JP3113917U - 揮発性有機化合物測定装置 - Google Patents

揮発性有機化合物測定装置 Download PDF

Info

Publication number
JP3113917U
JP3113917U JP2005004679U JP2005004679U JP3113917U JP 3113917 U JP3113917 U JP 3113917U JP 2005004679 U JP2005004679 U JP 2005004679U JP 2005004679 U JP2005004679 U JP 2005004679U JP 3113917 U JP3113917 U JP 3113917U
Authority
JP
Japan
Prior art keywords
gas
organic compound
flow path
measurement
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004679U
Other languages
English (en)
Inventor
亮 田辺
心吾 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005004679U priority Critical patent/JP3113917U/ja
Application granted granted Critical
Publication of JP3113917U publication Critical patent/JP3113917U/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 CO標準ガスを用意することなく、酸化触媒の劣化を判断する揮発性有機化合物測定装置(VOC分析計)を提供する。
【解決手段】 酸化触媒により揮発性有機化合物をCOに変換する測定流路20から流出するガス中のCOと試料ガスをそのまま通過させる比較流路30から流出するガス中のCOとのそれぞれのCOを検出するガス分析部60を備えた揮発性有機化合物測定装置において、有機化合物を含有するガスが測定流路20に流されているときに測定流路を流れるガスを一時的に酸化炉に滞留させる滞留手段42,43と、滞留手段により有機化合物含有ガスを一時的に測定流路に滞留させた直後に流出する滞留ガス中のCOと有機化合物含有ガスが測定流路を連続的に流れるときの測定流路からの流出ガス中に含まれるCOとの濃度差に基づいて酸化触媒の劣化を判定する劣化判定部63とを備えるようにしている。
【選択図】図1

Description

本考案は、工場から採取した排出ガス等の試料ガス中に含まれる揮発性有機化合物(Volatile Organic Compounds: 以下、VOCともいう)の測定を行う揮発性有機化合物測定装置(以下、VOC計ともいう)に関し、さらに詳細には、酸化触媒を用いてVOCをCO(二酸化炭素)に変換したときのCO量を測定することにより、CO量からVOC量を測定する揮発性有機化合物測定装置に関する。
ここで、VOCとは、大気中に排出され、又は飛散したときに気体である有機化合物をいい、例えばトルエン、キシレン、ベンゼン、スチレン等の有機溶剤がVOCに含まれる。
大気汚染を防ぐには、工場等から発生する粉塵、煤煙などの排出規制を行うことが必要であり、大気汚染防止法等による大気環境の法的規制がなされている。近年、世界各国ではVOC全体に対する規制が始められており、日本でもVOCの排出量を削減するため、VOCの法規制がなされようとしている。
例えば、有機溶剤を用いる塗装工場、接着工場、印刷工場、洗浄工場等あるいは化学製品貯蔵所等の施設は、屋外に排出する排出ガスにVOCが含まれるために排出規制の対象となる。そのためVOCを排出する施設では、VOCの排出量を測定することが必要となる。
従来、VOC量を測定する揮発性有機化合物測定装置(VOC計)として、酸化触媒を用いてVOCをCOに変換したときのCO変換量を、非分散型赤外線ガス分析計を用いて測定することにより、CO量からVOC量を測定するVOC計が用いられている(例えば特許文献1参照)。
特開平8−101187号公報
図6は、従来からの一般的なVOC計の構成を説明するブロック図である。このVOC計100は、ガス導入部110、測定流路120、比較流路130、ガス分析部140とからなる。
ガス導入部110には、ガス導入口111が設けられ、採取した分析対象の試料ガス112、あるいはスパン校正用ガス113(スパン校正のため有機化合物を含有する標準ガス)、あるいはゼロ点校正用ガス114(ゼロ点校正のための有機化合物を含まない標準ガス)が適宜に導入される。ガス導入部110の出口側は、測定流路120および比較流路130のそれぞれの入口側に接続してある。
測定流路120には、白金等の酸化触媒が充填された酸化炉121、酸化炉121から流出するガスに含まれる塩化水素、フッ化水素等のハロゲンガスを除去してCOを通過させるためのハロゲンスクラバ122、ハロゲンスクラバ122から流出するガスに含まれる水分を除去する電子クーラ123、ガスを送り出すポンプ124が接続されている。
比較流路130には、ガス導入部110から流出するガスに含まれる水分を除去する電子クーラ133、ガスを送り出すポンプ134が接続されている。
ガス分析部140には、2本のガスセルを用いていずれか一方のガスセルを流れるガスと他方のガスセルを流れるガスとの比較測定を行うことができる比較流通型ガスセルを備えた赤外線ガス分析計141が設けてあり、そのうちの一方のガスセルには測定流路120から流出するガスが送り込まれ、他方のガスセルには比較流路130から流出するガスが送り込まれるようにしてある。
分析対象である試料ガス112が、ガス導入口111から導入され、測定が開始されると、試料ガス112が分析流路120と比較流路130に分岐して流れる。
測定流路120では、酸化触媒が充填された酸化炉121を通過する際に、試料ガス中のVOCが酸化されてCOに変換され、その後、ハロゲンスクライバ122でハロゲンガスが除去され、電子クーラ123で水分が除去されて赤外線ガス分析計141の一方のガスセルに送られる。測定流路120側のガスセルでは、試料ガス中に元々含まれていたCOとVOC由来のCOとを合わせたCO濃度の信号が検出されることになる。
一方、比較流路130では、導入された試料ガス112は電子クーラ133で水分が除去されて赤外線ガス分析計141の他方のガスセルに送られる。比較流路130側のガスセルでは、試料ガス112が酸化されることなくそのまま送られてくるので、試料ガス112中に元々含まれていたCO濃度の信号が検出されることになる。
そして、測定流路120と比較流路130とのそれぞれの信号の強度差(差信号)を求めることにより、試料ガス112中に含まれるVOC量を炭素数に換算した量として測定する。
このようにして測定されたVOC量は、炭素数が1の揮発性有機化合物の容量に換算した容量比百万分率「ppmC」として表される。
また、VOC計では、装置が正常に機能することを確認し、装置の性能・特性を確認するために、試料ガス112を導入して測定を行う前に、ゼロ点調整およびスパン調整のための校正が行われる。
校正作業は、ゼロ点調整については、有機化合物を含まないゼロ点校正用ガス114を導入してガス分析計の調整が行われ、スパン調整については濃度が既知の有機化合物(例えば空気をベースとするプロパンガス)を含んだスパン校正用ガス113を導入してガス分析計の調整が行われる。
ところで、工場等から排出されるVOCには、塩素、有機シリコン、有機リン等の触媒毒が含まれている、これら触媒毒は、酸化炉121内の酸化触媒を劣化させ、ひいてはVOCの酸化効率を低下させる影響を及ぼすことになる。
上述したような、校正用ガス113を導入して行われるスパン校正を行っている場合には、触媒の酸化効率の影響も含めた校正がなされるため、触媒が劣化しているか否かは判断できない。しかしながら、触媒の劣化が進むと、VOCの種類に応じて、酸化効率が変化することとなり、正確なVOC測定が困難になる。
触媒の酸化効率の劣化は、ガス分析部140の赤外線ガス分析計141に対して、CO標準ガス(CO濃度が既知のガス)を用いて赤外線ガス分析計141単独での校正を行った後に、VOC濃度既知のスパン校正用ガス(例えばVOCとしてプロパンガスを含有するガス)を、ガス導入部110から酸化炉121を介して流すことにより確認できるが、赤外線ガス分析計141単独での校正が必要となり、煩雑である。しかも、濃度既知のCO標準ガスを別途に用意しておく必要がある。
そこで、本考案は赤外線ガス分析計(ガス分析部)単独での校正が必要なく、しかも、CO標準ガスを用意することなく、酸化触媒の劣化を判断することができる揮発性有機化合物測定装置(VOC計)を提供することを目的とする。
また、本考案は、スパン校正用ガスあるいは濃度が一定のVOCガスがあれば、触媒の劣化判断をすることができる揮発性有機化合物測定装置(VOC計)を提供することを目的とする。
上記課題を解決するためになされた本考案に係る揮発性有機化合物測定装置(VOC計)は、試料ガスや校正ガスを導入するガス導入部と、酸化触媒が充填された酸化炉を有し導入された試料ガス中の揮発性有機化合物を酸化してCOを発生しつつ通過させる測定流路と、導入された試料ガスをそのまま通過させる比較流路と、測定流路から流出するガス中のCOと比較流路から流出するガス中のCOとを検出するガス分析部とを備えた揮発性有機化合物測定装置において、ガス導入部から有機化合物を含有する校正ガスまたは試料ガスが測定流路に送り込まれているときに測定流路を流れるガスを一時的に滞留させる滞留手段と、滞留手段により有機化合物含有ガスを一時的に測定流路に滞留させた直後に流出する滞留ガス中のCOと有機化合物含有ガスが測定流路を連続的に流れるときの測定流路からの流出ガス中に含まれるCOとの濃度差に基づいて酸化触媒の劣化を判定する劣化判定部とを備えるようにしている。
この考案によれば、酸化触媒の酸化効率の劣化判定を行う場合に、ガス導入部から有機化合物含有ガスを測定流路に送り込む。この有機化合物含有ガスは、酸化炉で触媒酸化反応によってCOに変換されるガスであればよく、例えば、スパン校正用ガスを用いることが好ましいが、これに限られず、濃度が一定のVOCを含有するガスであればよい。
酸化触媒が劣化していない場合、測定流路内を連続的に流れている有機化合物含有ガスは効率よく酸化され、測定流路を流れるガス中の有機化合物全体が完全にCOに変換される。
一方、酸化触媒が劣化している場合、測定流路に有機化合物含有ガスを滞留させることなく連続的に流すようにすると、酸化触媒は効率よく酸化することができないために、一部の有機化合物はCOに変換されずに、そのまま測定流路から流出される。この場合にガス分析部で検出されるCO濃度は低くなる。
測定流路に有機化合物含有ガスを導入した状態で、滞留手段により、一時的に測定流路内のガスを滞留させる。測定流路内に滞留させたガスは、測定流路を連続的に流れるガスに比べて酸化触媒と接する時間が長くなるため、たとえ酸化触媒が劣化している場合であっても、酸化反応が充分に進む。そのため、測定流路中に滞留する有機化合物全体がCOに変換され、CO濃度の高いガスが測定流路121内に滞留することになる。
そこで、一時的に測定流路に滞留させた直後に測定流路から流出する滞留ガスに含まれるCOガス濃度と、測定流路を連続的に流れるガス濃度を比較することにより、両者の間にガス濃度差が現れれば、酸化触媒は劣化が進んでいると判断されることとなり、ガス濃度差が現れなければ、酸化触媒は劣化していないと判断されることになる。
本考案の揮発性有機化合物測定装置(VOC計)によれば、装置の校正作業のために本来装備しているスパン校正用ガスやその他の有機化合物を含有するガスを用いて、酸化触媒の劣化を判定することができ、劣化判定のためにCO標準ガスを用意する必要がなくなる。
また、劣化判定に校正用ガスを用いる場合は、スパン校正時に同時に触媒劣化判定を行うことができる。また、劣化判定に一定濃度のVOCを含む試料ガスを用いる場合は、試料ガス測定中であっても触媒劣化の判定を行うことができる。
(その他の課題を解決するための手段及び効果)
上記考案において、測定流路と比較流路とは、流路切換弁によりいずれか一方が選択的にガス分析部に接続されるように構成され、前記流路切換弁が測定流路を流れるガスを一時的に酸化炉に滞留させる滞留手段を兼ねるようにしてもよい。
これによれば、流路切換弁の切換操作により、測定流路を流れるガスと比較流路を流れるガスとが交互にガス分析部にて測定されるが、流路切換弁の操作によって比較流路を流れるガスをガス分析部に流出させている間は、測定流路を、この流路切換弁で閉止することができるので、流路切換弁を滞留手段として兼用させることができる。
上記考案において、測定流路と比較流路とは、それぞれ独立にガス分析部に接続され、測定流路には試料ガスの流れを一時的に停止して酸化炉に滞留させる開閉弁が滞留手段として設けられるようにしてもよい。
これによれば、測定流路と比較流路とのいずれか一方を流れたガスは、それぞれガス分析部で測定されるが、このうち測定流路については、開閉弁が設けてあり、これを閉止することにより酸化炉に試料ガスを一時的に滞留させることができ、滞留手段とすることができる。
上記考案において、測定流路と比較流路とは、それぞれ独立にガス分析部に接続されるとともにそれぞれの流路には試料ガスをガス分析部に送るポンプが設けられ、さらに測定流路側のポンプについて試料ガスの流れを一時的に停止して酸化炉に滞留させるポンプ制御部が滞留手段として設けられるようにしてもよい。これによればポンプ制御部により、測定流路に設けたポンプを一時停止することにより、試料ガスを一時的に酸化炉に滞留させることができ、滞留手段とすることができる。
以下、本考案にかかる揮発性有機化合物測定装置(VOC計)について、図面を用いて詳細に説明する。なお、本考案は以下に説明するような実施形態に限定されるものではなく、本考案の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
(実施形態1)
図1は、本考案の第1の実施形態であるVOC計1の概略構成を示すブロック図である。
VOC計1は、大きく分類すると、ガス導入部10、測定流路20、比較流路30、流路切換部40、共通流路50、ガス分析部60とから構成される。
ガス導入部10は、分析対象の試料ガス12の流路と、スパン校正用ガス13(スパン校正のための有機化合物を含有する標準ガス)の流路と、ゼロ点校正用ガス14(ゼロ点校正のための有機化合物を含まない標準ガス)の流路とが、三方電磁弁41に接続されている。三方電磁弁41の出口側は測定流路20、比較流路30の入口端に接続されている。また、試料ガス12の流路には微粒子を除去するためのフィルタ15が設けられている。なお、スパン校正用ガス用流路とゼロ点校正用ガス用流路との合流点にさらに三方電磁弁を増設し、スパン校正用ガスとゼロ点校正用ガスとを電磁弁により切り換えるようにしてもよい。
測定流路20は、白金等の酸化触媒が充填され、VOCをCOに変換する酸化炉21、酸化炉21から流出するガスに含まれる塩化水素、フッ化水素等のハロゲンガスを除去してCOを通過させるためのハロゲンスクラバ22が接続され、三方電磁弁42に接続してある。
比較流路30は、測定流路20をバイパスするように、三方電磁弁41の出口側と三方電磁弁42との間を配管接続してあり、三方電磁弁41から送り込まれるガスを、そのまま三方電磁弁42に送り出すようにしてある。
流路切換部40は、三方電磁弁41、三方電磁弁42と、流路選択部43とからなる。流路選択部43は、後述する信号処理部62、劣化判定部63とともに、CPU、ROM、RAM、入出力装置等のハードウェアと、ハードウェアを制御するソフトウェアとからなるコンピュータにより構成される。
流路選択部43は、三方電磁弁42を駆動し、一定間隔(例えば10秒間隔)で共通流路50に接続する流路を、測定流路20と比較流路30との間で、交互に切り換える制御を行う。交互切換操作により比較流路30が開成されている期間中は、酸化炉21を含む測定流路20内には一次的にガスが滞留することになるので、この三方電磁弁42は、一時的にガスを滞留させる機能を有している。
また、流路選択部43は、電磁弁41を駆動することにより、試料ガス12、スパン校正用ガス13(あるいはゼロ点校正用ガス14)のいずれかを供給する制御を行う。
共通流路50は、三方電磁弁42の出口側に接続され、測定流路20または比較流路30から三方電磁弁42を経て流出するガスに含まれる水分を除去する電子クーラ51、微粒子を除去するフィルタ52、流路を流れるガスを送り出すポンプ53、流出するガス流量を調節するニードル弁54、流量を測定するフローメータ55が接続され、一定流量でガスが流れるようにして、ガス分析部60の赤外線ガス分析計61に接続してある。また、電子クーラ51には除去した水分を排出するためのポンプ56が設けられた排出流路が形成されている。
ガス分析部60は、リファレンス型の赤外線ガス分析計61と、信号処理部62と、劣化判定部63とから構成される。リファレンス型の赤外線ガス分析計61は、2つのガスセルを有し、その一方のガスセルはリファレンスガスが密封されたリファレンスセルとしてあり、他方のガスセルはフローメータ55からのガスが流される測定セルとしてある。この赤外線ガス分析計61は、リファレンスセルに含まれるCO濃度に対する測定セルのCO濃度の差信号が検出される。但し、本実施形態のVOC計1では、測定流路20を流れて測定セルに送られるガスと比較流路30を流れて測定セルに送られるガス濃度の差信号(VOC測定時)、あるいは測定流路20を流れて測定セルに送られてくるガス濃度の信号の時間変化(劣化判定時)を求めるのが目的である。
信号処理部62および劣化判定部63は、上述したようにコンピュータで構成され、赤外線ガス分析計61からの信号を処理する。具体的には、信号処理部62が流路選択部43による三方電磁弁42の一定間隔(例えば10秒間隔)での切換操作のタイミング信号とともに、赤外線分析計61からの信号を継続的に採取し、検出信号を蓄積する。
劣化判定部63は、信号処理部62により蓄積された三方電磁弁42の切換タイミング信号と、赤外線ガス分析計61からのガス濃度信号の経時変化データに基づいて、酸化触媒の劣化の判定を行う。
次に、VOC計1の動作について説明する。ここでは、スパン校正時に触媒劣化の判定を行う場合を説明する。
ゼロ点調整のために、三方電磁弁41に接続する校正用ガスを、有機化合物やCOを含まないゼロ点校正用ガス14(例えば高純度空気)にし、三方電磁弁41を開成して測定流路20にガスを導入し、そのときの赤外線ガス分析計61の出力信号を採取して、ゼロ点を定める。
続いて、スパン校正のために、校正用ガスを、ゼロ点校正用ガス14から既知濃度のプロパンガスを含んだ大気ベースのスパン校正用ガス13に変更する。このガスによる赤外線ガス分析計61の出力信号を採取することによりスパン校正が行われる。
スパン校正を行う際に、流路選択部43による三方電磁弁42の切換操作を行い、測定流路20と比較流路30とが交互に10秒間隔で切り換わるようにし、赤外線ガス分析計61によるCO濃度の出力データを信号処理部62により採取する。このときの経時変化のデータを蓄積する。
経時変化データのうちで、比較流路30を測定する期間中は、測定流路20の酸化炉21にはガスが10秒間滞留することになる。そのため、酸化炉21の触媒が劣化しているか否かに関わらず、酸化炉21内のプロパンガスは滞留中に完全に酸化され、COに変換される。その後、測定流路20に切り換わった直後に、最初に赤外線ガス分析計61に流れるガスは、酸化炉21に滞留していたガスであることから、少なくとも一時的(流路体積や流量に依存することになるが通常は2〜3秒)に、CO濃度が高いガスが検出されることになる。
その後は、劣化触媒であるか否かによって、経時変化データの測定結果が異なる。すなわち、劣化触媒の場合は、酸化炉21を通過するプロパンガスの一部が、COに変換されずに流出するので、CO濃度の低いガスが検出されることになる。一方、劣化していない触媒の場合は、酸化炉21内での滞留時間がなくてもプロパンガスを効率よく酸化することができるので、完全にCOに変換され、CO濃度の高いガスが引き続き検出されることになる。
その結果、信号処理部62が経時変化データを採取すると、劣化触媒である場合には、切換時に一時的なピークが発生し、劣化していない触媒である場合には切換時にピークが発生しないことになる。
図2は、劣化していない触媒による経時変化データ(図2(a))と、劣化触媒による経時変化データ(図2(b))との比較例を示す図である。これらはプロパン標準ガス(大気ベース、C約500ppmC)を1L/minの流量で流し続け、赤外線ガス分析計による出力をプロットしたものである。酸化炉21には白金触媒が15g充填されている。図中、測定流路開成時はM、比較流路開成時はRで示してある。
2つのデータの波形を比較すれば明らかなように、劣化していない触媒の場合は、比較流路を開成した状態Rから測定流路を開成した状態Mに切り換えたときにピークが生じていない。一方、劣化触媒の場合は、比較流路を開成した状態Rから測定流路を開成した状態Mに切り換えた直後に、ピークが生じている。
したがって、劣化判定部63が、信号処理部62により採取された経時変化データの波形パターンから、ピークの有無を判定することにより、触媒の酸化効率、すなわち劣化の度合いを判断することができる。例えば、図3の模式図に示すように、最大ピーク時のスパン幅(b)と安定時のスパン幅(a)との比の値を、予め記憶してある閾値(例えばa/b>1.1)と比較することにより劣化の有無を判定することができる。
上記説明では、三方電磁弁42を切り換える時間間隔(換言すれば測定流路内のガスの滞留時間)を10秒としたが、この時間間隔、あるいは流路を流れるガス流量を変化させることにより、劣化判定を調整するようにしてもよい。例えば、三方電磁弁42の切り換える時間間隔を10秒より短くすることにより、劣化判定をより厳しい条件にすることになる。
(実施形態2)
図4は、本考案の他の一実施形態であるVOC計2の概略構成を示すブロック図である。実施形態1で説明したVOC計1と同じものについては、同符号を付すことにより説明の一部を省略する。
VOC計2は、図6(従来例)で説明した比較流通型ガスセルの赤外線ガス分析計を用いたものであり、ガス導入部10a、測定流路20a、比較流路30a、ガス分析部60aにより構成される。
ガス導入部10aは、基本的に図1のガス導入部10と同じ構成である。ガス導入部10aの三方電磁弁41は、流路選択部16の制御により駆動される。この流路選択部16は、図1における流路選択部43が行う制御動作の一部(三方電磁弁41の制御)を実行するものでありコンピュータにより構成される。
測定流路20aは、酸化炉21、ハロゲンスクラバ22が接続してあり、ハロゲンスクラバ22の後に開閉弁24を接続し、さらに図1と同様の電子クーラ51a、フィルタ52a、ポンプ53a、ニードル弁54a、フローメータ55a、ポンプ56aを接続してある。
開閉弁24は、開閉制御部25により駆動される。開閉制御部25は、図1の流路切換部40と同様に、コンピュータにより構成される。
比較流路30aは、図1と同様の電子クーラ51b、フィルタ52b、ポンプ53b、ニードル弁54b、フローメータ55b、ポンプ56bを接続してある。
ガス分析部60aは、比較流通型ガスセルの赤外線ガス分析計64、信号処理部62、劣化比較部63から構成される。比較流通型ガスセルの一方には、測定流路20aの出口端を接続し、他方には比較流路30aの出口端を接続してある。
次に、VOC計2の動作について説明する。ここでも、スパン校正時に触媒劣化の判定を行う場合を説明する。
ゼロ点調整のために、三方電磁弁41に接続する校正用ガスを、ゼロ点校正用ガス14にし、三方電磁弁41を開成し、開閉制御部25により開閉弁24を開成して、測定流路20a、比較流路30aにガスを導入し、そのときの赤外線ガス分析計64の出力信号を採取して、ゼロ点を定める。
続いて、校正用ガスをスパン校正用ガス13に変更する。このガスによる赤外線ガス分析計64の出力信号を採取することによりスパン校正が行われる。
スパン校正を行う際に、開閉制御部25により開閉弁24を開閉操作し、赤外線ガス分析計64によるCO濃度の出力データを信号処理部62により採取する。このときの経時変化のデータを蓄積する。なお、開閉弁24の閉止動作と連動してポンプ53a、56aを停止する方が好ましい。これは、開閉弁24以降の配管内が減圧状態になるのを防止することにより、圧力変化が生じないようにすることができるからである。この場合は、開閉制御部25がポンプ53a、56aの駆動停止の制御も同時に行う。
蓄積した経時変化データにおいて、開閉弁24の閉止期間中は、測定流路20aの酸化炉21にはガスが滞留することになる。そのため、酸化炉21の触媒が劣化しているか否かに関わらず、酸化炉21内のプロパンガスは滞留中に完全に酸化され、COに変換される。その後、開閉弁24が開成した直後に、最初に赤外線ガス分析計64に流れるガスは、酸化炉21に滞留していたガスであることから、少なくとも一時的に、CO濃度が高いガスが検出されることになる。
その後は、図1で説明した内容と同様の変化が発生し、劣化触媒であるか否かによって、経時変化データの測定結果が異なり、劣化触媒である場合には、開閉弁24を閉止しその後再び開いた直後に一時的なピークが発生し、劣化していない触媒である場合には開閉切換時にピークが発生しないようになる。このピークの発生の有無を劣化判定部63により判定することにより、触媒の劣化を判断することができる。
(実施形態3)
図5は本考案の他の一実施形態であるVOC計3の構成を示す概略ブロック図である。図5において図4を同じものは同符号を付すことにより説明を省略する。VOC計3では図4で示したVOC計2の開閉弁24を設けておらず、代わりにコンピュータによって構成されるポンプ制御部57aを設けている。このポンプ制御部57aは、スパン校正を行っている途中で一時的に一定期間(例えば10秒)停止する制御を行う。
そして、ポンプ制御部57によりポンプ53a、56aが一時停止することにより、測定流路20aの酸化炉21内にガスを滞留させることができるので図4のVOC計2と同様の方法で触媒の劣化を判断することができる。
上記3つの実施形態についての説明では、いずれもスパン校正用ガスを用いて劣化判定を行うこととしたが、これに限られず、一定濃度のVOCを含有する試料ガス12を用いて、試料測定中に劣化判定を行うようにしてもよい。この場合も、三方電磁弁41を切り換えるだけで実質的に同様の動作を行うことにより、劣化判定を行うことができる。
また、上記実施形態では、COを検出するために赤外線ガス分析計を用いたが、COを検出できるものであれば、原理上、赤外線ガス分析計以外の分析計を用いた場合でも、本考案を適用することができる。
本考案は、揮発性有機化合物測定装置(VOC計)に利用することができる。
本考案に係る揮発性有機化合物測定装置の第1の実施例を示す概略的な構成図。 劣化触媒または非劣化触媒を用いた場合のガス分析部からの出力データを示す図。 ガス分析部から出力される出力データの模式図。 本考案に係る揮発性有機化合物測定装置の第2の実施例を示す概略的な構成図。 本考案に係る揮発性有機化合物測定装置の第3の実施例を示す概略的な構成図。 従来の揮発性有機化好物測定装置の概略構成図。
符号の説明
10 ガス導入部
12 試料ガス
13 スパン校正用ガス
14 ゼロ点構成用ガス
20、20a 測定流路
21 酸化炉
24 開閉弁(滞留手段)
25 開閉制御部(滞留手段)
30、30a 比較流路
40 流路切換部
42 三方電磁弁(滞留手段)
43 流路選択部(滞留手段)
53a ポンプ
57a ポンプ制御部(滞留手段)
60 ガス分析部
61 赤外線ガス分析計(リファレンス型)
62 信号処理部
63 劣化判定部
64 赤外線ガス分析計(比較流通型)

Claims (4)

  1. 試料ガスや校正ガスを導入するガス導入部と、酸化触媒が充填された酸化炉を有し導入された試料ガス中の揮発性有機化合物を酸化してCOを発生しつつ通過させる測定流路と、導入された試料ガスをそのまま通過させる比較流路と、測定流路から流出するガス中のCOと比較流路から流出するガス中のCOとを検出するガス分析部とを備えた揮発性有機化合物測定装置において、
    ガス導入部から有機化合物を含有する校正ガスまたは試料ガスが測定流路に送り込まれているときに測定流路を流れるガスを一時的に滞留させる滞留手段と、
    滞留手段により有機化合物含有ガスを一時的に測定流路に滞留させた直後に流出する滞留ガス中のCOと有機化合物含有ガスが測定流路を連続的に流れるときの測定流路からの流出ガス中に含まれるCOとの濃度差に基づいて酸化触媒の劣化を判定する劣化判定部とを備えたことを特徴とする揮発性有機化合物測定装置。
  2. 測定流路と比較流路とは、流路切換弁によりいずれか一方が選択的にガス分析部に接続されるように構成され、前記流路切換弁が測定流路を流れるガスを一時的に酸化炉に滞留させる滞留手段を兼ねることを特徴とする請求項1に記載の揮発性有機化合物測定装置。
  3. 測定流路と比較流路とは、それぞれ独立にガス分析部に接続され、測定流路には試料ガスの流れを一時的に停止して酸化炉に滞留させる開閉弁が滞留手段として設けられることを特徴とする請求項1に記載の揮発性有機化合物測定装置。
  4. 測定流路と比較流路とは、それぞれ独立にガス分析部に接続されるとともにそれぞれの流路には試料ガスをガス分析部に送るポンプが設けられ、さらに測定流路側のポンプについて試料ガスの流れを一時的に停止して酸化炉に滞留させるポンプ制御部が滞留手段として設けられることを特徴とする請求項1に記載の揮発性有機化合物測定装置。
JP2005004679U 2005-06-21 2005-06-21 揮発性有機化合物測定装置 Expired - Fee Related JP3113917U (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004679U JP3113917U (ja) 2005-06-21 2005-06-21 揮発性有機化合物測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004679U JP3113917U (ja) 2005-06-21 2005-06-21 揮発性有機化合物測定装置

Publications (1)

Publication Number Publication Date
JP3113917U true JP3113917U (ja) 2005-09-22

Family

ID=43276259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004679U Expired - Fee Related JP3113917U (ja) 2005-06-21 2005-06-21 揮発性有機化合物測定装置

Country Status (1)

Country Link
JP (1) JP3113917U (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521077A (ja) * 2011-07-08 2014-08-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 呼気分析装置の変換器の機能性の監視
KR20230117804A (ko) * 2022-02-03 2023-08-10 김인영 비분산적외선 기법에 의한 다중가스 탐지용 센서

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521077A (ja) * 2011-07-08 2014-08-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 呼気分析装置の変換器の機能性の監視
US9329161B2 (en) 2011-07-08 2016-05-03 Robert Bosch Gmbh Monitoring of the functionality of a converter of a breath analysis apparatus
KR20230117804A (ko) * 2022-02-03 2023-08-10 김인영 비분산적외선 기법에 의한 다중가스 탐지용 센서

Similar Documents

Publication Publication Date Title
US6439026B2 (en) Odor measuring apparatus
JP4609217B2 (ja) 水質分析計
US20160245784A1 (en) Air quality sensing module and algorithm
JP2006275801A (ja) 排気ガス成分分析装置
JP3113917U (ja) 揮発性有機化合物測定装置
EP2182344B1 (en) Analysis method and apparatus for measuring concentrations of sulfur components using ultraviolet fluorescence
WO2018105169A1 (ja) ガス分析装置及びガス分析方法
US20060222563A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
JP2008261865A (ja) 揮発性有機化合物測定装置
JP2005069874A (ja) ガス濃度測定装置
JP3129840U (ja) 揮発性有機化合物測定装置
JP3762619B2 (ja) 分析計
JP2010281668A (ja) 排ガス計測システム
JP3113918U (ja) 揮発性有機化合物測定装置
JP3129842U (ja) 揮発性有機化合物測定装置
JP3113931U (ja) 揮発性有機化合物測定装置
JP3113919U (ja) 揮発性有機化合物測定装置
JP3853978B2 (ja) 水質分析計
JP2002005943A5 (ja)
JP3129841U (ja) 揮発性有機化合物測定装置
JP4057659B2 (ja) 赤外線ガス分析計
JP5423662B2 (ja) 水質分析計
JP4404845B2 (ja) 分析計
JP2020118531A (ja) 窒素酸化物測定装置
JP5760762B2 (ja) 水質分析計

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees