JP3067593B2 - 車両の旋回制御装置 - Google Patents
車両の旋回制御装置Info
- Publication number
- JP3067593B2 JP3067593B2 JP7166402A JP16640295A JP3067593B2 JP 3067593 B2 JP3067593 B2 JP 3067593B2 JP 7166402 A JP7166402 A JP 7166402A JP 16640295 A JP16640295 A JP 16640295A JP 3067593 B2 JP3067593 B2 JP 3067593B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- yaw rate
- vehicle
- wheel
- flag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Hydraulic Control Valves For Brake Systems (AREA)
- Regulating Braking Force (AREA)
Description
係り、詳しくは車両のヨー運動を制御する装置に関す
る。
センサ等で感知し、そのヨーイングの度合い、つまりヨ
ーレイトを検出して車両姿勢を適正に保持する制御装置
が実用化されている。通常、このような制御装置では、
きめ細かな制御を行うために、制御用として応答性の良
いセンサ類を用いるようにしている。このことから、車
両が悪路等を走行している場合には、制御を必要として
いないときであっても、センサ類がその振動をヨーイン
グと誤認して検出してしまう虞がある。これにより、不
必要に制御が開始されてしまい、車両の走行安定性に悪
影響を与える場合がある。
にあっては、車輪速センサや上下Gセンサ等によって制
御の誤作動に繋がる振動成分を検出し、この振動成分が
検出されたときにはヨーレイトに基づく制御を中止する
構成の制御装置が特開平6−107202号公報等に開
示されている。
記載の制御装置では、制御の誤作動に繋がる振動成分を
車輪速センサや上下Gセンサ等によって検出するように
しているが、これらのセンサは車両のヨーイングを正確
に検出するものとはなっておらず、ヨーレイトの振動を
適切に判断するものとはなっていない。従って、制御の
誤作動に繋がる振動成分を適正に排除しているとはいえ
ず、好ましいものではない。
路走行における振動成分検出専用に用いられるものとな
っており、これらのセンサを設けることにより装置を複
雑にしている。さらに、センサ類は一般に高価でありセ
ンサ類を増やすことはコスト増にも繋がり現実的ではな
い。本発明は、上述した事情に基づきなされたものであ
り、その目的とするところは、装置を複雑にすることな
く、悪路走行時の振動等による制御の誤作動を的確に防
止可能な車両の旋回制御装置を提供することにある。
めに、請求項1の発明は、前輪の操舵とは別に車両のヨ
ー運動を制御可能なヨー運動制御手段を備えた車両の旋
回制御装置において、車両の実ヨーレイトを検出するヨ
ーレイトセンサと、車両の目標ヨーレイトを設定する目
標ヨーレイト設定手段と、前記目標ヨーレイトと前記実
ヨーレイトとに基づくヨーレイト偏差の微分値を算出す
るヨーレイト偏差微分手段と、前記実ヨーレイトの微分
値を算出する実ヨーレイト微分手段とを備え、前記ヨー
運動制御手段は、少なくとも前記ヨーレイト偏差の微分
値に基づき前記ヨー運動を制御する一方、前記実ヨーレ
イトの微分値が増大したとき、前記ヨー運動制御の制御
ゲインを低下させる制御ゲイン低下手段を具備すること
を特徴とする。
ン低下手段は、前記実ヨーレイトの微分値が所定値以上
の領域にあるとき、この実ヨーレイトの微分値の増加に
応じて前記制御ゲインを低下させることを特徴とする。
また、請求項3の発明では、前記制御ゲイン低下手段
は、前記実ヨーレイトの微分値をバンドパスフィルタ処
理して実効値を求め、この実効値に基づき前記制御ゲイ
ンを低下させることを特徴とする。
制御手段は、前記ヨーレイト偏差及び前記ヨーレイト偏
差の微分値に基づいてヨー運動を制御し、前記制御ゲイ
ン低下手段は、前記ヨーレイト偏差の微分値に対する制
御ゲインのみを低下させることを特徴とする。また、請
求項5の発明では、前記ヨー運動制御手段は、車両の旋
回制動時、この旋回方向に対し前外輪と後内輪のみを制
御対象車輪とし、一方の車輪の制動力を増加するととも
に他方の車輪の制動力を減少させてヨー運動を制御する
ことを特徴とする。
ヨーレイトと実ヨーレイトとからヨーレイト偏差とその
微分値が求められ、少なくともヨーレイト偏差の微分値
に基づいてヨー運動が制御されるが、同時に実ヨーレイ
トの微分値も求められ、この実ヨーレイトの微分値が増
大したときには、ヨー運動制御の制御ゲインが低下させ
られる。これにより、ヨー運動制御が応答性良く実施さ
れる一方、悪路走行時等に発生する振動成分が好適に排
除され、誤作動や制御性の悪化が防止される。
れば、実ヨーレイトの微分値が所定値以上の領域にある
ときには、この実ヨーレイトの微分値の増加に応じてき
め細かな調整がなされて好適に制御ゲインが低下させら
れる。また、請求項3の車両の旋回制御装置によれば、
実ヨーレイトの微分値がバンドパスフィルタ処理されて
実効値が求められ、振動成分が効率良く抽出されること
になり、この実効値に基づいて制御ゲインが好適に低下
させられる。
れば、ヨーレイト偏差及びヨーレイト偏差の微分値に基
づいてヨー運動が応答性良く且つ安定的に制御され、ヨ
ーレイト偏差の微分値に対する制御ゲインのみが低下さ
せられることで、誤作動や制御性の悪化が好適に防止さ
れる。また、請求項5の車両の旋回制御装置によれば、
車両の旋回制動時にあっては、旋回方向に対して前外
輪、或いは後内輪の一方の車輪の制動力が増加するよう
に制御され、他方の車輪の制動力が減少するように制御
され、従って、車両に回転モーメントが効果的に発生し
て良好な旋回制御が実施される。
が概略的に示されている。このブレーキシステムはタン
デム型のマスタシリンダ1を備えており、マスタシリン
ダ1は真空ブレーキブースタ2を介してブレーキペダル
3に接続されている。マスタシリンダ1の一対の圧力室
はリザーバ4にそれぞれ接続されている一方、これらの
圧力室からはメインブレーキ管路5、6が延びている。
(HU)7内を延び、そして、これらメインブレーキ管
路5,6は一対の分岐ブレーキ管路にそれぞれ分岐され
ている。メインブレーキ管路5からの分岐ブレーキ管路
8,9は左前輪FWL及び右後輪RWRのホイールブレー
キ(図示しない)にそれぞれ接続されており、メインブ
レーキ管路6からの分岐ブレーキ管路10,11は右前
輪FWR及び左後輪RWLのホイールブレーキ(図示しな
い)にそれぞれ接続されている。従って、各車輪のホイ
ールブレーキはクロス配管形式でタンデムマスタシリン
ダ1に接続されている。
は電磁弁がそれぞれ介挿されており、各電磁弁は入口バ
ルブ12と出口バルブ13とから構成されている。な
お、後輪のホイールブレーキとその対応する電磁弁、即
ち、入口バルブ12との間にはプロポーショナルバルブ
(PV)がそれぞれ介挿されている。分岐ブレーキ管路
8,9側において、その一対の電磁弁はその出口バルブ
13が戻り経路14を介してリザーバ4に接続されてお
り、また、分岐ブレーキ管路10,11側においても、
その一対の電磁弁の出口バルブ13が戻り経路15を介
してリザーバ4に接続されている。従って、各車輪のブ
レーキ圧はそのホイールブレーキ内の圧力を入口バルブ
及び出口バルブの開閉により給排することで制御され
る。
その途中にポンプ16,17の吐出口が逆止弁を介して
接続されており、これらポンプ16,17は共通のモー
タ18に連結されている。一方、ポンプ16,17の吸
い込み口は逆止弁を介して戻り経路14、15にそれぞ
れ接続されている。更に、メインブレーキ管路5、6に
は、ポンプ16,17との接続点よりも上流部分に電磁
弁からなるカットオフバルブ19,20が介挿されてお
り、また、これらカットオフバルブ19,20をバイパ
スするようにしてリリーフバルブ21がそれぞれ配設さ
れている。ここで、カットオフバルブ19,20はカッ
トオフバルブユニット(CVU)22を構成している。
カットオフバルブ19,20、また、モータ18は、電
子制御ユニット(ECU)23に電気的に接続されてい
る。より詳しくは、ECU23は、マイクロプロセッ
サ、RAM,ROMなどの記憶装置、また、入出力イン
ターフェースなどから構成されており、バルブ12,1
3,19,20及びモータ18は出力インタフェースに
接続されている。
は、各車輪に設けた車輪速センサ24や、モータ18の
回転速度を検出する回転速度センサ25が電気的に接続
されている。なお、図1においては作図上の都合から、
モータ18とECU23との間の接続及び回転速度セン
サ25とECU23との間の接続は省略されている。更
に、図2に示されているようにECU23の入力インタ
フェースには、車輪速センサ24や回転速度センサ25
以外に、ハンドル角センサ26、ペダルストロークセン
サ27、前後Gセンサ28、横Gセンサ29及びヨーレ
イトセンサ30が電気的に接続されている。
グハンドルの操舵量、即ち、ハンドル角を検出し、ペダ
ルストロークセンサ27はブレーキペダル3の踏み込み
量、即ち、ペダルストロークを検出する。前後G及び横
Gセンサ28,29は車両の前後方向及び横方向に作用
する前後加速度及び横加速度をそれぞれ検出し、ヨーレ
イトセンサ30は車両の重心周りのヨー角速度を検出す
る。
号に基づき種々の車両運動制御に従い、HU7及びCV
U22の作動を制御する。車両運動制御としては、図2
中、ECU23のブロック内に示されているように、車
両が旋回中にあるときのヨーモーメント制御、トラクシ
ョンコントロール(TCL)制御、アンチスキッドブレ
ーキ(ABS)制御、前後輪制動力配分制御などがあ
る。
ちでヨーモーメント制御に関連した機能がより詳しく示
されており、また、図4にはそのヨーモーメント制御関
連の機能を実行するメインルーチンが示されている。な
お、メインループの制御周期Tは例えば8msecに設定さ
れている。先ず、前述した各種センサからのセンサ信号
がECU23に供給されると、ECU23はセンサ信号
にフィルタ処理(図3のブロック32)を施す。ここで
のフィルタ処理には再帰型1次ローパスフィルタが使用
されている。なお、以下、特に記載しない限り、以下の
フィルタ処理にも再帰型1次ローパスフィルタが使用さ
れるものとする。
輪速Vw(i)、ハンドル角θ、ペダルストロークSt、前
後加速度Gx(前後Gx)、横加速度Gy(横Gy)及びヨ
ーレイトγは、図4のステップS1にて読み込まれ、そ
して、これらセンサ信号に基づいて車両の運動状態を示
す情報及びドライバの運転操作を判断するため情報が算
出される(ステップS2)。
に付した(i)は、各車輪の車輪速を纏めて示すためのも
のであって、iはその車輪を特定する1から4まで整数
である。例えば、i=1は左前輪、i=2は右前輪、i
=3は左後輪、i=4は右後輪を表す。なお、以降の参
照符号に付したiもまた同様な意味で使用する。図3で
みた場合、ステップS2の実行はその演算部34,36
でそれぞれ表されており、演算部34では車輪速Vw
(i)、前後Gx、横Gy及びヨーレイトγに基づき、車両
の運動状態が算出され、そして、演算部36ではハンド
ル角Th及びペダルストロークStに基づき、ドライバに
よるステアリングハンドルやブレーキペダルの操作状況
が判断される。
輪速Vw(i)の中から基準車輪速Vsが選択されるが、こ
こで、基準車輪速Vsはその駆動制御による車輪のスリ
ップの影響を受け難い車輪、具体的には車両が非制動時
の場合にあっては非駆動輪のうちで速い方の車輪速Vw
に設定され、制動時の場合には車輪速Vw(i)中最速の車
輪速Vwに設定される。なお、車両が非制動時にあるか
否かは後述するブレーキペダル3のペダル操作によって
設定されるブレーキフラグFbにより判定される。
車両が旋回中にある場合の内外輪間の速度差及び前後輪
間の速度比を考慮して、車両の重心位置での重心速度を
算出し、そして、この重心速度に基づいて車体速度を決
定する。先ず、ヨーレイトγ、フロントトレッドTf、
リヤトレッドTrを使用すれば、前輪間及び後輪間での
内外輪速度差ΔVif、ΔVirはそれぞれ次式で表され
る。
差ΔViaは、次式で表される。 ΔVia=γ×(Tf+Tr)/2 また、前後輪間の速度比に関しては、車両の旋回中心が
後車軸の延長線上にあり且つ車両が右旋回していると仮
定した場合に、右側及び左側の前後輪間の速度比Rvr、
Rvlは次式でそれ表される。
表すことができる。なお、上式中、δは前輪舵角(ハン
ドル角/ステアリングギヤ比)を表している。
正確には横Gyが小さいとき)にしか成立しないため、
前後輪間速度比Rvによる重心速度の補正は以下に示す
ように低速時のみに限定する。 Vbm≧30km/hの場合、Rv=1 Vbm<30km/hの場合、Rv=cos(δ) ここで、Vbmは前回のルーチンにて算出された車体速を
示しており、この車体速Vbの算出に関しては後述す
る。
るとすると、非制動時での旋回中、基準車輪速Vsは車
両の後外輪の車輪速に追従するので、その基準車輪速V
sに平均内外輪速度差ΔViaの1/2と、後車軸での速
度と重心での速度の速度差による補正を加えることで、
重心速度が得られる。しかしながら、その算出式の複雑
化を避けるため、重心速度を前車軸での速度と後車軸で
の速度との中間値であるとすれば、フィルタ処理前の重
心速度Vcgoは次式により算出することができる。
/Rv))/2 一方、制動時での旋回中にあっては、基準車輪速Vsは
車両の前外輪の車輪速に追従すると考えることができる
から、この場合、基準車輪速Vsに平均内外輪速度差Δ
Viaの1/2と、前車軸での速度と重心での速度との速
度差を補正することにより、フィルタ処理前の重心速度
Vcg0を下式から求めることができる。
連続して2回処理されて重心速度Vcg(=LPF(LPF(Vc
g0))が得られる。なお、重心速度Vcgの算出にあた
り、車両が非制動時であるか否かに関しては前述したブ
レーキフラグFbに基づいて判定される。
するので、車体速Vbには重心速度Vcgが設定される。
即ち、車体速Vbは通常、下式により算出される。 Vb=Vcg しかしながら、基準車輪速Vsを有する選択車輪がロッ
ク傾向に陥り、その選択車輪に対してもABS制御が開
始される状況にあっては、選択車輪のスリップに追従し
て基準車輪速Vsが沈み込み、実際の車体速よりも大き
く低下してしまう。
度Vsは前後Gxに基づき、以下の分離条件で重心速度V
cgから分離し、そして、以下の勾配で減少するものとし
て推定される。分離判定値をGxsとした場合、dVcg/d
t≦Gxsの状態が50msec継続しているか、又は、dVcg
/dt≦ -1.4gの条件を満たすとき、車体速度Vsは重心
速度Vcgから分離して推定される。
されている。 Gxs=−(|Gx|+0.2) 但し、-1.4g≦Gxs≦ -0.
35g 上述した分離条件が満たされると、車体速度Vsは下式
に基づいて推定される。 Vb=Vbm−ΔG Vbmは分離条件が満たされる前の車体速度を示してお
り、ΔGは以下の条件で設定される勾配を示している。
≦ΔG≦ -0.3g 車体速Vbが重心速度Vcgから分離して推定されている
とき、その重心速度Vcgに復帰する条件、即ち、分離終
了条件は以下の通りである。 Vcg>Vbm スリップ率:次に、算出した車体速Vbに対し、前述し
た平均内外輪速度差Via及び前後輪速度比Rvの補正を
加え、下式に基づき各車輪位置での参照車輪位置速度V
r(i)を算出する。
回の場合、外側の前後輪に対応した参照車輪位置速度で
は(+)、内側の前後輪の前後輪に対応した参照車輪位
置速度では(−)となり、これに対し、車両が左旋回の
場合、その正負は逆になる。
により算出された後、その算出値をフィルタ処理(fc=1
0Hz)して得られる。 Sl0(i)=(Vr(i)−Vw(i))/Vr(i) Sl(i)=LPF(Sl0(i)) なお、Sl0(i)はフィルタ処理前のスリップ率を示して
いる。
する角速度(車両の公転速度)をωとしたとき、重心ス
リップ角速度dβとヨーレイトγとの関係は次式で表さ
れる。 γ=dβ(=βg)+ω βg;重心スリップ角 ここで、重心スリップ角βgが小であると仮定し、車速
をVとすれば、下式が成立する。
重心スリップ角速度dβ0は、下式から得られる。 dβ0=γ−Gy/Vb ここでも、重心スリップ角速度dβ0をフィルタ処理(f
c=2Hz)することにより、次式に示すように重心スリッ
プ角速度dβが得られる。
dβの正負を アンダステア(US)側が正、オーバス
テア(OS)側で負とするため、車両の右旋回時には、
算出した重心スリップ角速度dβに(−)を乗算し、そ
の正負を反転させる。
の条件が満たされるときには、計算のオーバフローを防
止するため、重心スリップ角速度dβの算出を禁止し、
その重心スリップ角速度dβを0とする。 :運転操作の判断:ハンドル角速度;今、ハンドル角θ
が図5に示すように変化したとする。
でのハンドル角速度θaは、ハンドル角θの変化量をそ
の変化に要した時間で割って求めることができる。例え
ば、図5に示されるているように時刻nを基準とし時刻
n+4にてハンドル角θがΔθ(n+4)だけ変化したとする
と、時刻n+4でのハンドル角速度θa0(n+4)は、次式によ
り算出される。
ある。一方、ハンドル角θの変化がない状況では、ハン
ドル角速度θaは、ハンドル角θが最後に変化した時の
変化方向と同一方向にハンドル角θが最小変化量Δθmi
nだけ変化したと仮定し、その最小変化量Δθminを変化
に要した時間で割って求められている。例えば時刻n+2
でのハンドル角速度θa0(n+2)は、次式により算出され
る。
z)されることで、次式からハンドル角速度θaが算出さ
れる。 θa=LPF(θa0) ハンドル角速度実効値:ハンドル角速度実効値θaeは、
次式に示す如くハンドル角速度θaの絶対値をフィルタ
処理して得られる。
数)の値がハンドル角θaが増大側であるか減少側であ
るか否か、つまり、その値の正負によって異なってお
り、例えばハンドル角θaが増加する方向ではfc=20Hz、
逆に、ハンドル角θaが減少する方向ではfc=0.32Hzに設
定されている。
ペダルストローク速度Vstは、下式に示されているよう
にペダルストロークStの差分をフィルタ処理(fc=1H
z)して得られる。 Vst=LPF(St(n)−St(n-1)) ここで、St(n-1)は前回のルーチンにて読み込んだペダ
ルストロークであり、St(n)は今回のルーチンにて読み
込んだペダルストロークを示す。
たブレーキフラグFbは、ペダルストロークSt又はペダ
ルストローク速度Vstに基づいて以下のように設定され
る。St>Ste又はVst>50mm/sの条件が満たされると
き、Fb=1 上記の条件以外の時、Fb=0 ここで、Steは、ブレーキペダル3の踏み込みによりマ
スタシリンダ2内にて圧力が実際に立ち上がる踏み込み
量である。
準車輪速Vsの選択や、重心速度Vcgの算出の際に使用
される。 ブレーキペダルの踏み増しフラグ:踏み増しフラグFpp
は、ペダルストローク速度Vstに基づいて以下のように
設定される。
されている。この設定ルーチンでは、ペダルストローク
速度Vstが読み込まれると(ステップS201)、ステッ
プS202,S204での判別結果に基づき、踏み増しフラグ
Fppが設定される(ステップS203,S205)。
動状態を示す各種の情報や、ドライバの運転操作を判断
する各種の情報が得られると、図4でみて、次のステッ
プS3では、車両の旋回判定が実施される。図3でみた
場合、旋回方向の判定は演算部38にて実施され、その
詳細は図7に示されている。また、ステップS3の詳細
は図8の判定ルーチンに示されている。
基づき、車両の旋回方向及びカウンタステアが判定され
る。先ず、ハンドル角θに基づき、図7中のブロック内
に示したマップMθからハンドル角ベースの旋回方向フ
ラグFdsが決定される。具体的には、ハンドル角θが10
degを正の方向に越えると、旋回方向フラグFdsに1が
セットされ、この場合、その旋回方向フラグFdsは車両
が右旋回していること示す。これに対し、ハンドル角θ
が-10degを負の方向に越えると、旋回方向フラグFdsに
0がセットされ、その旋回方向フラグFdsは車両が左旋
回していること示す。
グFdsの設定は、図8中ステップS301〜S304に示され
ている。なお、ハンドル角θが-10deg≦θ≦10degの範
囲にある場合、旋回方向フラグFdsは前回のルーチンに
て設定された値に維持される。一方、ヨーレイトγに基
づき、図7中のブロック内に示したマップMγからヨー
レイトベースの旋回方向フラグFdyが決定される。具体
的には、ヨーレイトγが2deg/sを正の方向に越える
と、旋回方向フラグFdyに1がセットされ、この場合、
その旋回方向フラグFdyは車両が右旋回していることを
示す。これに対し、ヨーレイトγが-2deg/sを負の方向
に越えると、旋回方向フラグFdyに0がセットされ、そ
の旋回方向フラグFdyは車両が左旋回していること示
す。
グFdyの設定は、図8中ステップS305からS308に示さ
れており、また、ヨーレイトγが-2deg/s≦γ≦2deg/s
の範囲にある場合、旋回方向フラグFdyが前回のルーチ
ンにて設定された値に維持されることは言うまでもな
い。上述したようにして旋回方向フラグFds,Fdyが設
定されると、これらのうちの一方が図7中のスイッチS
Wfにより、旋回フラグFdとして選択される。スイッ
チSWfは、図7中の判定部40から出力される切り替
え信号によって切り替えられる。
が作動しており且つブレーキフラグFbに1が設定され
ている条件が満たされると、判定部40はスイッチSW
fを図7中破線の矢印で示すように上側に切り替える切
り替え信号を出力し、この場合、旋回フラグFdには下
式に示すようにハンドル角ベースの旋回方向フラグFds
が選択される。
チSWfは実線の矢印で示されているように切り替えら
れており、この場合、旋回フラグFdには下式に示すよ
うにヨーレイトベースの旋回方向フラグFdyが選択され
る。 Fd=Fdy ここでの旋回フラグFdの設定は図8中ステップS309〜
S311に示されている。
8中のステップS312では、旋回方向フラグFdsと旋回
方向フラグFdyとの値が一致しているか否かが判別さ
れ、ここでの判別結果が真(Yes)の場合、つまり、車
体のヨーイングの方向とステアリングハンドルの操作方
向が不一致の場合には、カンタステアフラグFcsに1が
セットされる(ステップS314)。
かの判別結果が偽(No)となる場合には、カウンタステ
アフラグFcsに0がセットされる(ステップS315)。 :目標ヨーレイトの計算:次に、図4のルーチンにてス
テップS3からステップS4に進むと、図3の演算部3
9にて車両の目標ヨーレイトが計算され、その詳細は図
9のブロック線図に示されている。
42に供給され、ここで、定常ゲインを求めた後、その
定常ゲインにブロック44、46で示すように2段階の
フィルタ処理を施すことにより、目標ヨーレイトγtが
計算される。ここで、前輪舵角δは前述したようにステ
アリングギヤ比をρとすると、次式で表される。
値を示しており、これは車両の線形2輪モデルから導く
ことができ、第1段のフィルタ処理はノイズ除去用のロ
ーパスフィルタ(LPF1)が使用され、第2段のフィルタ処
理には1次遅れ応答用のローパスフィルタ(LPF2)が使用
される。
算出される。 γt=LPF2(LPF1(Vb /(1+A×Vb2)×(δ/
L))) 上式において、Aはスタビリティファクタ、Lはホイー
ルベースをそれぞれ示している。 :要求ヨーモーメント計算:先のステップS4にて目標
ヨーレイトγtが算出されると、図3では演算部41、
また、図4のルーチンではステップS5にて要求ヨーモ
ーメントが計算され、これら演算部41及びステップS
5の詳細は図10のブロック線図及び図11のフローチ
ャートにそれぞれ示されている。
目標ヨーレイトγtと検出したヨーレイトγとの間のヨ
ーレイト偏差Δγが算出される。これは、図11でみて
ステップS501,S502に示されている。ここで、ステッ
プS502では、ヨーレイト偏差Δγの正負をアンダステ
ア(US)側で正、オーバステア(OS)側で負として
統一するため、車両の左旋回時にはヨーレイト偏差Δγ
の正負を反転させる。なお、車両の旋回方向は前述した
旋回フラグFdの値に基づいて判定することができる。
レイト偏差Δγの絶対値をフィルタ処理することで、下
式に示すように最大ヨーレイト偏差Δγmaxが算出され
る。 Δγmax=LPF(|Δγ|) ここでのフィルタ処理では、ヨーレイト偏差Δγが増大
しているか減少しているかによって、そのfcの値が異な
っており、例えば、その増大側ではfc=10Hz、その減少
側ではfc=0.08Hzに設定されている。
(後述するヨーモーメント制御開始終了フラグFymが0
のとき)、最大ヨーレイト偏差Δγmaxは、下式に示さ
れるようにヨーレイト偏差Δγの絶対値に設定される。 Δγmax=|Δγ| 次に、ヨーレイト偏差Δγは図10の微分部50にて下
式に示すように、その微分値つまり差分が算出された
後、フィルタ処理(fc=5Hz)されてヨーレイト偏差微分
値Δγsが得られる。
ト偏差である。また、ここでも、ヨーレイト偏差Δγで
の場合と同様な理由から、車両の左旋回時、ヨーレイト
偏差微分値Δγsの正負は反転されることになる。上述
したヨーレイト偏差微分値Δγsの算出ステップは、図
11のステップS503に示されている。
レイト偏差微分値Δγsには乗算部52にてフィードバ
ックゲイン、即ち、比例ゲインKpが乗算されるととも
に、ヨーレイト偏差Δγには乗算部54にて積分ゲイン
Kiが乗算され、そして、これらの乗算値は加算部56
にて加算される。更に、加算部56から出力される加算
値には、乗算部58にて補正値Cpiが乗算されること
で、要求ヨーモーメントγdが得られる。
るか否かによって異なる値をとり、例えば以下のように
設定されている。 制動時(Fb=1)の場合、 Cpi=1.0 非制動時(Fb=0)の場合、Cpi=1.5 上述した要求ヨーモーメントγdの算出は、図11のル
ーチンではステップS504,S505にて実施される。
ゲインKp,Kiを算出するステップであり、比例ゲイン
Kpの算出手順は図12のブロック線図に示されてい
る。比例ゲインKpは、USでの旋回時とOSでの旋回
時とで異なる基準値Kpu(例えば、4kgm/s/(deg/s2)),
Kpo(例えば、5kgm/s/(deg/s2))を有しており、これ
ら基準値Kpu,Kpoの使用はスイッチSWpにより選択さ
れる。
号にて切り替えられ、この判定部60は前述したヨーレ
イト偏差微分値Δγsが0以上となるUS時に、スイッ
チSWpを基準値Kpu側に切り替える判定信号を出力す
る。スイッチSWpから出力された基準値には乗算部6
2,64,66にて補正係数Kp1,Kp2,Kp3が順次乗
算され、これにより、比例ゲインKpが算出される。
出される。 US時;Kp=Kpu×Kp1×Kp2×Kp3 OS時;Kp=Kpo×Kp1×Kp2×Kp3 車両が限界走行領域に至る以前の段階で、車体に対する
ヨーモーメント制御が作動されてしまうと、ドライバに
違和感を与えてしまうため、補正係数Kp1はヨーレイト
偏差Δγ又は車体の横Gyが大となるときのみ比例ゲイ
ンKpが有効に働くように、この比例ゲインKpを補正す
るものであり、具体的には図13の算出ルーチンに従っ
て算出される。
大ヨーレイト偏差Δγmaxが10deg/sを越えたか否かが
判別され(ステップS506)、ここでの判別結果が真の場
合、補正係数Kp1に1.0が設定される(ステップS50
7)。 一方、ステップS506での判別結果が偽の場合にあって
は、車体の横Gyの絶対値が下式で示すようにフィルタ
処理され、その平均横Gyaが算出される(ステップS50
8)。
きfc=20Hz、減少側にあるときfc=0.23Hzに設定されてい
る。この後、車体速Vbに基づいて参照横Gyrが算出さ
れる(ステップS509)。具体的には、ECU23の記
憶装置には、図14に示すようなマップが予め準備され
ており、このマップから車体速Vbに基づき、参照横Gy
rが読み出される。マップから明らかなように車体速Vb
が高速領域にあるときには走行が不安派ェなり易いの
で、車体速Vbに対する参照横Gyrは低く設定されてい
る。
Gyrとが算出されると、平均横Gyaが参照横Gyrよりも
大きいか否かが判別され(ステップS510)、ここでの
判別結果が真の場合、補正係数Kp1に1.0が設定される
(ステップS507)。これに対し、その判別結果が偽の
場合にあっては、補正係数Kp1に0.05が設定される(ス
テップS511)。
例ゲインKpを補正するために使されている。即ち、目
標ヨーレイトγtに対しヨーレイトγを単純に追従させ
ると、路面が低μ路の場合、図15(a)に示されてい
るように車体の横力がその限界値に達し、車体の重心ス
リップ角βが増大する結果、車体がスピンしてしまう虞
があり、これを防止するために補正係数Kp2が設定され
る。つまり、補正係数Kp2が適切に設定されると、図1
5(b)に示されるように車体の重心スリップ角βが小
さく維持され、これにより、車体のスピンを防止できる
と考えられる。なお、図15中(c)は高μ路での場合
を示している。
設定ルーチンにて決定される。ここでは先ず、重心スリ
ップ角速度dβが読み込まれ(ステップS512)、この
重心スリップ角速度dβに基づき基準補正係数Kcbが図
17に示すマップから読み出される(ステップS51
3)。図17から明らかなように基準補正係数Kcbは例
えば、重心スリップ角速度dβが2deg/s以上になると
1.0の最大値から徐々に減少し、そして、5deg/s以上で
0.1の最小値に維持される。
γが読み込まれ、そして、前述したようにヨーレイト偏
差Δγの正負に基づき、旋回中、その旋回がUSである
否かが判別される(ステップS515)。ここでの判別結
果が真の場合には、補正係数Kp2に前記基準補正係数K
cbが設定され(ステップS516)、その判別結果が偽の
場合には補正係数Kp2に1.0が設定される(ステップS5
17)。つまり、車両の旋回がUSである場合、補正係数
Kp2は重心スリップ角速度dβに基づいて設定される
が、しかしながら、OSであるときには補正係数Kp2は
定数1.0に設定される。
テップに関しては後述する。一方、補正係数Kp3は、以
下の理由から比例ゲインKpを補正するために使用され
ている。即ち、車両が悪路を走行しており、ヨーレイト
センサ30の出力に振動成分が加わると、その振動成分
の影響がヨーレイト偏差微分値Δγsに大きく現れ、制
御の誤動作や制御性の悪化を招くことになる。それ故、
補正係数Kp3は比例ゲインKpを減少させて上述の不具
合を防止する。
18のブロック線図及び図19の設定ルーチンに示され
ている。図18に示されているようにヨーレイトセンサ
30から生の出力であるヨーレイトγoと、前回のルー
チンにて得られたヨーレイトγomとが減算部68に供給
され(ステップS522)、この減算部68にてヨーレイ
トγoとヨーレイトγomとの間の偏差、即ち、その微分
値Δγoが算出される。
(fc=12Hz)及び第2フィルタ処理(fc=10Hz)が施され
た後、これらフィルタ処理された微分値の偏差が減算部
70にて算出される。つまり、ヨーレイトγoの微分値
Δγoにはバンドパスフィルタ処理が施される。この
後、減算部70の出力である偏差は演算部72にてその
絶対値がとられ、第3フィルタ処理(fc=0.23Hz)を経
て、ヨーレイト振動成分γvとして出力される(ステッ
プS523)。
下式で示される。 Δγo=γo−γom γv=LPF3(|LPF1(Δγo)−LPF2(LPF1(Δγo))
|) このようにしてヨーレイト振動成分γvが算出される
と、図19のステップS524にて、そのヨーレイト振動
成分γvに基づき、補正係数Kp3が算出される。具体的
には、ここでも、図20に示すマップが予め準備されて
おり、このマップからヨーレイト振動成分γvに基づ
き、補正係数Kp3が読み出される。図20から明らかな
ように補正係数Kp3は、例えばヨーレイト振動成分γv
が10deg/s以上になると1.0から減少し、15deg/s以上で
0.2の一定値に維持される。
ゲインKiの算出手順がブロック線図で示されている。
ここでも、比例ゲインKpの場合と同様に基準積分ゲイ
ンKi0(例えば、10kgm/s/(deg/s))を使用し、この基
準積分ゲインKi0に乗算部74,76にて順次補正係数
Ki1,Ki2を乗算することで、積分ゲインKiが算出さ
れるようになっている。従って、積分ゲインKiは下式
から算出される。
させるために使用されている。即ち、前輪の操舵角が増
加すると、目標ヨーレイトγtの誤差がヨーレイト偏差
Δγの誤差を更に拡大し、制御の誤動作を招く虞がある
ので、このような状況にあっては補正係数Ki0により積
分ゲインKiを減少する。
すマップからハンドル角θに基づいて設定される。図2
2から明らかなようにハンドル角θの絶対値が400deg以
上の大舵角時にあっては、ハンドル角θの増加に伴い、
補正係数Ki1はその最大値から徐々に減少し、ハンドル
角θが600deg以上になると、0.5の最小値に維持される
ようになっている。
ンKpの補正係数Kp2と同様な理由から積分ゲインKi
を減少させるために使用されており、それ故、その算出
手順は補正係数Kp2の算出手順と同様に図16のルーチ
ンに併せて示されている。図16のステップS518では
ヨーレイト偏差微分値Δγsが読み込まれ、そして、そ
のヨーレイト偏差微分値Δγsの正負に基づき、車両の
旋回がUSであるか否かが判別される(ステップS51
9)。ここでの判別結果が真であると、補正係数Ki2に
前述した基準補正係数Kcbが設定され(ステップS52
0)、その判別結果が偽の場合には、補正係数Ki2に最
大値である1.0が設定される。
て要求ヨーモーメントγdが算出されると、図4のメイ
ンルーチンでは次のステップS6、また、図3では演算
部78のヨーモーメント制御が実施され、演算部78の
詳細は図23に示されている。先ず、図23のヨーモー
メント制御において、その制御開始終了判定部80では
要求ヨーモーメントγdに基づき、制御開始終了フラグ
Fymcが決定される。
は、図24の判定回路にて決定される。この判定回路は
OR回路81を備え、このOR回路81の2つの入力端
子には要求ヨーモーメントγdに応じたオンオフ信号が
入力される。詳細には、OR回路81の一方の入力端子
には、要求モーメントγdがOS側での閾値γos(例え
ば-100kgm/s)よりも小のときオン信号が入力され、他
方の入力端子には要求モーメントγdがUS側での閾値
γus(例えば200kgm/s)よりも大のときオン信号が入力
されるようになっている。従って、要求ヨーモーメント
γdが何れか一方の閾値を越えたとき、OR回路81の
出力端子からオン信号が出力され、このオン信号はフリ
ップフロップ82のセット端子Sに入力される。この結
果、フリップフロップ82の出力端子Qから制御開始終
了フラグFymc、この場合、制御の開始を示すFymc=1
が出力される。
gm/s)はUS側の閾値γusの絶対値(200kgm/s)よりも
小さく、これにより、OS側では制御開始終了フラグF
ymc=1の出力タイミング、つまり、ヨーモーメント制御
の開始タイミングは、US側での場合よりも早まること
になる。一方、フリップフロップ82のリセット端子R
には、制御開始終了フラグFymcのリセットタイミン
グ、つまり、フリップフロップ82からFymc=0の出
力タイミングを決定するためのリセット信号が供給され
るようになっている。
示されているようにスイッチ83を備えており、このス
イッチ83は2つの入力端子を有している。スイッチ8
3の一方の入力端子には第1終了判定時間tst1(例え
ば152msec)が供給されており、他方の入力端子には第2
終了判定時間tst2(例えば504msec)が供給されてい
る。
信号を受けて切り換えられるようになっており、ここ
で、判定部84は、車体の挙動が安定している場合、つ
まり、以下の条件が全て満たされている場合にはスイッ
チ83の出力端子から第1終了判定時間tst1を終了判
定時間tstとして出力させる第1切り換え信号を出力
し、上記の条件のうち1つでも満たされない場合にはス
イッチ83の出力端子から第2終了判定時間tst2を終
了判定時間tstとして出力させる第2切り換え信号を出
力する。
ヨーレイトγ<10deg/s且つハンドル角速度実効値θa
e<200deg/s 次に、終了判定時間tstの出力は判定部85に供給さ
れ、この判定部85では、ブレーキ圧の制御信号が保持
又は非制御の状態(後述する制御モードM(i)が保持又
は非制御モードである)が終了判定時間tst以上継続し
ている条件が満たされている場合に終了指示フラグFst
(i)=1を出力し、その条件が満たされない場合には終
了指示フラグFst(i)=0を出力するようになってい
る。なお、終了指示フラグFstのiは対応する車輪を表
している。また、ブレーキ圧の制御信号に関しては後述
する。
の入力端子にそれぞれ供給され、このAND回路86の
出力端子はOR回路87の一方の入力端子に接続されて
いる一方、その他方の入力端子には車体速Vbが10km/h
よりも遅いときにオン信号が入力されるようになってい
る。そして、OR回路87の出力端子が前述したフリッ
プフロップ82のリセット端子Rに接続されている。
(i)の値が全て1であるときにオン信号をOR回路87
に供給し、OR回路87はその入力側の何れかにオン信
号が供給されたとき、フリップフロップ82のリセット
端子Rにオン信号を供給する。つまり、車体速Vbが10k
m/hよりも遅くなるか、または、ブレーキ圧の制御信号
に関して前述の条件が各車輪の全てで満たされたとき、
フリップフロップ82にリセット信号が供給される。
け取ると、フリップフロップ82は、制御の終了を示す
制御開始終了フラグFymc=0を出力する。図23に示
されているように制御開始終了判定部80の出力、即
ち、制御開始終了フラグFymcはブレーキ圧制御モード
判定部88に供給され、この判定部88では、その制御
開始終了フラグFymcの値が1である場合、前述した要
求ヨーモーメントγdと旋回フラグFdとに基づき、各車
輪のブレーキ圧制御モードを判定する。
ーメントγdに基づき、US時及びOS時毎のブレーキ
圧制御の制御実行フラグFcus,Fcosがそれらの閾値と
の大小関係に基づき以下のようにして設定される。 US時:γd>γdus1(=100kgm/s)の場合、 Fcus=1 γd<γdus0(=80kgm/s)の場合、 Fcus=0 OS時:γd<γdos1(=-80kgm/s)の場合、 Fcos=1 γd>γdos0(=-60kgm/s)の場合、 Fcos=0 次に、制御実行フラグFcus,Fcosと、旋回フラグFd
の組み合わせに基づき、各車輪毎のブレーキ圧制御の制
御モードM(i)が選択され、この選択ルーチンは図26
に示されている。
て、先ず、旋回フラグFdの値が1であるか否かが判別
され(ステップS601)、ここでの判別結果が真の場合、
つまり、車両が右旋回している場合、制御実行フラグF
cusの値が1であるか否かが判別される(ステップS60
2)。 ここでの判別結果が真となる状況とは、旋回時における
車両のUS傾向が強く、要求モーメントγdが閾値γdus
1以上の大きな値であって、車両が回頭モーメントを要
求していることを意味している。この場合、左前輪FW
Lの制御モードM(1)は減圧モードに設定されるのに対
し、右後輪RWRの制御モードM(4)は増圧モードに設定
され、そして、右前輪FWR及び左後輪RWLの制御モー
ドM(2),M(3)は非制御モードに設定される(ステ
ップS603)。
制御実行フラグFcosの値が1であるか否かが判別され
る(ステップS604)。 ここでの判別結果が真となる状況とは、旋回時における
車両のOS傾向が強く、要求モーメントγdが閾値γdos
1未満の小さな値であって、車両が復元モーメントを要
求していることを意味している。この場合には、左前輪
FWLの制御モードM(1)は増圧モードに設定されるのに
対し、右後輪RWRの制御モードM(4)は減圧モードに設
定され、そして、右前輪FWR及び左後輪RWLの制御モ
ードM(2),M(3)は非制御モードに設定される(ス
テップS605)。
がともに偽となる状況とは、その旋回時、車体のUS傾
向及びOS傾向は共に強くないので、この場合、左前輪
FWL及び右後輪RWRの制御モードM(1),M(4)は共に
保持モードに設定され、そして、右前輪FWR及び左後
輪RWLの制御モードM(2),M(3)は非制御モード
に設定される(ステップS606)。
って、車両が左旋回している場合には、制御実行フラグ
Fcusの値が1であるか否かが判別される(ステップS6
07)。 ここでの判別結果が真となる状況では前述の右旋回の場
合と同様に車両が回頭モーメントを要求していることを
意味しており、この場合には右旋回の場合とは逆に、右
前輪FWRの制御モードM(2)が減圧モードに設定される
のに対し、左後輪RWLの制御モードM(3)が増圧モード
に設定され、そして、左前輪FWL及び右後輪RWRの制
御モードM(1),M(4)は非制御モードに設定される
(ステップS608)。
制御実行フラグFcosの値が1であるか否かが判別され
(ステップS609)、ここでの判別結果が真の場合、車
両は復元モーメントを要求しているので、右前輪FWR
の制御モードM(2)が増圧モードに設定されるのに対
し、左後輪RWLの制御モードM(3)が減圧モードに設定
され、そして、左前輪FWL及び右後輪RWRの制御モー
ドM(1),M(4)は非制御モードに設定される(ステ
ップS610)。
偽となる場合には、前述した右旋回の場合と同様に、右
前輪FWRL及び左後輪RWLの制御モードM(2),M(3)
は共に保持モードに設定され、そして、左前輪FWL及
び右後輪RWRの制御モードM(1),M(4)は非制御
モードに設定される(ステップS611)。 上述した制御モードM(i)の選択は、以下の表1に纏め
て示されている。
ードM(i)が選択されると、次のバルブ制御信号計算部
89では、制御モードM(i)と要求ヨーモーメントγdと
に基づき、各車輪のホイールブレーキのブレーキ圧を制
御する電磁弁、即ち、入口及び出口バルブ12,13に
対する制御信号が計算される。具体的には先ず、要求ヨ
ーモーメントを得るためのホイールシリンダ内の液圧、
つまり、ブレーキ圧に対する増減圧レート(増減圧の勾
配)が算出される。そして、この算出した増減圧レート
に従い実際のブレーキ圧を1回当たり一定の増減圧量Δ
Pでもって変化させるために、その増減圧量ΔPを実現
する上での入口又は出口バルブ12,13の駆動パル
ス、つまり、バルブ制御信号のパルス周期Tpls及びパ
ルス幅Wpls(i)を算出する。なお、増減圧量ΔPは例え
ば±5kg/cm2に設定されているが、しかしながら、応答
性を確保するため初回のみ増減圧量ΔPは±10kg/cm2に
設定されている。この点、図27を参照すれば、ホイー
ルシリンダ内のブレーキ圧が増減圧量ΔP毎に増減され
ている様子が示されている。
ードをベースとしてバルブ制御信号、つまり、その増圧
パルス信号又は減圧パルス信号の供給を受けて駆動され
ることになるが、ここで、その駆動はメインルーチンの
制御周期T(8msec)毎に指示されるため、実際の駆動
がパルス周期Tpls毎に行われるように駆動モードMpls
(i)を設定する。
幅Wpls(i)及び駆動モードMpls(i)に関して詳細に説明
する。先ず、前輪のホイールブレーキ内のブレーキ圧が
ΔPwcだけ変化したとき、車体のヨーモーメントの変化
量ΔMzは、車体の横力を無視すれば下式で表すことが
できる。
TFはフロントトレッドを示している。従って、要求ヨ
ーモーメントγdが与えられた際のブレーキ圧の増減圧
レートRpwc(kg/cm2/s)は下式で表すことができる。
固定されている場合、増減圧レートRpwcとパルス周期
Tplsとの関係から次式が導かれる。 |Rpwc|=ΔP/(Tpls×T(=8msec)) 上記の2式からパルス周期Tplsは次式で表される。
γd|) 但し、2≦Tpls≦12 なお、後輪側の入口及び出口バルブのパルス周期は前輪
側のパルス周期Tplsを使用する。次に、パルス幅Wpls
(i)に関しては実験により予め設定されており、この実
験ではマスタシリンダ圧及びホイールブレーキ圧(ブレ
ーキ圧)をそれぞれ基準圧とし、この状態で、そのバル
ブを駆動してからホイールブレーキ圧に増減圧量ΔP
(5kg/cm2又は10kg/cm2)の変化が現れる時間を計測
し、この時間に基づいてパルス幅Wpls(i)は設定されて
いる。なお、ホイールブレーキ圧の増圧には、前述した
ポンプ16又は17からの吐出圧が利用されるため、パ
ルス幅Wpls(i)は、ポンプ16又は17の応答遅れを考
慮して設定されるのが望ましい。
制御モードM(i)とパルス周期Tplsとに基づき、図28
に示す設定ルーチンに従って設定される。この設定ルー
チンでは、先ず制御モードM(i)が判定され(ステップ
S612)、ここで、制御モードM(i)が非制御である場合
には、増圧周期カウンタCNTi(i)及び減圧周期カウン
タCNTd(i)を共に0として、駆動モードMpls(i)に非
制御モードが設定される(ステップS613)。
には、駆動モードMpls(i)に保持モードが設定される
(ステップS614)。 制御モードM(i)が増圧モードである場合には、増圧周
期カウンタCNTi(i)のみが作動し(ステップS61
5)、そして、増圧周期カウンタCNTi(i)の値がパル
ス周期Tplsに達したか否かが判別される(ステップS6
16)。この時点ではその判別結果は偽であるから、次に
増圧周期カウンタCNTi(i)の値が0であるか否かが判
別され(ステップS617)、ここでの判別結果は真とな
る。従って、駆動モードMpls(i)に増圧モードが設定さ
れる(ステップS618)。
と、ステップS617の判別結果が偽に維持されるので、
駆動モードMpls(i)に保持モードが設定される(ステッ
プS619)。 しかしながら、時間の経過に伴い、ステップS616の判
別結果が真になり、増圧周期カウンタCNTi(i)の値が
0にリセットされると(ステップS620)、この場合、
ステップS617の判別結果が真となって、駆動モードMp
ls(i)に増圧モードが設定される(ステップS618)。従
って、制御モードM(i)が増圧モードであるとき、駆動
モードMpls(i)はパルス周期Tpls毎に増圧モードに設
定されることになる。
る場合には、図28中のステップS621〜S625のステッ
プがその増圧モードの場合と同様にして実行されること
により、駆動モードMpls(i)はパルス周期Tpls毎に減
圧モードに設定される。前述したようにして駆動モード
Mpls(i)及びパルス幅Wpls(i)が計算されると、次の増
減圧禁止補正部90(図23参照)では、ドライバによ
るカウンタステア時やスリップの過大時、また、制御の
オーバシュートを考慮してブレーキ圧の増減圧を禁止す
べくパルス幅Wpls(i)が補正され、その詳細は図29の
ブロック線図に示されている。
幅Wpls(i)は3つのスイッチ91,92,93を経るこ
とによりパルス幅Wpls1(i)として出力されるようにな
っており、これらスイッチは、設定部94,95,96
にて設定されたフラグの値により、その出力をWpls1
(i)=Wpls(i)又はWpls1(i)=0に切り換え可能となっ
ている。なお、増減圧禁止補正部90では、供給された
駆動モードMpls(i)がそのまま出力されるようになって
いる。
の増圧禁止フラグFk1(i)が設定される。具体的には、
設定部94はAND回路97を備えており、このAND
回路97の出力がスイッチ91に供給されるとともに、
その各入力には対応する条件が満たされるときにオン信
号がそれぞれ供給されるようになっている。ここで、各
オン信号の入力条件は、自輪が後輪である場合、カウン
タステアフラグFcsが1である場合、そして、制御モー
ドM(i)が増圧モードである場合とを有している。
がオン信号であるときに、増圧禁止フラグFk1(i)=1
を出力し、それ以外の場合には増圧禁止フラグFk1(i)
=0を出力することになる。スイッチ91は増圧禁止フ
ラグFk1(i)=1を受け取ると、図示の状態から切り換
えられ、これにより、パルス幅Wpls1(i)に0が設定さ
れる。なお、この場合、パルス幅Wpls1(i)を0にする
代わりに、その値を減少させるようにしてもよい。
止フラグFk2(i)が設定される。ここでも、設定部95
はAND回路98を備えており、このAND回路98の
出力がスイッチ92に供給されるとともに、その各入力
には対応する条件が満たされたときにオン信号がそれぞ
れ供給されるようになっている。ここでのオン信号の入
力条件は、スリップ率Sl(i)が許容スリップ率Slmax
(i)よりも大きい場合と、制御モードM(i)が増圧モード
である場合とである。
号であるときに、増圧禁止フラグFk2(i)=1を出力
し、それ以外の場合には増圧禁止フラグFk2(i)=0を
出力することになる。スイッチ92は増圧禁止フラグF
k2(i)=1を受け取ると、図示の状態から切り換えら
れ、この場合にも、パルス幅Wpls1(i)に0が設定され
る。なお、この場合、パルス幅Wpls(i)を0にする代わ
りに、その値を減少させるようにしてもよい。
モーメントγdの絶対値が所定値以上の減少傾向にある
条件が満たされたときに、ブレーキ圧制御のオーバシュ
ートを防止する防止フラグFk3=1をスイッチ93に出
力し、その条件が満たされないときには防止フラグFk3
=0をスイッチ93に出力する。ここでも、スイッチ9
3に防止フラグFk3=1が供給されたとき、スイッチ9
3は切り換えられ、パルス幅Wpls1(i)に0を設定す
る。
制御のブロック線図には予圧制御判定部100が含まれ
ており、この判定部100では、ヨーモメント制御の開
始に先立ち、ポンプ16,17や、入口及び出口バルブ
12,13並びにカットオフバルブ19,20の作動を
制御するための予圧フラグFpre1,Fpre2を設定する。
具体的には、要求ヨーモーメントの絶対値が所定値以上
に大きくなったり又は最大ヨーレイト偏差Δγmaxが所
定値以上に大きくなってヨーモーメント制御が開始され
るような状況に至ると、予圧フラグFpre1=1又はFpr
e2=1が一定の継続時間(例えば96msec)だけ設定さ
れ、その継続時間中にヨーモーメント制御が開始される
と、その開始時点で予圧フラグFpre1又はFpre2は0に
リセットされる。なお、予圧フラグFpre1=1は車両の
右旋回時に設定され、これに対し、予圧フラグFpre2は
車両の左旋回時に設定される。
111が含まれており、この強制変更部111の詳細は
図30に示されている。強制変更部111では、パルス
幅Wpls(i)及び駆動モードMpls(i)が種々の状況に応じ
て強制的に変更可能であり、これらパルス幅Wpls(i)及
び駆動モードMpls(i)は強制変更部111を通過する
と、パルス幅Wy(i)及び駆動モードMy(i)として出力さ
れる。
s(i)は、スイッチ112〜117を経て駆動モードMy
(i)となり、これらスイッチ112〜117はフラグの
供給を受け、そのフラグの値に従って切り換えられる。
即ち、スイッチ112は、非制御対角ホールド判定部1
18から出力されるフラグFhld(i)により切り換えら
れ、その判定部118では、車両が非制動中(Fb=
0)にあってポンプ16,17の作動しているとき(後
述するモータ駆動フラグFmtr=1であるとき)、非制
御モードの車輪に対応したフラグFhld(i)を1に設定す
る。従って、この場合、スイッチ112は、駆動モード
Mpls(i)中の非制御モードの車輪を保持モードに強制的
に切り換えた駆動モードMpls1(i)を出力し、これに対
し、フラグFhld(i)=0の場合には駆動モードMpls(i)
をそのまま出力する。駆動モードWpls1(i)にあって
は、非制御中の車輪が保持モードに強制的に切り換えら
れているので、ポンプ16,17からの吐出圧がその車
輪のホイールブレーキに供給されることはない。
から出力される終了フラグFfin(i)により切り換えら
れ、その判定部119では、ヨーモーメント制御の終了
(Fymc=0)後、一定の期間(例えば340msec)の間に
亘り所定の周期(例えば40msec)でもって所定時間(例
えば16msec)、終了フラグFfin(i)を1に設定する。こ
の終了フラグFfin(i)は後述するようにカットオフバル
ブ19,20の開閉制御にも使用される。
スイッチ113は、駆動モードMpls(i)中、制御対象に
あった車輪を保持モードに切り換えた駆動モードMpls2
(i)を出力し、これに対し、フラグFfin=0の場合には
駆動モードMpls(i)をそのまま出力する。このようにヨ
ーモーメント制御の終了後、制御対象にあった車輪の駆
動モードが周期的に保持モードに切り換えられると、制
御対象車輪のブレーキ圧が急激に変化することはなく、
車両の挙動を安定させることができる。
部100から出力される予圧フラグFpre1,Fpre2によ
り切り換えられ、これら予圧フラグFpre1=1又はFpr
e2=1を受け取ると、スイッチ114は駆動モードMpl
s(i)中、その制御対象の車輪を保持モードに強制的に切
り換えた駆動モードMpls3(i)を出力し、Fpre1=Fpre
2=0の場合には駆動モードMpls(i)をそのまま出力す
る。ここで、図23に関する前述の説明では、制御開始
終了判定部80からの制御開始終了フラグFymc=1の
出力を受けて制御モードM(i)及び駆動モードMpls(i)
が設定されるとしたが、これら制御モードM(i)及び駆
動モードMpls(i)は、制御開始終了フラグFymcに拘わ
らず設定されている。それ故、駆動モードMpls(i)が駆
動モードMpls3(i)に設定され、前述の予圧制御が開始
されても、ヨーモーメント制御の開始前に、その制御対
象の車輪のブレーキ圧に悪影響を与えることはない。
0から出力される解放フラグFrpにより切り換えられ、
判定部120は制動時のヨーモーメント制御中、ブレー
キペダル3が解放されたとき、解放フラグFrpを1に所
定時間(例えば64msec)だけ設定する。解放フラグFrp
=1を受け取ると、スイッチ115は駆動モードMpls
(i)中、減圧モードの車輪のブレーキ圧を強制的に減圧
させる駆動モードMpls4(i)を出力し、解放フラグFrp
=0の場合には駆動モードMpls(i)をそのまま出力す
る。
も供給され、Frp=1の場合、スイッチ121はパルス
幅Wpls(i)の値を強制的に制御周期T(=8msec)に変更
したパルス幅Wy(i)を出力し、Frp=0の場合にはパル
ス幅Wpls(i)をそのままパルス幅Wy(i)として出力す
る。スイッチ116は、ペダル踏み増し判定部122か
ら出力される踏み増しフラグFppにより切り換えられ、
この踏み増しフラグFppは図6のルーチンに従い前述し
たようにして設定される。Fpp=1を受け取ると、スイ
ッチ116は、駆動モードMpls(i)の代わりに、全ての
車輪を非制御モードに強制的に切り換える駆動モードM
pls5(i)を出力し、Fpp=0の場合には駆動モードMpls
(i)をそのまま出力する。駆動モードがMpls5(i)に設定
されると、ドライバによるブレーキペダル操作を各車輪
のブレーキ圧に反映させることができる。
力される後退フラグFrevにより切り換えられ、その判
定部123は、車両の変速機において、後退ギヤが選択
されたとき、後退フラグFrevを1に設定し、これ以外
の場合には後退フラグFrevに0を設定する。フラグFr
ev=1を受け取ると、スイッチ117は、駆動モードM
pls(i)の代わりに、全ての車輪を非制御モードに強制的
に切り換える駆動モードMy(i)を出力し、Frev=0の
場合には駆動モードMpls(i)を駆動モードMy(i)として
出力する。
制変更部111からの出力、即ち、駆動モードMy(i)及
び予圧制御判定部100からのフラグは、駆動判定部1
24にも供給されており、この駆動判定部124の詳細
は図31から図34に示されている。先ず、図31に示
す判定回路125では、各車輪のホイールシリンダ毎に
カットオフバルブ19,20及びモータ18の駆動を要
求するフラグが設定される。
6,127を備えており、一方のAND回路126はそ
の入力がブレーキフラグFb=1且つ駆動モードMy(i)
が増圧モードであるとき、増圧モードであるiをOR回
路128に出力する。他方のAND回路127はその入
力がブレーキフラグFb=0且つ駆動モードMy(i)が非
制御モードであるときに、非制御モードではないiをO
R回路128に出力する。つまり、AND回路127の
駆動モード側の入力はNOT回路129を介して供給さ
れるようになっている。
27からの出力を受けると、モータ18の駆動を要求す
る要求フラグFmon(i)のうち、供給を受けたiに対応す
る要求フラグFmon(i)の値を1にして出力する。また、
OR回路128の出力はフリップフロップ130のセッ
ト端子にも供給されており、そのリセット端子には駆動
モードMy(i)が非制御であるとき、そのi毎にリセット
信号が入力されるようになっている。
求フラグFmon(i)=1が供給されると、フリップフロッ
プ130は、カットオフバルブ19,20の駆動を要求
する要求フラグFcov(i)のうち、要求フラグFmon(i)=
1のiに対応した要求フラグFcov(i)の値を1として出
力し続け、そして、リセット信号を受けたとき、全ての
要求フラグFcov(i)の値を0にリセットする。
132を備えており、このOR回路132はその入力で
ある左前輪FWL及び右後輪RWR側のカットオフバルブ
19に関する要求フラグFcov(1),Fcov(4) 、終了フ
ラグFfin(1),Ffin(4)、予圧フラグFpre1の値のうち
の何れかが1であるときに、カットオフバルブ19を駆
動するカット駆動フラグFvd1の値を1として出力す
る。
vd1は、更にスイッチ133,134を経て出力され、
ここで、スイッチ133は踏み増しフラグFppによって
切り換えられ、スイッチ134は後退フラグFrevによ
って切り換えられるようになっている。つまり、OR回
路132の出力がFvd1=1であっても、踏み増しフラ
グFpp及び後退フラグFrevの一方が1に設定されてい
る場合、カット駆動フラグFvd1は0にリセット(非制
御モード)される。
回路131と同様な構成及び機能を有しているが、その
OR回路136には右前輪FWR及び左後輪FWL側のカ
ットオフバルブ20に関する要求フラグFcov(2),Fco
v(3),終了フラグFfin(2),Ffin(3)、予圧フラグFpre2
が入力される点で判定回路131とは異なり、OR回路
136は、この場合、カットオフバルブ20を駆動する
カット駆動フラグFvd2をスイッチ137,138を経
て出力する。
には、モータ18の駆動を要求する車輪毎の要求フラグ
Fmon(i)の値、又、予圧制御が作動中であることを示す
予圧フラグFpre1,Fpre2の値の何れかが1であるとき
に、モータ駆動フラグFmtrの値を1にして出力する。 :ABS協調制御:前述したヨーモーメント制御におい
て、駆動モードMy(i)、パルス幅Wy(i)、カット駆動フ
ラグFvd1,Fvd2及びモータ駆動フラグFmtrが設定され
ると、ABS制御との協調制御が実施される(図3の判
定部78a及び図4のステップS7を参照)。
制御に協調してヨーモーメント制御を実行するため、A
BS協調制御では、ABS制御を考慮した各車輪の駆動
モードMabs(i)及びパルス幅Wabs(i)が設定される。こ
こで、駆動モードMabs(i)及びパルス幅Wabs(i)の設定
に関しての詳細な説明は省略するが、これら駆動モード
Mabs(i)及びパルス幅Wabs(i)に対しても、前述した増
減圧禁止補正部90(図29参照)及び制御信号強制変
更部111(図30参照)での働きが反映されることに
留意すべきである。
機能を説明すれば、ABS制御中での旋回時、車両が回
頭又は復元モーメントを要求する状況にある場合、AB
S協調制御では駆動モードMabs(i)及びパルス幅Wabs
(i)が以下のように設定される。即ち、図35のABS
協調ルーチンに示されているようにステップS701で
は、ABS制御が作動中であるか否かが判別される。な
お、ここでの判別は、ABS制御の作動中を車輪毎に示
すフラグFabs(i)が1であるか否かに基づいてなされ、
そのフラグFabs(i)は、図示しないABS制御ルーチン
にて、公知の如くその車輪のスリップ率の変化動向に基
づいて設定されることになる。
前述した制御実行フラグFcus又はFcosが1であるか否
かが判別され(ステップS702)、ここでの判別結果が
真の場合、つまり、旋回時、車両が回頭又は復元モーメ
ントを要求しているような状況にあると、次のステップ
S703にて、駆動モードMabs(i)及びパルス幅Wabs(i)
は以下のように設定される。
行される場合、 1)回頭モーメントを更に得るには、旋回方向でみて内
側となる前輪FWを減圧モードに設定し、そのパルス幅
は外側の前輪FWのパルス幅と同一に設定する。 2)復元モーメントを更に得るには、旋回方向でみて外
側となる後輪RWを減圧モードに設定し、そのパルス幅
は内側の後輪のパルス幅と同一に設定する。
らず、前後の左右車輪間に対しても実行可能である。つ
まり、左右車輪間の制動力差に基づき、ヨーモーメント
制御を実行する場合、外側の車輪の制動力を増圧モード
とし、内側車輪の制動力を減圧モードにすれば車両に復
元モーメントを発生させることができ、これに対し、外
側の車輪の制動力を減圧モードとし、内側車輪の制動力
を増圧モードにすれば車両に回頭モーメントを発生させ
ることができる。
間で実行される場合にあって、回頭モーメントを更に得
るには、外側の前輪を減圧モードに設定し、そのパルス
幅を外側後輪のパルス幅と同一に設定する。これに対
し、ヨーモーメント制御が左右の前輪間で実行される場
合にあって、復元モーメントを更に得るには、内側の後
輪を減圧モードに設定し、そのそのパルス幅を内側前輪
のパルス幅と同一に設定する。
別結果が偽の場合にあっては、ステップS703を実行す
ることなく、このルーチンを終了する。 :制御信号選択:ABS制御との協調ルーチン、つま
り、図4にてステップS7を抜けると、次のステップS
8では制御信号の選択ルーチンが実施され、このルーチ
ンを実施する選択回路140は図36に示されている。
なお、図36中には前述した図35のルーチンを実施す
るブロック141,142をも併せて示されている。
146を備えており、スイッチ143には、ブロック1
41を通過した後の駆動モードMabs(i)と、前述したヨ
ーモーメント制御にて設定された駆動モードMy(i)が入
力されるようになっており、スイッチ144には、ブロ
ック142を通過した後のパルス幅Wabs(i)と、ヨーモ
ーメント制御にて設定されたパルス幅Wy(i)が入力され
るようになっている。
にて設定されたカット駆動フラグFvd1,Fvd2と、これ
らフラグをリセットする0とが入力されるようになって
いる。そして、スイッチ146にはヨーモーメント制御
にて設定されたモータ駆動フラグFmtrがOR回路14
7を介して入力されるとともに、ABS制御時でのモー
タ駆動フラグFmabsが入力され、また、このモータ駆動
フラグFmabsはOR回路147の他方の入力端子にも供
給されるようになっている。なお、モータ駆動フラグF
mabsは、ABS制御自体によって設定されるフラグであ
り、ABS制御が開始されたときFmabs=1に設定され
る。
148から出力されるフラグの結果を受けて切り換えら
れるものとなっている。即ち、判定部148はOR回路
149を備えており、OR回路149はその入力が車輪
が3輪以上ABS制御中にあるか又はヨーモーメント制
御での駆動モードMy(i)が減圧モードでないときに、減
圧モードの車輪に対応したフラグFmy(i)=1をAND
回路150に出力する。なお、車輪が3輪以上ABS制
御中にあるときには、スイッチ145,146に向けて
フラグFabs3=1が供給されるようになっている。
制御での駆動モードMabs(i)が非制御モードでないとき
に駆動モードMabs(i)=1が入力され、そして、AND
回路150からは、その入力のフラグFmy(i)とMabs
(i)中、iの番号が一致したフラグFm_a(i)を1に設定
してスイッチ143,144にそれぞれ出力するように
なっている。
判定部148からスイッチ145,146に向けてフラ
グFabs3=1がそれぞれ供給されるので、スイッチ14
5はカット駆動フラグFvd1,Fvd2、つまり、Fv1=F
v2=1を出力し、スイッチ146はモータ駆動フラグF
mabsをFmとして出力する。これに対し、スイッチ14
5,146にフラグFabs3=0が供給される場合、スイ
ッチ145はカット駆動フラグFvd1,Fvd2をそれぞれ
Fv1,Fv2として出力し、スイッチ146はモータ駆動
フラグFmtrをFmとして出力する。ここで、モータ駆動
フラグFmabsはOR回路147を介してスイッチ146
に供給されているから、このスイッチ146の切り換え
に拘わらず、モータ駆動フラグFmabs,Fmtrの何れか
が1に設定された時点で、スイッチ146からはモータ
駆動フラグFm=1が出力されることになる。
されると、そのAND回路150からスイッチ143,
144にフラグFm_a(i)=1が供給され、この場合、ス
イッチ143は駆動モードMabs(i)を駆動モードMM
(i)として出力し、スイッチ144はパルス幅Wabs(i)
をパルス幅WW(i)として出力する。これに対し、スイ
ッチ134,144にフラグFm_a(i)=0が供給されて
いる場合には、スイッチ143は駆動モードMy(i)を駆
動モードMM(i)として出力し、スイッチ144はパル
ス幅Wy(i)をパルス幅WW(i)として出力する。
40から駆動モードMM(i)及びパルス幅WW(i)が出力
されると、これらは図3では駆動信号初期設定部15
1、また、図4ではステップS9にて、実駆動モードM
exe(i)及び実パルス幅Wexe(i)として設定され、そし
て、実駆動モードMexe(i)及び実パルス幅Wexe(i)に初
期値が与えられる。
り、ここでは、先ず、割込禁止処理が実行された後(ス
テップS901)、駆動モードMM(i)が判別される(ステ
ップS902)。ステップS902の判別結果が非制御モード
である場合には、実駆動モードMexe(i)に増圧モードが
設定されるとともに実パルス幅Wexe(i)にメインルーチ
ンの制御周期T(=8msec)が設定され(ステップS90
3)、そして、割込許可処理が実行された後(ステップ
S904)、ここでのルーチンは終了する。
ある場合には、実駆動モードMexe(i)が増圧モードであ
るか否かが判別される(ステップS905)。しかしなが
ら、この時点では未だ実駆動モードMexe(i)は設定され
ていないので、その結果は偽となり、この場合には、実
駆動モードMexe(i)に駆動モードMM(i)、即ち、増圧
モードが設定されるとともに実パルス幅Wexe(i)にパル
ス幅WW(i)が設定された後(ステップS906)、このル
ーチンはステップS904を経て終了する。
ップS902の判別結果が増圧モードに維持されている
と、この場合、ステップS905の判別結果は真となっ
て、パルス幅WW(i)が実パルス幅Wexe(i)よりも小さ
いか否かが判別される(ステップS907)。ここで、メ
インルーチンが制御周期T毎に実行されることから明ら
かなようにパルス幅WW(i)は制御周期T毎に新たに設
定されるものの、実パルス幅Wexe(i)は後述するように
入口又は出口バルブが実際に駆動されると、その駆動に
伴い減少するので、ステップS907での判別結果によ
り、現時点にて、新たに設定されたパルス幅WW(i)が
残りの実パルス幅Wexe(i)よりも長ければ、その実パル
ス幅Wexe(i)に新たなパルス幅WW(i)を設定する(ス
テップS908)。しかしながら、ステップS907の判別結
果が偽となる場合には、その実パルス幅Wexe(i)に新た
なパルスWW(i)を設定し直すことなく、残りの実パル
ス幅Wexe(i)が維持される。
ードである場合には、ステップS909からS912のステッ
プが実施され、前述した増圧モードでの場合と同様にし
て、実駆動モードMexe(i)及び実パルス幅Wexe(i)が設
定される。更に、ステップS902の判別結果が減圧モー
ドである場合には、実駆動モードMexe(i)に保持モード
が設定される(ステップS913)。
動モードMexe(i)及び実パルス幅Wexe(i)が設定される
と、これらは図3では駆動信号初期設定部151からバ
ルブ駆動部152に出力され、また、図4のメインルー
チンではステップS10が実施される。ステップS10で
は、実駆動モードMexe(i)及び実パルス幅Wexe(i)に加
え、前述の制御信号選択ルーチンにて設定されたカット
駆動フラグFv1,Fv2やモータ駆動フラグFmに基づ
き、カットオフバルブ19,20及びモータ18を駆動
するための駆動信号もまた出力される。
の場合には、カットオフバルブ19を閉弁する駆動信号
が出力され、カット駆動フラグFv2がFv2=1の場合に
は、カットオフバルブ20を閉弁する駆動信号が出力さ
れる。これに対し、カット駆動フラグFv1,Fv2が0に
リセットされている場合、カットオフバルブ19、20
は開弁状態に維持される。一方、モータ駆動フラグFm
がFm=1の場合にはモータ18を駆動する駆動信号が
出力され、Fm=0の場合、モータ18は駆動されな
い。
ルブ駆動部152に実駆動モードMexe(i)及び実パルス
幅Wexe(i)が供給されると、このバルブ駆動部152で
は図38に示す駆動ルーチンに従って入口及び出口バル
ブ12,13を駆動する。ここで、図38の駆動ルーチ
ンは、図4のメインルーチンとは独立して実行され、そ
の実行周期は1msecである。
ードMexe(i)が判別され(ステップS1001)、ここでの
判別にて、実駆動モードMexe(i)が増圧モードの場合に
あっては、その実パルス幅Wexe(i)が0よりも大きか否
かが判別される(ステップS1002)。ここでの判別結果
が真であると、車輪に対応した入口及び出口バルブ+1
2,13に関し、入口バルブは開弁されるのに対して出
口バルブ13は閉弁され、そして、実パルス幅Wexe(i)
はその実行周期だけ減少される(ステップS1003)。従
って、ステップS1003が実施されるとき、モータ18が
既に駆動され、そして、対応するカットオフバルブ19
又は20が閉弁されていれば、車輪に対応したホイール
ブレーキは増圧されることになる。
されている状態で、駆動ルーチンが繰り返して実行さ
れ、そして、ステップS1002の判別結果が偽になると、
この時点で、その車輪に対応した入口及び出口バルブ1
2,13に関し、これら入口及び出口バルブは共に閉弁
され、そして、実駆動モードMexe(i)は保持モードに設
定される(ステップS1004)。
Mexe(i)が減圧モードである場合にあっては、ここで
も、その実パルス幅Wexe(i)が0よりも大きか否かが判
別される(ステップS1005)。ここでの判別結果が真で
あると、車輪に対応した入口及び出口バルブ12,13
に関し、入口バルブは閉弁されるのに対して出口バルブ
13は開弁され、そして、実パルス幅Wexe(i)はその実
行周期だけ減少される(ステップS1006)。従って、ス
テップS1006の実施により、車輪に対応したホイールブ
レーキは減圧されることになる。
圧モードに維持されている状態で、駆動ルーチンが繰り
返して実行され、そして、ステップS1005の判別結果が
偽になると、この時点で、その車輪に対応した入口及び
出口バルブ12,13に関し、これら入口及び出口バル
ブは共に閉弁され、そして、実駆動モードMexe(i)は保
持モードに設定される(ステップS1007)。
Mexe(i)が保持モードである場合にあっては、その車輪
に対応した入口及び出口バルブ12,13は共に閉弁さ
れる(ステップS1008)。 図39を参照すると、前述した駆動モードMM(i)、パ
ルス幅WW(i)、実駆動モードMexe(i)、実パルス幅We
xe(i)の関係がタイムチャートで示されている。
御:今、車両が走行中にあり、図4のメインルーチンが
繰り返して実行されているとする。この状態で、メイン
ルーチンのステップS3、即ち、図8の旋回判定ルーチ
ンにて、ハンドル角θ及びヨーレイトγから車両の旋回
を示す旋回フラグFdがFd=1に設定されていると、こ
の場合、車両は右旋回している状態にある。
ップS4,S5を経て要求ヨーモーメントγdが求めら
れ、そして、ステップS6のヨーモーメント制御が実行
されると、このヨーモーメント制御では、制御開始終了
フラグFymc(図24の判定回路参照)がFymc=1であ
ることを条件として制御モードの選択ルーチンが実行さ
れ、図26の選択ルーチンに従い、各車輪毎の制御モー
ドM(i)が設定される。
ているので、図26の選択ルーチンではステップS601
の判別結果が真となり、ステップS602以降のステップ
が実施される。 US傾向の右旋回:この場合、ステップS602の判別結
果が真、つまり、制御実行フラグFcusがFcus=1であ
って、車両のUS傾向が強いような状況にあると、左前
輪(外前輪)FWLの制御モードM(1)は減圧モードに設
定されるとともに、右後輪(内後輪)RWRの制御モー
ドM(4)は増圧モードに設定され、そして、他の2輪の
制御モードM(2),M(3)はそれぞれ非制御モードに設定
される(表1及びステップS603参照)。
求ヨーモーメントγdに基づき、前述したようにして駆
動モードMpls(i)が設定され(図28の設定ルーチン参
照)、また、各車輪毎のパルス幅Wpls(i)が設定され
る。そして、これら駆動モードMpls(i)及びパルス幅W
pls(i)は、図23の増圧禁止補正部90及び制御信号の
強制変更部111を経て、駆動モードMy(i)及びパルス
幅Wy(i)となる。
り、図31〜図34の判定回路において、図31の判定
回路125では、ブレーキフラグFbがFb=1(制動
中)且つ駆動モードMy(i)が増圧モードである場合、そ
のAND回路126及びOR回路128を介してモータ
18の駆動を要求する車輪毎の要求フラグFmon(i)、ま
た、フリップフロップ130を介してカットオフバルブ
19,20の駆動を要求する車輪毎の要求フラグFcov
(i)がそれぞれ1に設定される。
い右旋回時にあってブレーキペダル3が踏み込まれてい
る状況では、判定回路125の出力がFmon(4)=Fcov
(4)=1となり、そして、図32の判定回路131(O
R回路132)からカット駆動フラグFvd1がFvd1=1
として出力され、また、図34の判定回路、即ち、OR
回路139からはモータ駆動フラグFmtrがFmtr=1と
して出力される。ここで、要求フラグFcov(2)=Fcov
(3)=0であるから、図33の判定回路135(OR回
路136)から出力されるカット駆動フラグFvd2に関
してはFvd2=0となる。
動フラグ、この場合にはFvd1のみが1となる。この
後、カット駆動フラグFvd1=1及びモータ駆動フラグ
Fmtr=1は、図3の制御信号の選択部140(図36
ではスイッチ145,14)を経てFv1=1,Fv2=
0,Fm=1となり、そして、これらフラグは駆動信号
としてカットオフバルブ19,20及びモータ18に供
給される。即ち、この場合、左前輪FWL及び右後輪R
WRのホイールブレーキと組をなすカットオフバルブ1
9のみが閉弁されるとともに、右前輪FWR及び左後輪
RWLのホイールブレーキと組をなすカットオフバルブ
20は開弁状態に維持されたままとなり、そして、モー
タ18が駆動される。このモータ18の駆動により、ポ
ンプ16,17から圧液が吐出される。
ない非制動時の場合にあっては、左前輪FWLの制御モ
ードM(1)及び右後輪RWRの制御モードM(4)が非制御
モードではないので、判定回路125のAND回路12
7及びOR回路128を介して要求フラグFmon(1)=F
mon(4)=1が出力され、そして、そのフリップフロップ
130からはFcov(1)=Fcov(4)=1が出力されること
になる。従って、この場合にも、モータ駆動フラグFmt
r=1となってモータ18、即ち、ポンプ16,17が
駆動され、そして、カット駆動フラグFvd1のみが1に
設定される結果、カットオフバルブ19のみが閉弁され
る。
は、前述した駆動モードMpls(i)が制御信号の強制変更
部111(図23)にて処理されると、その非制御対角
ホールド判定部118(図30)の出力であるフラグF
hldが1に設定されるので、スイッチ112が切り換え
られ、非制御モードにある駆動モードMpls(i)は保持モ
ードに強制的に変更されることに留意すべきである。
ては、要求ヨーモーメントγdの算出に関し(図10参
照)、その補正値Cpiが制動時の場合の1.0よりも大き
い1.5に設定されているから、要求ヨーモーメントγdは
嵩上げされることになる。この嵩上げは駆動モードMpl
s(i)、即ち、My(i)が実行されるパルス周期Tplsを短
くすることになるから、駆動モードMy(i)が増圧モード
又は減圧モードである場合、その増減が強力に実行され
ることに留意すべきである。
y(i)は前述したように制御信号選択部140を経て駆動
モードMM(i)及びパルス幅WW(i)として設定され、更
に、これらに基づき実駆動モードMexe(i)及び実パルス
幅Wexe(i)が設定される結果、実駆動モードMexe(i)及
び実パルス幅Wexe(i)に従い、対応する入口及び出口バ
ルブ12,13が駆動される(図38の駆動ルーチン参
照)。
って且つ制動時の場合、左前輪FWLのホイールブレー
キに関してはその実駆動モードMexc(1)が減圧モードで
あるから、そのホイールブレーキに対応した入口バルブ
12は閉弁され且つ出口バルブ13が開弁される結果
(図38のステップS1006)、左前輪FWLのブレーキ
圧は減少される。一方、この場合、右後輪RWRのホイ
ールブレーキに関してはその実駆動モードMexe(4)が増
圧モードであるから、そのホイールブレーキに対応した
入口バルブ12は開弁され且つ出口バルブ13が閉弁さ
れる(図38のステップS1003)。ここで、この時点で
は、前述したようにカットオフバルブ19が閉弁され、
そして、モータ18によりポンプ16,17が駆動され
ている状況にあるから、右後輪RWRのホイールブレー
キに至る分岐ブレーキ管路8(図1参照)内の圧力はマ
スタシリンダ圧とは独立して既に立ち上げられており、
これにより、右後輪RWRのホイールブレーキは分岐ブ
レーキ管路8から入口バルブ12を通じて圧液の供給を
受け、この結果、右後輪RWRのブレーキ圧は増加され
ることになる。
る制動力/コーナリングフォース特性を参照すると、車
両が通常の走行状態にあるときのスリップ率範囲におい
て、車輪のブレーキ圧、つまり、制動力Fxが減少する
とスリップ率も減少し、これに対し、制動力Fyが増加
するとスリップ率も増加することがわかり、一方、スリ
ップ率の減少はコーナリングフォースを増加させ、これ
に対し、スリップ率の増加はコーナリングフォースを減
少させることがわかる。
輪FWLの制動力Fxが白矢印から黒矢印のように減少さ
れると、そのコーナリングフォースFyは白矢印から黒
矢印のように増加し、これに対し、右後輪RWRの制動
力Fxが白矢印から黒矢印のように増加されると、その
コーナリングフォースFyは白矢印から黒矢印のように
減少する。この結果、左前輪FWLに関してはその制動
力Fxが減少することに加えてコーナリングフォースFy
が強く働き、一方、右後輪RWRに関してはその制動力
Fxが増加することに加えてコーナリングフォースFyが
減少するので、車両にはその旋回の向きに回頭モーメン
トM(+)が発生する。
Fx、コーナリングフォースFyの変化分±ΔFx,±Δ
Fyを示している。ここで、車両の対角車輪である左前
輪FWL及び右後輪RWRにおいて、それら車輪の入口及
び出口バルブ12,13は、要求ヨーモーメントγdに
基づき設定された実駆動モードMexe(i)及び実パルス周
期Wexe(i)に従い開閉されるので、車両に回頭モーメン
トM(+)を適切に付加することができ、これにより、車
両のUS傾向が解消され、そのドリフトアウトを防止す
ることができる。
したように車両の運動状態や運転操作状態を考慮して算
出されているので(図11の算出ルーチン中、ステップ
S504,S505参照)、その要求ヨーモーメントγdに基
づき、対角車輪の制動力が増減されると、車両の旋回状
態に応じたきめ細かなヨーモーメント制御が可能とな
る。
イト偏差Δγ及びヨーレイト偏差微分値Δγsを基準と
して算出されているので、その要求ヨーモーメントγd
はその時点での車両が旋回挙動を正確に示すことにな
る。従って、その要求ヨーモーメントγdに基づき、対
角車輪の制動力が増減されると、車両の不安定な旋回挙
動が迅速に立ち直り、極めて安定した車両の旋回が可能
となる。
にあたり、車両が限界走行状態にないとき、重心スリッ
プ角速度dβが大きいとき、ヨーレイトセンサ30に振
動成分が加わったときには、ヨーレイト偏差Δγやヨー
レイト偏差微分値Δγsに対する制御ゲイン、即ちフィ
ードバックゲインKp,Kiをきめ細かな調整により低下
させるようにしたので、不用意にヨーモーメント制御が
実施されることを防止でき、低μ路でのUS時のスピン
傾向を抑止でき、さらに、悪路走行時等に発生する振動
に起因したヨーモーメント制御の誤作動を好適に防止す
ることができる。従って、極めて適正なヨーモーメント
制御を実現することができる。
択ルーチンにおいて、ステップS602の判別結果が偽で
あり、ステップS604の判別結果が真つまりFcos=1と
なり、車両のOS傾向が強い状況にあっては、左前輪F
WLの制御モードM(1)が増圧モードに設定されるととも
に、右後輪RWRの制御モードM(4)が減圧モードに設定
される点のみで、US傾向の場合とは異なる(表1及び
ステップS605参照)。
に示されているように左前輪FWLに関してはその制動
力Fxが増加する一方コーナリングフォースFyが減少
し、これに対し、右後輪RWRに関しては制動力Fxが減
少する一方コーナリングフォースFyが増加することに
なるので、この場合には、車両に復元モーメントM(-)
が発生する。この復元モーメントM(-)は車両のOS傾
向を解消し、これにより、そのタックインに起因した車
両のスピンを確実に回避することができる。
開始終了フラグFymcがFd=0、Fymc1=1となって
左旋回でのヨーモーメント制御が実行されると、ここで
も、前述の右旋回の場合と同様に、車両のUS傾向が強
い状況にあっては回頭モーメントM(+)を発生させ、こ
れに対し、そのOS傾向が強い場合には復元モーメント
M(-)を発生させるべく右前輪FWR及び左後輪RWLの
ブレーキ圧が制御され、この結果、右旋回の場合な効果
を得ることができる(表1及び図26のステップS607
〜S611、図38の駆動ルーチン参照)。
御を行うにあたり、ヨーレイトセンサ30からの情報に
基づき要求ヨーモーメントγdを算出し、これによりヨ
ーレイトフィードバック制御を実施するようにしたが、
横Gyや、車速Vと操舵角δとに応じたオープン制御を
使用することも可能である。
制御装置によれば、前輪の操舵とは別に車両のヨー運動
を制御可能なヨー運動制御手段を備えた車両の旋回制御
装置において、車両の実ヨーレイトを検出するヨーレイ
トセンサと、車両の目標ヨーレイトを設定する目標ヨー
レイト設定手段と、目標ヨーレイトと実ヨーレイトとに
基づくヨーレイト偏差の微分値を算出するヨーレイト偏
差微分手段と、実ヨーレイトの微分値を算出する実ヨー
レイト微分手段とを備え、ヨー運動制御手段は、少なく
ともヨーレイト偏差の微分値に基づきヨー運動を制御す
る一方、実ヨーレイトの微分値が増大したとき、ヨー運
動制御の制御ゲインを低下させる制御ゲイン低下手段を
具備するようにしたので、ヨーレイトセンサを有効に用
いて装置を複雑にすることなく、ヨー運動制御を応答性
良く実施するとともに、悪路走行時等に発生する振動成
分を排除して制御の誤作動や制御性の悪化を好適に防止
できる。
れば、制御ゲイン低下手段は、実ヨーレイトの微分値が
所定値以上の領域にあるとき、この実ヨーレイトの微分
値の増加に応じて制御ゲインを低下させるので、きめ細
かな調整により的確且つ好適に制御ゲインを低下させる
ことができる。また、請求項3の車両の旋回制御装置に
よれば、制御ゲイン低下手段は、実ヨーレイトの微分値
をバンドパスフィルタ処理して実効値を求め、この実効
値に基づき制御ゲインを低下させるので、振動成分を効
率良く抽出でき、制御ゲインを好適に低下させて良好な
ヨー運動制御を実施できる。
れば、ヨー運動制御手段は、ヨーレイト偏差及びヨーレ
イト偏差の微分値に基づいてヨー運動を制御し、制御ゲ
イン低下手段は、ヨーレイト偏差の微分値に対する制御
ゲインのみを低下させるので、ヨー運動制御を応答性良
く且つ安定して実施できるとともに、誤作動や制御性の
悪化をより好適に防止できる。
れば、ヨー運動制御手段は、車両の旋回制動時、この旋
回方向に対し前外輪と後内輪のみを制御対象車輪とし、
一方の車輪の制動力を増加するとともに他方の車輪の制
動力を減少させてヨー運動を制御するので、車両に回転
モーメントを効果的に発生させるようにでき、極めて良
好な旋回制御を実施することができる。
ムの示した概略図である。
ユニット)に対する各種センサ及びHU(ハイドロユニ
ット)の接続関係を示した図である。
図である。
ーチャートである。
の時間変化を示したグラフである。
ダルの踏み増しフラグ設定ルーチンを示したフローチャ
ートである。
る。
チンの詳細を示したフローチャートである。
ック図である。
すブロック図である。
ローチャートである。
Kpを求めるブロック図である。
の算出ルーチンを示したフローチャートである。
ラフである。
体の旋回挙動を説明するための図である。
の補正係数Kp2,Ki2の算出ルーチンを示したフローチ
ャートである。
との関係を示したグラフである。
図である。
算出ルーチンを示したフローチャートである。
係を示したグラフである。
分ゲインKiを求めるブロック図である。
正係数Ki1との関係を示すグラフである。
ロック図である。
ブロック図である。
行フラグFcus,Fcosの設定基準を示すグラフである。
ートである。
ードM(i)と駆動モードMpls(i)及びパルス幅Wpls(i)
との関係を示したタイムチャートである。
フローチャートである。
ブロック図である。
たブロック図である。
ク図である。
ク図である。
ク図である。
ク図である。
である。
ック図である。
ャートである。
る。
動モードMexe(i)、パルス幅Wexe(i)との関係を示した
タイムチャートである。
ォース特性を示したグラフである。
ント制御の実行結果を説明するための図である。
ント制御の実行結果を説明するための図である。
Claims (5)
- 【請求項1】 前輪の操舵とは別に車両のヨー運動を制
御可能なヨー運動制御手段を備えた車両の旋回制御装置
において、 車両の実ヨーレイトを検出するヨーレイトセンサと、 車両の目標ヨーレイトを設定する目標ヨーレイト設定手
段と、 前記目標ヨーレイトと前記実ヨーレイトとに基づくヨー
レイト偏差の微分値を算出するヨーレイト偏差微分手段
と、 前記実ヨーレイトの微分値を算出する実ヨーレイト微分
手段とを備え、 前記ヨー運動制御手段は、少なくとも前記ヨーレイト偏
差の微分値に基づき前記ヨー運動を制御する一方、前記
実ヨーレイトの微分値が増大したとき、前記ヨー運動制
御の制御ゲインを低下させる制御ゲイン低下手段を具備
することを特徴とする車両の旋回制御装置。 - 【請求項2】 前記制御ゲイン低下手段は、前記実ヨー
レイトの微分値が所定値以上の領域にあるとき、この実
ヨーレイトの微分値の増加に応じて前記制御ゲインを低
下させることを特徴とする、請求項1記載の車両の旋回
制御装置。 - 【請求項3】 前記制御ゲイン低下手段は、前記実ヨー
レイトの微分値をバンドパスフィルタ処理して実効値を
求め、この実効値に基づき前記制御ゲインを低下させる
ことを特徴とする、請求項1または2記載の車両の旋回
制御装置。 - 【請求項4】 前記ヨー運動制御手段は、前記ヨーレイ
ト偏差及び前記ヨーレイト偏差の微分値に基づいてヨー
運動を制御し、前記制御ゲイン低下手段は、前記ヨーレ
イト偏差の微分値に対する制御ゲインのみを低下させる
ことを特徴とする、請求項1乃至3のいずれか記載の車
両の旋回制御装置。 - 【請求項5】 前記ヨー運動制御手段は、車両の旋回制
動時、この旋回方向に対し前外輪と後内輪のみを制御対
象車輪とし、一方の車輪の制動力を増加するとともに他
方の車輪の制動力を減少させてヨー運動を制御すること
を特徴とする、請求項1乃至4のいずれか記載の車両の
旋回制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7166402A JP3067593B2 (ja) | 1995-06-30 | 1995-06-30 | 車両の旋回制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7166402A JP3067593B2 (ja) | 1995-06-30 | 1995-06-30 | 車両の旋回制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0911874A JPH0911874A (ja) | 1997-01-14 |
JP3067593B2 true JP3067593B2 (ja) | 2000-07-17 |
Family
ID=15830760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7166402A Expired - Fee Related JP3067593B2 (ja) | 1995-06-30 | 1995-06-30 | 車両の旋回制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3067593B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101006917B1 (ko) * | 2005-11-23 | 2011-01-10 | 주식회사 만도 | 트레일러 진동 제어 방법 |
KR100847749B1 (ko) * | 2007-05-04 | 2008-07-22 | 주식회사 만도 | 트레일러 안정성 제어 방법 |
JP6764292B2 (ja) * | 2016-09-16 | 2020-09-30 | Ntn株式会社 | 滑り抑制制御装置 |
-
1995
- 1995-06-30 JP JP7166402A patent/JP3067593B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0911874A (ja) | 1997-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3257351B2 (ja) | 車両の旋回制御装置 | |
JP2993400B2 (ja) | 車両の旋回制御装置 | |
JP3050092B2 (ja) | 車両の旋回制御装置 | |
JP3708989B2 (ja) | 車両の旋回制御装置 | |
KR100195840B1 (ko) | 차량의 선회 제어장치 | |
JP3387692B2 (ja) | 車両の旋回制御装置 | |
JP3257354B2 (ja) | 車両の旋回制御装置 | |
JP3067593B2 (ja) | 車両の旋回制御装置 | |
JP3565620B2 (ja) | 車両の旋回制御装置 | |
JP3669740B2 (ja) | 車両の旋回制御装置 | |
JP3291980B2 (ja) | 車両の旋回制御装置 | |
JP3565619B2 (ja) | 車両の旋回制御装置 | |
JP3565621B2 (ja) | 車両の旋回制御装置 | |
JP3257352B2 (ja) | 車両の旋回制御装置 | |
JP3676429B2 (ja) | 車両の旋回制御装置 | |
JP3191628B2 (ja) | 車両の旋回制御装置 | |
JP3676430B2 (ja) | 車両の旋回制御装置 | |
JPH0939760A (ja) | 車両の旋回制御装置 | |
JP3454486B2 (ja) | 車両の旋回制御装置 | |
JP3257353B2 (ja) | 車両の旋回制御装置 | |
JPH0891197A (ja) | 車輌の挙動制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000418 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080519 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |