度に
応じた補正を行なっても良い。
【0047】図18は認識処理の第4実施例の要部のフ
ローチャートであり、第1実施例の図6の代りに実行さ
れる。図18のステップS300では相対速度Vi を自
車速度と比較し、相対速度V i が自車速度VS から所定
範囲内にあるか否かを判別する。相対速度Vi が自車速
度から所定範囲内で自車速度と同程度の場合は、このi
番目の目標物体が停止物体であるとみなして、ステップ
S302に進む。ステップS302ではしきい値Zに高
設定値EXTHS(例えば80%)を設定する。
【0048】次にステップS304では存在確率EXi
をしきい値Zと比較し、EXi ≧Zの場合はステップS
320で目標物体iを制御・警報対象のデータとして次
処理に進む。また、EXi <Zの場合はステップS30
6で存在確率EXi が減少中かどうかを判別する。存在
確率EXi が所定回数連続して減少していればステップ
S308で目標物体iの存在確率EXi を強制的に0と
してステップS310に進み、また存在確率EXi が所
定回数連続して減少してなければそのままステップS3
10に進み、ステップS310では目標物体iを制御・
警報対象のデータから除いて次処理に進む。
【0049】一方、ステップS300で相対速度Vi
自車速度と異なっている場合は、このi番目の目標物体
が移動物体とみなしてステップS312に進み、しきい
値Zに中設定値EXTHM(例えば50%)を設定す
る。次にステップS314で目標物体iの存在確率EX
i が所定回数連続して増加中かどうかを判別する。存在
確率EXi が所定回数連続して増加していればステップ
S316で目標物体iの存在確率EXi に図5のステッ
プS70で算出したAi 又は図10のステップS110
で算出したDi を加算することにより存在確率EXi
増加分Ai 又はD i を2倍としてステップS318に進
み、存在確率EXi が所定回数連続して増加してなけれ
ばそのままステップS318に進む。
【0050】ステップS318では存在確率EXi をし
きい値Zと比較し、EXi ≧Zの場合はステップS32
0で目標物体iを制御・警報対象のデータとして次処理
に進み、EXi <Zの場合はステップS310で目標物
体iを制御・警報対象のデータから除いて次処理に進
む。
【0051】本実施例ではステップS300で目標物体
iが移動物体か停止物体かを判別し、停止物体の場合は
検知対象物となる可能性が低いため、慎重に判定できる
ようにしきい値Zを高設定値EXTHSとし、移動物体
の場合は検知対象物となる可能性が高いため、しきい値
Zを中設定値EXTHMとして存在確率EXi が低い時
点から制御・警報対象とする。
【0052】ここで、停止物体には路側物等の不要反射
物と、自車線上の停止車両等の障害物とがある。路側物
の場合は時系列的な相対距離データは図19(A)に示
す如く短時間で不連続となることが多い。また停止車両
の場合は時系列的な相対距離データは図19(B)に示
す如く長時間連続して接近することが多い。
【0053】このため、路側物の場合は、存在確率EX
i がしきい値Zを越える以前に減少し始め、停止車両の
場合は、これに近付いている限り存在確率EXi が時間
と共に増大する。ステップS306で存在確率EXi
減少した場合は目標物体iが路側物とみなし、ステップ
S308で路側物の存在確率EXi を強制的に0として
路側物の除去を確実にしている。
【0054】移動物体の場合にはステップS312でし
きい値Zを中設定値EXTHMとし、目標物体iが制御
・警報対象データから突発的に除外されることを防止し
ている。また、この目標物体iが制御・警報対象データ
となるまでの応答性が遅くなることを防止するために、
その存在確率が増加している間はステップS316でそ
の増分を2倍として存在確率EXi の増加速度を大きく
している。
【0055】図20(A)は停止物体における存在確率
の時系列的な変化及びしきい値Zを示し、図20(B)
は移動物体における存在確率の時系列的な変化及びしき
い値Zを示しており、制御・警報対象のデータを黒丸で
表わし、制御・警報対象を外れたデータを白丸で表わし
ている。
【0056】図18の実施例では、目標物体iが移動物
体で、存在確率EXi が増加中の場合はステップS31
6でEXi の増分を一律に2倍としている。この代り
に、図21に示すマップを相対速度Vi で参照して増分
ΔEXを求め、増分ΔEXを存在確率EXi に加算する
構成としても良い。
【0057】図21において、増分ΔEXは、相対速度
i つまり目標物体iが自車に接近する速度がVi Mま
ではVi が速いほど大きくなり、この接近速度が速いほ
ど存在確率の増加速度が大きくなる。図22はターゲッ
ト認識器30が実行する入力レベル制御処理のフローチ
ャートを示す。同図中、ステップS500で除去回数N
rs、遠距離検出回数NL 、ホールド回数NS 夫々をゼロ
にリセットする。次に、ステップS502で路側物除去
が発生したか否かを判別する。この路側物除去は図18
のフローチャートにおけるステップS308が実行され
たか否かによって判別し、ステップS308の実行によ
り路側物除去がなされた場合はステップS504で除去
回数Nrsを1だけインクリメントしてステップS506
に進む。路側物除去がなされていない場合はそのままス
テップS506に進む。
【0058】ステップS506では移動物遠距離検出が
発生したか否かを判別する。移動物は図18のフローチ
ャートにおけるステップS300で相対速度が自車速度
と異なっていると判別された目標物体iであり、この移
動物の相対距離Ri を所定距離RL (RL は例えば10
0m)と比較してRi >RL の場合に移動物遠距離検出
が発生したとする。移動物遠距離検出が発生するとステ
ップS508で遠距離検出回数NL を1だけインクリメ
ントしてステップS510に進み、この発生がなければ
そのままステップS510に進む。
【0059】ステップS510では移動物近距離データ
ホールドが発生したか否かを判別する。データホールド
は目標物体iを見失って図5のフローチャートにおける
ステップS74、又は図10のステップS114,又は
図15のS246,S256を実行したことである。こ
の見失った目標物体iが図18のステップS300で移
動物(相対速度が自車速度と異なる)と判別され、この
移動物の相対距離Riを所定距離RS (RS は例えば5
0m)と比較してRi >RS の場合に移動物近距離デー
タホールドが発生したとする。移動物近距離データホー
ルドが発生するとステップS512でホールド回数NS
を1だけインクリメントしてステップS514に進む。
この発生がなければそのままステップS514に進む。
【0060】ステップS514ではステップS500の
実行後、所定時間(例えば数秒)を経過したか否かを判
別し、所定時間経過してないときはステップS502に
進んでNrs,NL ,NS 夫々のカウントを繰り返し、所
定時間経過するとステップS516に進む。これによ
り、所定時間内における除去回数Nrs,遠距離検出回数
L ,ホールド回数NS がカウントされる。除去回数N
rsが大きいことは送信パワーが大きく路側物の検出が増
えたことを表わしており、遠距離検出回数NL が大きい
ことは送信パワーが大きく遠距離の移動物の検出が増え
たことを表わしている。またホールド回数NS が大きい
ことは送信パワーが小さく近距離の移動物を見失うこと
が増えたことを表わしている。上記のステップS500
〜S514が検出状況認識手段M2に対応する。
【0061】ステップS516では上記除去回数Nrs
遠距離検出回数NL ,ホールド回数NS を用いてファジ
ィ演算を行い、ビート信号制御量を算出する。このファ
ジィ演算の詳細なフローチャートを図23に示す。ま
ず、ステップS550でNrs,NL ,NS 夫々で図24
(A),(B),(C)夫々に示すメンバシップ関数を
参照し、図24(A),(B),(C)夫々からS,
M,Lについての各メンバシップ値を算出する。
【0062】次に、ステップS522で図25に示すフ
ァジィルールに従い、Nrs,NL ,NS の各関数のメン
バシップ値の最大値を選択する。ここで、Nrs
rsO ,N L =NL0,NS =NS0の場合、図25に示す
ファジィルールの1番目のルール、つまり路側物除去回
数NrsはL、かつ、遠距離検出回数NL はL、かつ近距
離ホールドNS はLのとき、出力はSを考えると、N
rsO のLのメンバシップ値は0.3、NL0のLのメンバ
シップ値は0.3、NS0のLのメンバシップ値は0.6
である。
【0063】この後、ステップS524では図24
(D)に示すS,M,Lの出力メンバシップ関数のうち
各ルールで指定された関数の面積にステップS522で
得られた最大値を乗算する。例えば1番目のルールでは
出力メンバシンプ関数Sに上記の最大値0.6を乗算す
る。次に、ステップS526では各ルールで乗算された
出力メンバシップ関数の重心を求め、ステッS528で
この重心の値をビート信号制御量とし、処理を終了す
る。
【0064】図22のステップS518ではステップS
516で求められたビート信号制御量を増幅器24に供
給して増幅度を可変制御してステップS550に進む。
上記のステップS516,S518が検知領域制御手段
M3に対応する。これにより、送信パワーが大きく検知
領域が図26に破線IB に示す如く広がっている場合は
増幅器24の増幅度が減少されて実線IA に示す如く最
適の検知領域となるように制御される。また送信パワー
が小さく検知領域が破線IC に示す如く狭い場合は増幅
器24の増幅度が増大されて実線IA に示す如く最適の
検知領域となるように制御される。従って、誤検出の発
生を低減できる。
【0065】なお、上記実施例ではビート信号入力レベ
ルを可変調整しているが、その代りに送信アンテナ18
から出力するレーダビームの送信パワーを可変調整して
も良い。
【0066】
【発明の効果】請求項1に記載の発明によれば、目標物
体として検出された路側物及び移動物の検出状況を認識
し、認識された路側物及び移動物の検出状況から移動物
の見失いを検出し、検出された見失い状況に応じて検知
領域を可変するため、路側物及び移動物の検出状況から
検出領域の変動を知ることができ、これに応じて検知領
域を可変制御して温度、湿度、天候といった環境条件の
変動に拘わらず最適な検知領域を設定することができ、
誤検出の発生を低減できる。
【0067】また、請求項2に記載の発明によれば、移
動物の検出状況を距離に応じて認識するため、移動物の
遠距離での検出回数が多い場合に、検知領域が広いこと
を知ることができ、移動物の近距離での検出もれが多い
場合に検知領域が狭いことを知ることができる。
【0068】また、請求項3に記載の発明によれば、路
側物及び移動体の検出状況を入力とするファジィ演算で
検知領域の可変制御を行うため、各検出状況に応じて最
適の検出領域の設定を行うことができ、実用上きわめて
有用である。
【図面の簡単な説明】
【図1】本発明の原理図である。
【図2】本発明装置のブロック図である。
【図3】認識処理の第1実施例のフローチャートであ
る。
【図4】認識処理の第1実施例のフローチャートであ
る。
【図5】認識処理の第1実施例のフローチャートであ
る。
【図6】認識処理の第1実施例のフローチャートであ
る。
【図7】マップを示す図である。
【図8】マップを示す図である。
【図9】マップを示す図である。
【図10】認識処理の第2実施例のフローチャートであ
る。
【図11】マップを示す図である。
【図12】マップを示す図である。
【図13】マップを示す図である。
【図14】マップを示す図である。
【図15】認識処理の第3実施例のフローチャートであ
る。
【図16】認識処理の第3実施例のフローチャートであ
る。
【図17】図15,図16による認識処理を説明するた
めの図である。
【図18】認識処理の第4実施例のフローチャートであ
る。
【図19】時系列的な相対距離データを示す図である。
【図20】時系列的な存在確率の変化を示す図である。
【図21】マップを示す図である。
【図22】入力レベル制御処理のフローチャートであ
る。
【図23】ファジィ演算処理のフローチャートである。
【図24】ファジィ演算を説明するための図である。
【図25】ファジィ演算を説明するための図である。
【図26】検知領域を説明するための図である。
【図27】検知領域を説明するための図である。
【符号の説明】
10 搬送波発生器 12 周波数変調器 14 変調電圧発生器 16 方向性結合器 18 送信アンテナ 20 受信アンテナ 22 ミキサ 24 増幅器 26 フィルタ 28 FFT信号処理器 30 ターゲット認識器 34 警報器 40 ステア制御回路 42 車速センサ 44 操舵角センサ 46 ステア機構 M1 レーダ装置本体 M2 検出状況認識手段 M3 検知領域制御手段
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01S 7/00 - 7/42 G01S 13/00 - 13/95

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 周波数変調された搬送波を送受信し、周
    波数上昇部分及び周波数下降部分夫々のビート信号のパ
    ワースペクトラムで対をなすピークの周波数から目標物
    体との相対距離及び相対速度を算出する車載用レーダ装
    置において、 上記目標物体として検出された路側物及び移動物の検出
    状況を認識する検出状況認識手段と、 上記認識された路側物及び移動物の検出状況から移動物
    の見失いを検出し、検出された見失い状況に応じて検知
    領域を可変する検知領域制御手段とを有することを特徴
    とする車載用レーダ装置。
  2. 【請求項2】 前記検出状況認識手段は、移動物の検出
    状況を距離に応じて認識することを特徴とする請求項1
    記載の車載用レーダ装置。
  3. 【請求項3】 前記検知領域制御手段は、路側物及び移
    動物夫々の検出状況を入力とするファジィ演算を行って
    前記レーダ装置の検知領域の可変制御を行うことを特徴
    とする請求項1又は2記載の車載用レーダ装置。
JP01537495A 1995-02-01 1995-02-01 車載用レーダ装置 Expired - Fee Related JP3146903B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01537495A JP3146903B2 (ja) 1995-02-01 1995-02-01 車載用レーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01537495A JP3146903B2 (ja) 1995-02-01 1995-02-01 車載用レーダ装置

Publications (2)

Publication Number Publication Date
JPH08211144A JPH08211144A (ja) 1996-08-20
JP3146903B2 true JP3146903B2 (ja) 2001-03-19

Family

ID=11887009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01537495A Expired - Fee Related JP3146903B2 (ja) 1995-02-01 1995-02-01 車載用レーダ装置

Country Status (1)

Country Link
JP (1) JP3146903B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257928A (ja) 2001-03-06 2002-09-11 Murata Mfg Co Ltd レーダ
JP4086670B2 (ja) * 2003-01-28 2008-05-14 富士通テン株式会社 レーダ装置
JP5103722B2 (ja) * 2005-09-28 2012-12-19 日産自動車株式会社 停止車両判別装置
JP4850898B2 (ja) * 2006-02-16 2012-01-11 三菱電機株式会社 レーダ装置
CN113687346B (zh) * 2021-10-27 2022-02-08 宝嘉智能科技(南通)有限公司 一种用于雾天的高速预警微波雷达

Also Published As

Publication number Publication date
JPH08211144A (ja) 1996-08-20

Similar Documents

Publication Publication Date Title
JP3104559B2 (ja) 車載用レーダ装置
KR102099851B1 (ko) 자동차 레이더 시스템에서 탐지된 타겟들의 클러스터링 방법 및 이를 위한 장치
JP4698048B2 (ja) Fm−cwレーダの路上静止物検知方法
JP3119142B2 (ja) 車載レーダ装置
JPH09222477A (ja) 車載用レーダ装置
JP4007498B2 (ja) 車載用レーダ装置
JP3104533B2 (ja) 車載用の物体検出装置
JP3371854B2 (ja) 周囲状況検出装置及び記録媒体
EP2151809B1 (en) Object detecting device, and object detecting method
JP3577851B2 (ja) 走行制御装置
JP4837755B2 (ja) 物体検知装置
EP1720036A1 (en) Vehicle control method and vehicle warning method
US20050203705A1 (en) Vehicle driving control device and vehicle control unit
JP2014227000A (ja) 車両制御装置、その方法およびそのプログラム
JP2001242242A (ja) 検知性能向上機能を備えたミリ波レーダ装置
US11307300B2 (en) Vehicle radar system
JP4079739B2 (ja) 車載用レーダ装置
JP4614646B2 (ja) 車輌の障害物検出レーダー装置
JP3146903B2 (ja) 車載用レーダ装置
JPH0763843A (ja) 車載レーダ装置
JP2008064743A (ja) 車載レーダ装置
JP7127969B2 (ja) レーダ装置及び信号処理方法
JPH09178849A (ja) 車載レーダ装置
US10571563B2 (en) Radar device and signal processing method
JP2013257249A (ja) 物体検出装置

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees