JP3054388B2 - Manufacturing method of wiring board - Google Patents

Manufacturing method of wiring board

Info

Publication number
JP3054388B2
JP3054388B2 JP21104897A JP21104897A JP3054388B2 JP 3054388 B2 JP3054388 B2 JP 3054388B2 JP 21104897 A JP21104897 A JP 21104897A JP 21104897 A JP21104897 A JP 21104897A JP 3054388 B2 JP3054388 B2 JP 3054388B2
Authority
JP
Japan
Prior art keywords
via hole
insulating layer
resin insulating
resin
development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21104897A
Other languages
Japanese (ja)
Other versions
JPH1154912A (en
Inventor
剛 豊嶋
達也 伊藤
泰成 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP21104897A priority Critical patent/JP3054388B2/en
Publication of JPH1154912A publication Critical patent/JPH1154912A/en
Application granted granted Critical
Publication of JP3054388B2 publication Critical patent/JP3054388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂絶縁層を介し
て形成される配線パターンと樹脂絶縁層を貫通し複数の
配線パターン間を導通するビアとを有する配線基板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a wiring board having a wiring pattern formed via a resin insulating layer and a via penetrating the resin insulating layer and conducting between a plurality of wiring patterns.

【0002】[0002]

【従来の技術】一般に、配線パターン間に樹脂絶縁層を
介在させた多層配線基板40は、図6(A)に示すよう
に、コア基板41の上面に形成した下層配線パターン4
2の上方に所定厚さの感光性樹脂ペーストを塗布し乾燥
させ樹脂絶縁層44を形成する。この樹脂絶縁層44に
対し、図6(B)に示すように、露光と現像、又はレーザ
加工を行って下層配線パターン42の上面を露出させる
ビアホール46を形成した後、樹脂絶縁層44の上面に
無電解銅メッキ及び電解銅メッキと露光・現像等により
上層配線パターン52を形成する。同時に、上記ビアホ
ール46内には上・下層配線パターン52,42間を導
通するビア48が形成される。
2. Description of the Related Art In general, a multilayer wiring board 40 having a resin insulating layer interposed between wiring patterns has a lower wiring pattern 4 formed on the upper surface of a core substrate 41 as shown in FIG.
A photosensitive resin paste having a predetermined thickness is applied to the upper part of the substrate 2 and dried to form a resin insulating layer 44. As shown in FIG. 6B, the via hole 46 for exposing the upper surface of the lower wiring pattern 42 is formed on the resin insulating layer 44 by exposure and development or laser processing, and then the upper surface of the resin insulating layer 44 is formed. The upper wiring pattern 52 is formed by electroless copper plating, electrolytic copper plating, exposure and development. At the same time, a via 48 that conducts between the upper and lower wiring patterns 52 and 42 is formed in the via hole 46.

【0003】[0003]

【発明が解決すべき課題】ところで、上記ビアホール4
6を形成する際の現像工程においては、現像液によって
溶け出した樹脂が形成途中のビアホール46の底部に溜
まることがある。この溶け出した樹脂がビアホール46
の底部に溜まると、形成途中のビアホール46の底部に
新たな現像液が供給されにくくなり、該底部から深さ方
向への現像が阻害される。この結果、図6(C)に示すよ
うに、ビアホール46の孔明け不足によりビア48の底
面と下層配線パターン42の上面との間に樹脂片45が
残る場合がある。係る樹脂片45を除去するために、現
像時間を長くする方法も考えられるが、溶け出した樹脂
がビアホール46の底部に溜まった状態では、やはり深
さ方向への現像は難しく、却ってビアホール46の径が
大きくなり過ぎてしまうという問題もあった。
The via hole 4
In the developing step for forming 6, the resin melted out by the developing solution may accumulate at the bottom of the via hole 46 during the formation. The melted resin is formed in the via hole 46.
When it accumulates at the bottom of the via hole 46, it becomes difficult to supply a new developing solution to the bottom of the via hole 46 during the formation, and development in the depth direction from the bottom is hindered. As a result, as shown in FIG. 6C, the resin piece 45 may remain between the bottom surface of the via 48 and the upper surface of the lower wiring pattern 42 due to insufficient opening of the via hole 46. In order to remove the resin piece 45, a method of lengthening the development time may be considered. However, in a state where the melted resin is accumulated at the bottom of the via hole 46, development in the depth direction is still difficult. There was also a problem that the diameter became too large.

【0004】また、現像時間が長くなると、ビアホール
46の周囲における樹脂絶縁層44が膨潤化して、ビア
ホール46の形状にばらつきが生じるという問題もあっ
た。更に、両面に樹脂絶縁層44を有する多層配線基板
40を水平に保持した状態で上下両面に同時に現像を行
う場合、下面側は樹脂溜りが少なく深さ方向への現像が
容易であるのに対し、上面側は樹脂溜りが生じ易く深さ
方向への現像が困難となる。このため、上下面の樹脂絶
縁層44間で現像速度に差が生じる。この現像速度の相
違により、上面側のビアホール46には図6(C)のよう
な孔明け不足が生じ易く、下面側のビアホール46には
図6(D)に示すような過剰現像が生じ易い。この過剰現
像により略円柱状で下部が斜めに広がる形状のビアホー
ル46が形成されると、上記銅メッキの付き周り不良が
生じ、ビア48の底部に狭隘部50を形成する場合があ
る。これらの樹脂片45が残ったり狭隘部50がある
と、ビア48による上・下層配線パターン52,42間
の導通が不安定になり、立体回路が形成されない場合を
生じることがある。
In addition, when the developing time is prolonged, the resin insulating layer 44 around the via hole 46 swells, causing a problem that the shape of the via hole 46 varies. Further, when the development is performed simultaneously on the upper and lower surfaces in a state where the multilayer wiring board 40 having the resin insulation layers 44 on both surfaces is horizontally held, the lower surface side has less resin pool and is easy to develop in the depth direction. On the upper surface side, a resin pool is easily generated, and it is difficult to develop in the depth direction. Therefore, a difference occurs in the developing speed between the upper and lower resin insulating layers 44. Due to this difference in the developing speed, the upper via hole 46 tends to be insufficiently perforated as shown in FIG. 6C, and the lower via hole 46 tends to undergo excessive development as shown in FIG. 6D. . If the over-development forms a substantially cylindrical via hole 46 with a lower portion extending obliquely, the above-mentioned poor adhesion with copper plating may occur, and a narrow portion 50 may be formed at the bottom of the via 48. If these resin pieces 45 remain or there is a narrow portion 50, conduction between the upper and lower wiring patterns 52 and 42 due to the via 48 becomes unstable, which may cause a case where a three-dimensional circuit is not formed.

【0005】係る導通不良を防ぐため、上記ビアホール
46を形成した樹脂絶縁層44の上面を厚さ約5μm程
研磨・除去して平坦化した後、該樹脂絶縁層44の表面
にアルカリ・過マンガン酸カリウム等のエッチング液を
接触して、樹脂絶縁層44の表面を粗化していた。その
後、この粗化された樹脂絶縁層44の表面に、Sn/P
dコロイドタイプのメッキ触媒核(図示せず)を吸着さ
せ、前記無電解銅メッキ等により上層配線パターン52
を形成していた。この方法では、樹脂絶縁層44の上面
が研磨により平坦化されているので、前記ビアホール4
6を形成する際の現像のばらつきによるビア48の前記
形状不良を若干低減できるが、未だ不十分で安定性を欠
いている。
In order to prevent such a conduction failure, the upper surface of the resin insulating layer 44 in which the via hole 46 is formed is polished and removed to a thickness of about 5 μm to flatten the surface. The surface of the resin insulating layer 44 was roughened by contact with an etching solution such as potassium acid. After that, the surface of the roughened resin insulating layer 44 is coated with Sn / P
d. Adsorb a plating catalyst core (not shown) of a colloid type, and form the upper wiring pattern 52 by electroless copper plating or the like.
Had formed. In this method, since the upper surface of the resin insulating layer 44 is planarized by polishing,
Although the above-mentioned defective shape of the via 48 due to a variation in the development when forming No. 6 can be slightly reduced, it is still insufficient and lacks stability.

【0006】また、前記エッチング液により、樹脂片4
5を除去する方法も考えられるが、樹脂片45を除去す
るエッチングの際に、樹脂絶縁層44の上面が過剰に粗
化され、その上面に形成される上層配線パターン52と
樹脂絶縁層44との密着強度が低下するという問題もあ
った。更に、レーザを強く照射してビアホール46内に
樹脂片45が残らないようにする方法も考えられるが、
レーザ照射が過剰になると前記図6(D)に示した狭隘部
50が不用意にビア48に形成されてしまうという問題
があった。
[0006] Further, the resin piece 4
5 can be considered, but the upper surface of the resin insulating layer 44 is excessively roughened at the time of etching to remove the resin piece 45, and the upper wiring pattern 52 and the resin insulating layer 44 formed on the upper surface are roughened. There is also a problem that the adhesion strength of the resin decreases. Further, a method of strongly irradiating the laser so that the resin piece 45 does not remain in the via hole 46 can be considered.
If the laser irradiation becomes excessive, there is a problem that the narrow portion 50 shown in FIG. 6D is formed in the via 48 carelessly.

【0007】本発明は、以上の従来の技術における問題
点を解決し、ビア底部における樹脂残りや形状不良をな
くし、ビアの形状を正確にして上・下層配線パターン間
の導通を確実にすると共に、比較的微細なビアホールと
ビアの形成を可能にした多層配線基板の製造方法を提供
することを目的とする。
The present invention solves the above-mentioned problems in the prior art, eliminates resin residue and defective shape at the bottom of the via, makes the shape of the via accurate, and ensures conduction between the upper and lower wiring patterns. It is another object of the present invention to provide a method of manufacturing a multilayer wiring board which enables formation of relatively fine via holes and vias.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するため、下層配線パターンの上に形成される樹脂絶
縁層に対し正確なビアホールを形成すべく、露光後の現
像工程を洗浄及び乾燥工程により一旦中断し、再度現像
を行うことに着想して成されたものである。即ち、本発
明の配線基板の製造方法は、下層配線パターンの上に樹
脂絶縁層を形成する工程と、上記樹脂絶縁層に対し露光
と現像を行い、該樹脂絶縁層にビアホールを形成する工
程と、を含む多層配線パターンを形成することが予定さ
れている配線基板の製造方法であって、上記現像工程を
複数回に分け、且つその間において上記樹脂絶縁層を洗
浄した後に乾燥する工程を含むことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a cleaning and post-exposure developing step for forming an accurate via hole in a resin insulating layer formed on a lower wiring pattern. This was achieved with the idea of once interrupting the drying process and performing the development again. That is, the method of manufacturing a wiring board according to the present invention includes the steps of forming a resin insulating layer on a lower wiring pattern, exposing and developing the resin insulating layer, and forming a via hole in the resin insulating layer. A method of manufacturing a wiring board which is to form a multilayer wiring pattern including: a step of dividing the developing step into a plurality of steps, and washing and drying the resin insulating layer during the developing step. It is characterized by.

【0009】この方法によれば、上記乾燥工程の直前に
配線基板を洗浄を行うことにより、ビアホールの直径が
100μm以下の微細なものでも、形成途中のビアホー
ル内における剥離状態の樹脂片をビアホールの外へ除去
できるので、ビアホール内の深さ方向への現像が阻害さ
れなくなる。従って、直径が例えば90μm以下の微細
なビアホールの形成が可能になる。しかも、途中の乾燥
工程によってその直前の現像が停止されるか、現像速度
が遅くなるので、ビアホールの径のばらつきを極力抑え
ることができ、ビアの径を制御し易くなる。その後、例
えば基板の姿勢等を変えて次の現像工程を行える為、樹
脂残りや形状不良がなく、形状及びサイズとも所要のビ
アホールを確実に形成できる。従って、ビアホール内に
追って形成されるビアにより、下層配線パターンと追っ
て形成される上層配線パターンとを確実に導通させるこ
とができる。
According to this method, by cleaning the wiring board immediately before the drying step, even if the diameter of the via hole is as small as 100 μm or less, the peeled resin piece in the via hole being formed can be removed. Since it can be removed to the outside, development in the depth direction inside the via hole is not hindered. Therefore, a fine via hole having a diameter of, for example, 90 μm or less can be formed. In addition, the immediately preceding development is stopped or the development speed is reduced by the drying process in the middle, so that the variation in the diameter of the via hole can be suppressed as much as possible, and the diameter of the via can be easily controlled. After that, for example, the next development step can be performed by changing the posture of the substrate and the like, so that there is no resin residue or shape defect, and a required via hole can be reliably formed in both shape and size. Therefore, the via formed in the via hole can reliably conduct the lower wiring pattern and the upper wiring pattern formed in succession.

【0010】また、3回以上に分けた現像工程につい
て、最初の現像工程以外の各現像工程ごとに洗浄と乾燥
工程を含めた方法とすることも可能である。これによっ
ても、ビアホールの径のばらつきを抑えることができ、
所要のビアホールの形成が更に確実になる。尚、上記乾
燥工程が、前記樹脂絶縁層を約80〜150℃に数分〜
数10分間加熱保持する製造方法ともできる。これによ
れば、ビアホール内の現像の進行を確実に停止でき、且
つ次の現像工程でビアホール内を所要の形状に形成し得
る。また、上記ビアホールを形成した後、前記樹脂絶縁
層の上に上層配線パターンを形成し、且つ前記ビアホー
ル内にビアを形成する工程、を含む多層配線パターンを
有する配線基板の製造方法も含まれる。これによれば、
上・下層配線パターンがビアを介して確実に導通した立
体回路を有する多層配線基板を提供することができる。
It is also possible to adopt a method in which the developing step divided into three or more times includes a washing and drying step for each developing step other than the first developing step. This can also reduce the variation in the diameter of the via hole,
The formation of required via holes is further ensured. In addition, the drying step may be performed by heating the resin insulating layer to about 80 to 150 ° C. for several minutes.
A manufacturing method in which heating and holding are performed for several tens of minutes can be used. According to this, the development in the via hole can be reliably stopped, and the inside of the via hole can be formed in a required shape in the next development step. The method also includes a method of manufacturing a wiring board having a multilayer wiring pattern, including a step of forming an upper wiring pattern on the resin insulating layer after forming the via hole and forming a via in the via hole. According to this,
A multilayer wiring board having a three-dimensional circuit in which upper and lower wiring patterns are reliably conducted through vias can be provided.

【0011】更に、前記露光と現像が、ネガ型により行
われる配線基板の製造方法も含む。一般にポジ型のレジ
ストでは、感光した樹脂部分が現像で流れ落ちる。これ
は、光を当てることで、光が当っていない部分(未感光
部分)よりも光が当った部分(感光部分)の方が早く溶
け出すという時間差を利用して現像する方法である。従
って、現像時間を長くすれば、未感光部分も溶け出して
レジストが薄くなる。これに対して、ネガ型では未感光
部分が溶けて、感光部分は光硬化するためレジストの溶
け出し(膜減り)が少ないという利点がある。これによれ
ば、前記樹脂絶縁層における露光からマスクされた未感
光部分に所要形状のビアホールを正確且つ容易に形成す
ることができる。
Further, the present invention also includes a method of manufacturing a wiring board in which the exposure and development are performed in a negative mold. Generally, in the case of a positive resist, the exposed resin portion flows down during development. This is a method of developing using a time difference in which a portion irradiated with light (photosensitive portion) melts faster than a portion not exposed to light (unexposed portion) by irradiating light. Therefore, if the developing time is lengthened, the unexposed portion also melts out and the resist becomes thin. On the other hand, the negative type has an advantage that the unexposed portion is melted, and the exposed portion is photo-cured, so that the resist is less dissolved (film loss). According to this, it is possible to accurately and easily form a via hole having a required shape in an unexposed portion of the resin insulating layer masked from the exposure.

【0012】また、前記複数回の現像工程は、配線基板
を略水平に保持した状態で行い、該複数回の現像工程の
うち最初又は中間の現像の後に、略水平に保持された前
記配線基板の上下面を上下反転させた後、次の現像を行
う配線基板の製造方法も含まれる。これによれば、上下
両面での現像速度差から生じるビアホールの形状不良や
形状のばらつきを解消できるので、配線基板の上下両面
の樹脂絶縁層に対し、所要形状を有するビアホールを均
一且つ同時に形成することが可能となる。
The plurality of developing steps are performed while the wiring board is held substantially horizontally, and after the first or intermediate development in the plurality of developing steps, the wiring board held substantially horizontally is held. The method also includes a method of manufacturing a wiring board in which the next development is performed after the upper and lower surfaces are turned upside down. According to this, it is possible to eliminate the shape defect and the variation in the shape of the via hole caused by the difference in the developing speed between the upper and lower surfaces, so that the via holes having the required shape are formed uniformly and simultaneously on the resin insulating layers on the upper and lower surfaces of the wiring board. It becomes possible.

【0013】更に、前記下層配線パターンと樹脂絶縁層
とを略水平に保持された前記配線基板の下面側に位置さ
せた状態で、前記現像工程を行う配線基板の製造方法も
含まれる。これによれば、正確な形状と寸法を有するビ
アホールを同じ樹脂絶縁層に対し所望数同時に形成する
ことができる。尚、この方法で配線基板の上下両面の樹
脂絶縁層にそれぞれビアホールを形成する場合、洗浄及
び乾燥工程を挟んで各現像工程を、基板の上下面を順次
上下反転させることにより行う。
Further, the present invention also includes a method of manufacturing a wiring board in which the developing step is performed in a state where the lower wiring pattern and the resin insulating layer are positioned on the lower surface side of the wiring board held substantially horizontally. According to this, a desired number of via holes having accurate shapes and dimensions can be simultaneously formed in the same resin insulating layer. When via holes are formed in the resin insulating layers on both the upper and lower surfaces of the wiring board by this method, each developing step is performed by sequentially turning the upper and lower surfaces of the substrate upside down with a washing and drying step therebetween.

【0014】[0014]

【実施の形態】以下において本発明の実施に好適な形態
を図面と共に説明する。図1は多層配線基板の製造方法
の概略を示す各工程の断面図に関する。図1(A)に示す
ように、厚さ0.8mmのガラス−BT(ビスマレイミ
ド・トリアジン)樹脂の複合材からなるコア基板1の上下
両面には、厚さ28μmの銅からなる下層配線パターン
4が形成されている。また、コア基板1には直径300
μmのスルーホール2がドリル加工により多数穿孔さ
れ、各スルーホール2内には円筒形でその周壁の厚さが
15μmの導通部3が形成されている。この導通部3
は、コア基板1の両面における下層配線パターン4同士
を導通させる役割を果たす。尚、各導通部3の中空部内
には図示しない熱硬化性樹脂が充填される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of each step showing an outline of a method for manufacturing a multilayer wiring board. As shown in FIG. 1A, a lower wiring pattern made of copper having a thickness of 28 μm is formed on both upper and lower surfaces of a core substrate 1 made of a glass-BT (bismaleimide / triazine) resin composite material having a thickness of 0.8 mm. 4 are formed. The core substrate 1 has a diameter of 300
A large number of through holes 2 having a thickness of μm are formed by drilling, and a conductive portion 3 having a cylindrical shape and a peripheral wall thickness of 15 μm is formed in each through hole 2. This conducting part 3
Plays a role of conducting the lower wiring patterns 4 on both surfaces of the core substrate 1. The hollow portion of each conductive portion 3 is filled with a thermosetting resin (not shown).

【0015】係るコア基板1及び下層配線パターン4
は、以下のようにして形成される。先ず、コア基板1の
上下両面に厚さ約12μmの銅箔が貼付けられる。得ら
れた銅貼り積層板に、ドリル加工を行い多数のスルーホ
ール2を穿孔する。次いで、この積層板の上下両面及び
スルーホール2内にPd触媒核を付着させ、その後に無
電解メッキ及び電解メッキを施し、各表面で銅の厚さが
約28μmとなるようにする。更に、この銅の上にレジ
ストを塗布し、露光と現像を施した後、不要部分をエッ
チングにて除去することにより、上記下層配線パターン
4が形成される。
The core substrate 1 and the lower wiring pattern 4
Is formed as follows. First, copper foil having a thickness of about 12 μm is attached to both upper and lower surfaces of the core substrate 1. Drilling is performed on the obtained copper-clad laminate to form a large number of through holes 2. Next, Pd catalyst nuclei are adhered to both the upper and lower surfaces of the laminate and the inside of the through-hole 2, and then electroless plating and electrolytic plating are performed so that the thickness of copper is about 28 μm on each surface. Further, a resist is applied on the copper, exposed and developed, and then unnecessary portions are removed by etching, whereby the lower wiring pattern 4 is formed.

【0016】次に、図1(B)に示すように、下層配線パ
ターン4の上方に厚さ55μmの感光性を有するエポキ
シ系の樹脂絶縁層6が全面に形成される。この樹脂絶縁
層6の所定の位置に露光と現像を行い、略円錐形のビア
ホール7が形成される。このビアホール7の底部には、
下層配線パターン4の上面が露出する。係るビアホール
7を形成する上記現像の方法によっては、前述した樹脂
残りが生じたり、ビアホール7自体に形状不良が生じ得
る。このため、ビアホール7を含む樹脂絶縁層6の表面
に対し、複数回の現像とその間における洗浄及び乾燥が
施される。これについては、追って図2にもとづき詳し
く説明する。
Next, as shown in FIG. 1B, a photosensitive epoxy resin insulating layer 6 having a thickness of 55 μm is formed on the entire surface above the lower wiring pattern 4. Exposure and development are performed on a predetermined position of the resin insulating layer 6 to form a substantially conical via hole 7. At the bottom of this via hole 7,
The upper surface of the lower wiring pattern 4 is exposed. Depending on the developing method for forming the via hole 7, the above-described resin residue may occur, or the via hole 7 itself may have a defective shape. Therefore, the surface of the resin insulating layer 6 including the via holes 7 is subjected to a plurality of times of development, and washing and drying during the development. This will be described later in detail with reference to FIG.

【0017】次に、ビアホール7を含む樹脂絶縁層6の
表面全体を過マンガン酸カリウム溶液(45g/リットル)で
粗化し、次に下層配線パターン4の上面を硫酸−過酸化
水素系エッチング液(奥野製薬製;商品名OPC−40
0)でソフトエッチングした。これらは何れも次述する
無電解メッキ層との密着性を向上させる為に施される。
次いで、Sn−Pdコロイド溶液(奥野製薬製;商品名
OPC−80)に浸漬してPd触媒核を吸着させ、無電
解Cuメッキ液(奥野製薬製;商品名ビルドカッパー)に
より、図1(C)に示すように、ビアホール7を含む樹脂
絶縁層6の表面全体に無電解メッキ層8を形成する。
Next, the entire surface of the resin insulating layer 6 including the via holes 7 is roughened with a potassium permanganate solution (45 g / liter), and then the upper surface of the lower wiring pattern 4 is etched with a sulfuric acid-hydrogen peroxide etching solution ( Okuno Pharmaceutical; trade name OPC-40
0) Soft etching was performed. These are all applied to improve the adhesion to the electroless plating layer described below.
Next, it was immersed in a Sn-Pd colloid solution (manufactured by Okuno Pharmaceutical Co., Ltd .; trade name OPC-80) to adsorb the Pd catalyst nucleus. 2), an electroless plating layer 8 is formed on the entire surface of the resin insulating layer 6 including the via holes 7.

【0018】更に、係る無電解メッキ層8の上面全体に
水溶性ドライフィルムの感光性樹脂を貼着して、露光と
現像を行うと、図1(D)に示すように、所定のパターン
のメッキレジスト(樹脂パターン)10が形成される。次
に、係るメッキレジスト10が形成された無電解メッキ
層8に対し硫酸系電解銅メッキを施すと、図1(E)に示
すように、上記メッキレジスト10で覆われていない無
電解メッキ層8の上面に厚さ15μmの電解メッキ層1
4が形成される。同時に、ビアホール7内の上記無電解
メッキ層8の基部9上にも同様の厚さの電解メッキ層1
4が形成される。
Further, when a photosensitive resin of a water-soluble dry film is stuck on the entire upper surface of the electroless plating layer 8 and exposed and developed, as shown in FIG. A plating resist (resin pattern) 10 is formed. Next, when the electroless plating layer 8 on which the plating resist 10 is formed is subjected to sulfuric acid-based electrolytic copper plating, as shown in FIG. 1E, the electroless plating layer not covered with the plating resist 10 is formed. 8 having an electroplating layer 1 having a thickness of 15 μm
4 are formed. At the same time, the electroplating layer 1 having the same thickness is also formed on the base 9 of the electroless plating layer 8 in the via hole 7.
4 are formed.

【0019】その後、上記メッキレジスト10をNaO
H水溶液に接触させることにより剥離し、更に過硫酸塩
系エッチング液(荏原ユージライト製;商品名PB−2
28)により、露出した無電解メッキ層8を除去して、
電解メッキ層14とその下部の無電解メッキ層8とから
なる上層配線パターン15及びビア12を形成させる。
この状態を図1(F)に示す。これにより、上・下層配線
パターン15,4がビア12によって導通された立体回
路が形成される。更に、図1(G)に示すように、前記樹
脂絶縁層6及び上層配線パターン15の上面全体に厚さ
55μmの樹脂絶縁層16が形成され、前記同様に露光
と複数回の現像及びその間の洗浄及び乾燥を行って、該
樹脂絶縁層16の所定の位置にビアホール17が形成さ
れる。
Thereafter, the plating resist 10 is replaced with NaO
HB aqueous solution, and peeled off. Further, a persulfate-based etching solution (manufactured by Ebara Uzilite; trade name PB-2)
28), the exposed electroless plating layer 8 is removed,
An upper wiring pattern 15 and a via 12 comprising an electrolytic plating layer 14 and an electroless plating layer 8 thereunder are formed.
This state is shown in FIG. Thus, a three-dimensional circuit in which the upper and lower wiring patterns 15 and 4 are conducted by the via 12 is formed. Further, as shown in FIG. 1 (G), a resin insulating layer 16 having a thickness of 55 μm is formed on the entire upper surface of the resin insulating layer 6 and the upper wiring pattern 15, and exposure and multiple development and the After cleaning and drying, via holes 17 are formed at predetermined positions of the resin insulating layer 16.

【0020】上記樹脂絶縁層16の上面に前記同様の図
示しない無電解メッキ層とメッキレジストが形成され、
これらに対し硫酸系電解銅メッキを施すと、上記メッキ
レジストのない無電解メッキ層の上面に厚さ15μmの
最上層配線パターン20が形成され、同時にビアホール
17内には上記同様のビア18が形成される。これによ
り、図1(G)のように、下層・上層・最上層配線パター
ン4,15,20とこれらを導通するビア12,18か
らなる立体回路が形成される。そして、図1(H)に示す
ように、上記樹脂絶縁層16及び最上層配線パターン2
0の上面全体に感光性のエポキシ変性樹脂からなるソル
ダーレジスト22を形成し、露光と現像を行って最上層
配線パターン20の上面に開口部24を形成する。この
開口部24内に露出する最上層配線パターン20の上面
に、無電解メッキによりNi(Ni−P)メッキ層及びA
uメッキ層からなるパッド26を形成して、多層配線基
板28を得た。尚、最上層配線パターン20は上下方向
における相対的な名称で、仮に上層配線パターン15を
下層配線パターンとした場合、その上層配線パターンと
なる。
An electroless plating layer (not shown) and a plating resist (not shown) are formed on the upper surface of the resin insulating layer 16 as described above.
When a sulfuric acid-based electrolytic copper plating is applied thereto, an uppermost wiring pattern 20 having a thickness of 15 μm is formed on the upper surface of the electroless plating layer without the plating resist, and at the same time, a via 18 similar to the above is formed in the via hole 17. Is done. Thus, as shown in FIG. 1 (G), a three-dimensional circuit including the lower, upper, and uppermost wiring patterns 4, 15, and 20, and the vias 12 and 18 connecting these wiring patterns is formed. Then, as shown in FIG. 1H, the resin insulating layer 16 and the uppermost wiring pattern 2 are formed.
A solder resist 22 made of a photosensitive epoxy-modified resin is formed on the entire upper surface of the wiring pattern 0, and is exposed and developed to form an opening 24 on the upper surface of the uppermost wiring pattern 20. The Ni (Ni-P) plating layer and the A (Ni-P) plating layer are formed on the upper surface of the uppermost wiring pattern 20 exposed in the opening 24 by electroless plating.
A pad 26 made of a u-plated layer was formed, and a multilayer wiring board 28 was obtained. The uppermost wiring pattern 20 is a relative name in the vertical direction. If the upper wiring pattern 15 is a lower wiring pattern, the upper wiring pattern 20 is the upper wiring pattern.

【0021】次に図2により本発明の特徴的な製造工程
について説明する。図2(A)は、前記図1(B)のビアホ
ール7を形成する直前の状態を示す模式的な拡大断面図
で、図2(B)に示すように、下層配線パターン4の上方
に形成された樹脂絶縁層6に対し、所謂ネガ型による露
光と現像を行い所定の位置にビアホール7が形成され
る。しかし、現像工程の途中でビアホール7内に現像液
により溶け出した剥離状態の粉及び粒状の樹脂片6aが
溜まると、それよりも深い位置にある樹脂絶縁層6への
現像が阻害されてしまう。
Next, a characteristic manufacturing process of the present invention will be described with reference to FIG. FIG. 2A is a schematic enlarged sectional view showing a state immediately before forming the via hole 7 in FIG. 1B, and is formed above the lower wiring pattern 4 as shown in FIG. The so-called negative-type exposure and development are performed on the resin insulating layer 6 thus formed, and a via hole 7 is formed at a predetermined position. However, if the separated powder and the granular resin pieces 6a that have been melted out by the developer in the via hole 7 during the developing process, the development on the resin insulating layer 6 located at a deeper position is hindered. .

【0022】そこで、このビアホール7に例えば有機溶
剤からなる洗浄液を噴射することにより、図2(C)に示
すように、上記粉及び粒状の樹脂片6aは排出され、底
部の樹脂部分6bのみが残留する。2回の現像工程の間
に係る洗浄を行うことにより、直径が100μm以下の
ビアホール7であっても、現像工程中に樹脂が溶け出し
してビアホール7の底部に溜まった樹脂片6aを確実に
除去できる。従って、ビアホール7の底部の樹脂残り
や、ビアホール7の直径の過大化を防止することができ
るので、比較的微細なビアホール7とビア12を形成で
きる。
Then, by spraying a cleaning liquid made of, for example, an organic solvent into the via hole 7, the powder and granular resin pieces 6a are discharged as shown in FIG. 2C, and only the bottom resin portion 6b is discharged. Remains. By performing the washing between the two development steps, even in the case of the via hole 7 having a diameter of 100 μm or less, the resin piece 6a that has melted during the development step and accumulated at the bottom of the via hole 7 can be surely removed. Can be removed. Therefore, it is possible to prevent the resin residue at the bottom of the via hole 7 and the diameter of the via hole 7 from becoming excessive, so that the via holes 7 and the vias 12 that are relatively fine can be formed.

【0023】次いで、係るビアホール7を有する樹脂絶
縁層6を乾燥する。具体的には、約100℃にして10
分程度に渉って加熱保持する。すると、樹脂絶縁層6
は、上記ビアホール7内を含めてその表面での現像作用
が停止される。洗浄した後に係る乾燥を行うことで、樹
脂絶縁層6の膨潤を解消し、現像速度を著しく遅くする
ことができる。これにより、ビアホール7の直径が制御
し易くなり、製造される配線基板28の精度が安定化す
る。
Next, the resin insulating layer 6 having the via holes 7 is dried. Specifically, at about 100 ° C, 10
Heat and hold for about a minute. Then, the resin insulating layer 6
The development action on the surface including the inside of the via hole 7 is stopped. By performing the drying after the washing, the swelling of the resin insulating layer 6 is eliminated, and the developing speed can be significantly reduced. Thereby, the diameter of the via hole 7 is easily controlled, and the accuracy of the manufactured wiring board 28 is stabilized.

【0024】そして、係る乾燥された表面を有するビア
ホール7に対し、再度現像を行うと深さ方向への現像が
阻害されることなく、図2(D)に示すように、上記底部
の樹脂部分6bも除去され、ビアホール7の直径の広が
りを制御しつつ深いビアホール7が形成される。係る2
回の現像工程と、その間における洗浄と乾燥工程を行う
ことにより、ビアホール7には樹脂残りが解消され、且
つ所要の形状と微細な寸法を有するビアホール7を得る
ことができる。最後に、上記ビアホール7を含む樹脂絶
縁層6に対し、前記図1(C)乃至(E)の工程を施すこと
により、図2(E)に示すように、ビア12とこれに繋が
る上層配線パターン15が形成される。
When the via hole 7 having the dried surface is developed again, development in the depth direction is not hindered, and as shown in FIG. 6b is also removed, and a deep via hole 7 is formed while controlling the expansion of the diameter of the via hole 7. Pertaining 2
By performing the developing step and the washing and drying steps in between, the residual resin in the via hole 7 is eliminated, and the via hole 7 having a required shape and fine dimensions can be obtained. Finally, the steps shown in FIGS. 1C to 1E are applied to the resin insulating layer 6 including the via holes 7, as shown in FIG. A pattern 15 is formed.

【0025】尚、前記現像工程は、図3に示すように、
コア基板1、下層配線パターン4及び樹脂絶縁層6等か
らなる基板Kを水平に保持した状態で、上下両面に対し
現像液を上方及び下方からシャワー状に連続して噴射す
るものである。この場合、基板Kの上面には現像液の液
溜りSが生じ、上面の樹脂絶縁層6に液圧がかかりにく
くビアホール7が形成されにくい。一方、基板Kの下面
には常に新しい現像液が噴射されるため、ビアホール7
が形成され易いという傾向がある。そこで、前記のよう
に露光後に2回の現像工程を行う場合、1回目の現像工
程の後に基板Kの上下面を上下反転させて2回目の現像
工程を行うと、上面と下面との位置によるビアホールの
形状のばらつきを抑制することができる。
In the developing step, as shown in FIG.
In a state where the substrate K including the core substrate 1, the lower wiring pattern 4, the resin insulating layer 6, and the like is held horizontally, the developing solution is continuously sprayed onto both upper and lower surfaces in a shower form from above and below. In this case, a liquid pool S of the developing solution is generated on the upper surface of the substrate K, and it is difficult for the liquid pressure to be applied to the resin insulating layer 6 on the upper surface, so that the via hole 7 is hardly formed. On the other hand, since a new developing solution is always sprayed on the lower surface of the substrate K,
Tend to be easily formed. In the case where two development steps are performed after the exposure as described above, the upper and lower surfaces of the substrate K are turned upside down after the first development step, and the second development step is performed. Variation in the shape of the via hole can be suppressed.

【0026】この場合、1回目の現像後に基板Kを取出
し、前記洗浄を行いビアホール内の樹脂片を洗い流す。
その後、前記乾燥と上下反転を行って2回目の現像を行
う。尚、従来における基板の上下面をそのままにして1
回の現像工程で行う方法に比べ、本発明により上下面を
反転して2回の現像工程を施す場合、その現像液のシャ
ワー圧は従来方法の約半分で済む。更に、形成されるビ
アホールのアスペクト比(深さ/内径)も、従来の方法に
比べて高くできることが確認された。
In this case, after the first development, the substrate K is taken out and the above-mentioned washing is performed to wash away the resin pieces in the via holes.
Thereafter, the drying and upside down are performed to perform the second development. In addition, 1
Compared to the method performed in one development step, in the case of performing the two development steps by inverting the upper and lower surfaces according to the present invention, the shower pressure of the developing solution is only about half of the conventional method. Further, it was confirmed that the aspect ratio (depth / inner diameter) of the via hole to be formed can be increased as compared with the conventional method.

【0027】ここで、本発明による実施例を比較例と共
に説明する。前記図2の方法により形成されたビアホー
ル7と、従来の1回のみの現像によって形成された比較
例のビアホールについて、ネガ型によりビアホールを形
成するマスクによる露光遮蔽寸法を種々に変えて形成さ
れた複数のビアについて、それらの深さと同じ遮蔽寸法
毎のばらつき(分布)を測定した。その結果を図4のグラ
フに示す。図4から、実施例の各ビアホール7は、同じ
露光遮蔽寸法でも比較例に比べ深く形成でき、且つその
ばらつきも小さい範囲に留まっていた。この結果から、
本発明の方法は、比較的正確な形状と寸法のビアホール
が形成できることが裏付けられた。
Here, examples according to the present invention will be described together with comparative examples. The via hole 7 formed by the method shown in FIG. 2 and the via hole of the comparative example formed by conventional one-time development were formed by changing the exposure shielding dimension by a mask for forming a via hole by a negative type. For a plurality of vias, the variation (distribution) for each shielding dimension was measured, which was the same as their depth. The results are shown in the graph of FIG. From FIG. 4, it can be seen that each via hole 7 of the example can be formed deeper than the comparative example even with the same exposure shielding dimension, and the variation thereof remains within a small range. from this result,
The method of the present invention has been demonstrated to be able to form a via hole having a relatively accurate shape and size.

【0028】また、洗浄と乾燥を挟んで現像を2回行う
本発明方法にて製造した実施例の多層配線基板28と、
従来同様1回の現像のみによる多層配線基板28と同じ
構造を有する比較例の配線基板をそれぞれ160個ずつ
用意した。これらの各配線基板内には、直径100μm
のビア12,18が合計1000個形成されている。各
配線基板28の前記パッド26に図示しないプローブを
接触させ、外部電源から一定の電流を各基板内の100
0個のビア12,18を含む立体回路に流して、係る回
路の抵抗値を測定することにより導通しているか否かを
判定した。そして、1000個のビア12,18のうち
1つでも不導通個所のある配線基板を不良として、各例
ごとの全体に対する不良率を算出した。また、上記測定
後に、実施例及び比較例の各配線基板28を分解して、
全てのビア12,18の上端における直径の平均と偏差
(1Σ)を測定した。これらの結果を表1に示す。
Further, the multilayer wiring board 28 of the embodiment manufactured by the method of the present invention in which development is performed twice with washing and drying interposed therebetween,
As in the conventional case, 160 wiring boards of the comparative example each having the same structure as the multilayer wiring board 28 obtained by only one development were prepared. Each of these wiring boards has a diameter of 100 μm.
Are formed in total. A probe (not shown) is brought into contact with the pad 26 of each wiring board 28, and a constant current is supplied from an external power source to each of the boards 100.
The circuit was passed through a three-dimensional circuit including zero vias 12 and 18, and the resistance of the circuit was measured to determine whether or not the circuit was conductive. Then, assuming that one of the 1000 vias 12 and 18 had a defective wiring board having a non-conducting portion, the failure rate for the entire circuit was calculated for each example. Further, after the above measurement, each wiring board 28 of the example and the comparative example was disassembled,
Average and deviation of diameters at the top of all vias 12, 18
(1Σ) was measured. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から、実施例の配線基板は不良率が5
%以下と低いのに対し、比較例では50%以上の不良率
であった。また、ビア12,18の直径も実施例は比較
例よりも平均で太く、且つばらつきも少ないことが判明
した。これらの結果も本発明方法の効果を裏付けるもの
であり、且つ多層配線基板の生産性の向上に寄与できる
ことも明白になった。
From Table 1, it is found that the wiring board of the embodiment has a defect rate of 5
% Or less, whereas the comparative example had a failure rate of 50% or more. Also, it was found that the diameters of the vias 12 and 18 were thicker on average in the example than in the comparative example, and there was less variation. These results also support the effect of the method of the present invention, and it has become clear that it can contribute to the improvement in productivity of the multilayer wiring board.

【0031】本発明は以上において説明した形態や実施
例に限定されるものではない。例えば、図5(A)及び
(B)に示すように、前記図1と同じくコア基板1の両面
に下層配線パターン4を形成し、その上方に樹脂絶縁層
6を形成し且つ露光した後、前記複数回の現像工程とそ
の間に洗浄及び乾燥工程を施してビアホール7を形成し
たものを用意する。次に、図5(C)に示すように、この
樹脂絶縁層6の表面全体に無電解銅メッキ等を施して数
10μmの厚さの銅の導体層30を形成し、更に、図5
(D)に示すように、上記銅体層30の上面に感光性の樹
脂からなる絶縁層32を形成する。次いで、係る樹脂絶
縁層32に露光と現像を行い、図5(E)に示すように、
所定の樹脂パターン33とする。そして、係る樹脂パタ
ーン33と上記導体層30とをエッチング液に浸漬する
ことにより、図5(F)に示すように、上記樹脂パターン
33により保護された位置に上層配線パターン34及び
ビア36が形成される。前記と同じ方法により、図示し
ない樹脂絶縁層や最上層配線パターン等を形成して、前
記配線基板28と同様な多層配線基板38を形成するこ
とができる。
The present invention is not limited to the embodiments and examples described above. For example, FIG.
As shown in FIG. 1B, a lower wiring pattern 4 is formed on both surfaces of the core substrate 1 as in FIG. 1, a resin insulating layer 6 is formed thereon and exposed, and then the plurality of developing steps are performed. A via hole 7 is formed by performing a washing and drying process on the substrate. Next, as shown in FIG. 5C, the entire surface of the resin insulating layer 6 is subjected to electroless copper plating or the like to form a copper conductor layer 30 having a thickness of several tens of μm.
As shown in (D), an insulating layer 32 made of a photosensitive resin is formed on the upper surface of the copper body layer 30. Next, the resin insulating layer 32 is exposed and developed, and as shown in FIG.
A predetermined resin pattern 33 is used. Then, by dipping the resin pattern 33 and the conductor layer 30 in an etching solution, the upper wiring pattern 34 and the via 36 are formed at positions protected by the resin pattern 33 as shown in FIG. Is done. By the same method as described above, a multi-layer wiring board 38 similar to the wiring board 28 can be formed by forming a resin insulating layer, an uppermost wiring pattern, and the like (not shown).

【0032】また、本発明には、樹脂絶縁層の厚み等に
応じて、3回以上の現像工程とそれらの間における洗浄
及び乾燥工程を行うことも含まれる。尚、露光と現像は
未感光部分が現像により除去されるネガ型によると、樹
脂絶縁層の感光部分の樹脂の溶け出しが少なく、膜減り
量が少ないという点で優れているが、所謂ポジ型を用い
ることもできる。更に、前記多層配線基板28,38の
コア基板1には、BT樹脂とガラス繊維布との複合材
(ガラス−BTレジン材)の他、ガラス−エポキシ材、ガ
ラス−PPE材や、紙−エポキシ材等の複合材、或いは
エポキシ、BTレジン、ポリイミド、PPE等の樹脂を
用いても良い。
The present invention also includes performing at least three development steps and a washing and drying step between them according to the thickness of the resin insulating layer and the like. Exposure and development are excellent in that the negative type, in which the unexposed portions are removed by development, is less in leaching of the resin in the exposed portions of the resin insulating layer and the amount of film loss is small, but a so-called positive type. Can also be used. Further, the core substrate 1 of the multilayer wiring boards 28 and 38 is made of a composite material of BT resin and glass fiber cloth.
In addition to (glass-BT resin material), composite materials such as glass-epoxy material, glass-PPE material, and paper-epoxy material, or resins such as epoxy, BT resin, polyimide, and PPE may be used.

【0033】また、コア基板1を上記樹脂等に限らず、
セラミック製としても良い。係る剛性の高いセラミック
のコア基板1を用いる場合、その両面に同数の樹脂絶縁
層6,16と下層・上層・最上層配線パターン4,1
5,20を形成せず、互いに異なる層数としたり、或い
はコア基板1の片面にのみ樹脂絶縁層6等や下層・上層
配線パターン4,15等を形成しても良い。後者の場
合、前記スルーホール2等を省略することができる。更
に、上記コア基板1は必須の要素ではなく、例えば既設
の樹脂絶縁層の上面に下層配線パターン4を形成して順
次前記の各工程を行って、樹脂製多層配線基板を製造し
ても良い。或いは、既設のセラミック層又はセラミック
多層配線基板の上面に下層配線パターン4を形成して順
次前記の各工程を行い、セラミックと樹脂を含む複合多
層配線基板を製造することも可能である。
Further, the core substrate 1 is not limited to the above-mentioned resin or the like.
It may be made of ceramic. When such a rigid ceramic core substrate 1 is used, the same number of resin insulating layers 6 and 16 and lower, upper and uppermost wiring patterns 4 and 1 are provided on both surfaces thereof.
The number of layers may be different from each other without forming the layers 5 and 20, or the resin insulating layer 6 and the like and the lower and upper wiring patterns 4 and 15 may be formed only on one surface of the core substrate 1. In the latter case, the through hole 2 and the like can be omitted. Furthermore, the core substrate 1 is not an essential element. For example, a resin multilayer wiring substrate may be manufactured by forming the lower wiring pattern 4 on the upper surface of an existing resin insulating layer and sequentially performing the above-described steps. . Alternatively, it is also possible to form a lower wiring pattern 4 on the upper surface of an existing ceramic layer or ceramic multilayer wiring board and sequentially perform the above-described steps to manufacture a composite multilayer wiring board containing ceramic and resin.

【0034】また、前記多層配線基板28の外部との導
通用端子にパッド26を用いたが、これに替えて半田バ
ンプ、リード、又はピン等を使用することもできる。
尚、配線パターン4等を銅で形成したが、Ni及びその
合金(Ni−P,Ni−B,Ni−Cu−P)、Co及びそ
の合金(Co−P,Co−B,Co−Ni−P)、Snとそ
の合金(Sn−Pb,Sn−Pb−Pd)、Au,Ag,P
d,Pt,Rh,又はRu等とそれらの合金の何れかを用
いることもできる。
Although the pad 26 is used as a terminal for conduction with the outside of the multilayer wiring board 28, a solder bump, a lead, a pin, or the like may be used instead.
Although the wiring pattern 4 and the like were formed of copper, Ni and its alloys (Ni-P, Ni-B, Ni-Cu-P), Co and its alloys (Co-P, Co-B, Co-Ni- P), Sn and its alloys (Sn-Pb, Sn-Pb-Pd), Au, Ag, P
Any of d, Pt, Rh, Ru, and the like and alloys thereof can also be used.

【0035】[0035]

【発明の効果】以上において説明した本発明の製造方法
によれば、樹脂絶縁層に形成するビアホールを露光した
後に複数回の現像工程と、その間の洗浄及び乾燥工程に
より形成したので、正確な形状を有する比較的微細なビ
アホールを確実に形成できる。従って、追ってこのビア
ホール内に形成されるビアも正確になるため、上・下層
配線パターン間を確実に導通でき、設計通りの立体回路
を有する配線基板を提供することができる。また、請求
項4,5の発明によれば、配線基板の両面は勿論、片面
にのみ配線パターンを有する場合でも、正確な形状と寸
法を有するビアホールとこれに倣ったビアを形成するこ
とができる。
According to the manufacturing method of the present invention described above, since the via hole formed in the resin insulating layer is exposed to light and formed by a plurality of developing steps and a washing and drying step therebetween, an accurate shape is obtained. A relatively fine via hole having the following can be surely formed. Therefore, the via formed in the via hole becomes more accurate later, so that conduction between the upper and lower wiring patterns can be ensured, and a wiring board having a three-dimensional circuit as designed can be provided. Further, according to the fourth and fifth aspects of the present invention, it is possible to form a via hole having an accurate shape and dimensions and a via in accordance with the same even when the wiring pattern is provided on only one side of the wiring board, as well as on both sides. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)乃至(H)は本発明を用いた配線基板の製造
工程の概略を示す部分断面図。
1A to 1H are partial cross-sectional views schematically showing a manufacturing process of a wiring board using the present invention.

【図2】(A)乃至(D)は本発明によるビアホールの製造
工程を示す部分断面図、(E)は得られたビアを示す部分
断面図。
2 (A) to 2 (D) are partial cross-sectional views showing steps of manufacturing a via hole according to the present invention, and FIG. 2 (E) is a partial cross-sectional view showing an obtained via.

【図3】本発明の現像工程を示す概略図。FIG. 3 is a schematic view showing a developing step of the present invention.

【図4】実施例及び比較例の露光遮蔽寸法とビアの深さ
の関係を示すグラフ。
FIG. 4 is a graph showing a relationship between an exposure shielding dimension and a via depth in Examples and Comparative Examples.

【図5】(A)乃至(F)は本発明を用いた配線基板の異な
る製造工程を示す部分断面図。
5A to 5F are partial cross-sectional views showing different manufacturing steps of a wiring board using the present invention.

【図6】(A)及び(B)は従来の製造工程を示す部分断面
図、(C)と(D)は得られたビアを示す部分断面図。
FIGS. 6A and 6B are partial cross-sectional views showing a conventional manufacturing process, and FIGS. 6C and 6D are partial cross-sectional views showing obtained vias.

【符号の説明】[Explanation of symbols]

4…………………下層配線パターン 6,16…………樹脂絶縁層 7,17…………ビアホール 12,18,36…ビア 15,34………上層配線パターン 28,38………配線基板 4 Lower wiring pattern 6, 16 Resin insulation layer 7, 17 Via hole 12, 18, 36 Via 15, 34 Upper wiring pattern 28, 38 … Wiring board

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−310858(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05K 3/46 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-310858 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H05K 3/46

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下層配線パターンの上に樹脂絶縁層を形成
する工程と、 上記樹脂絶縁層に対し露光と現像を行い、該樹脂絶縁層
にビアホールを形成する工程と、を含む多層配線パター
ンを形成することが予定されている配線基板の製造方法
であって、 上記現像工程を複数回に分け、且つその間において上記
樹脂絶縁層を洗浄した後に乾燥する工程を含むことを特
徴とする配線基板の製造方法。
1. A multilayer wiring pattern comprising: a step of forming a resin insulating layer on a lower wiring pattern; and a step of exposing and developing the resin insulating layer to form a via hole in the resin insulating layer. A method of manufacturing a wiring board which is to be formed, comprising: a step of dividing the developing step into a plurality of steps, and washing and drying the resin insulating layer during the developing step. Production method.
【請求項2】請求項1の前記ビアホールを形成した後、
前記樹脂絶縁層の上に上層配線パターンを形成し、且つ
前記ビアホール内にビアを形成する工程、を含むことを
特徴とする多層配線パターンを有する配線基板の製造方
法。
2. After forming the via hole according to claim 1,
Forming an upper wiring pattern on the resin insulating layer and forming a via in the via hole.
【請求項3】前記露光と現像が、ネガ型により行われる
ことを特徴とする請求項1又は2に記載の配線基板の製
造方法。
3. The method according to claim 1, wherein the exposure and the development are performed by a negative type.
【請求項4】前記複数回の現像工程は、配線基板を略水
平に保持した状態で行い、該複数回の現像工程のうち最
初又は中間の現像の後に、略水平に保持された前記配線
基板の上下面を上下反転させた後、次の現像を行うこと
を特徴とする請求項1乃至3の何れかに記載の配線基板
の製造方法。
4. The plurality of development steps are performed while the wiring board is held substantially horizontally, and after the first or intermediate development in the plurality of development steps, the wiring board is held substantially horizontally. 4. The method for manufacturing a wiring board according to claim 1, wherein the next development is performed after the upper and lower surfaces are turned upside down.
【請求項5】前記下層配線パターンと樹脂絶縁層とを略
水平に保持された前記配線基板の下面側に位置させた状
態で、前記現像工程を行うことを特徴とする請求項1乃
至4の何れかに記載の配線基板の製造方法。
5. The developing step according to claim 1, wherein the lower wiring pattern and the resin insulating layer are positioned on a lower surface side of the wiring substrate which is held substantially horizontally. A method for manufacturing a wiring board according to any one of the above.
JP21104897A 1997-08-05 1997-08-05 Manufacturing method of wiring board Expired - Fee Related JP3054388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21104897A JP3054388B2 (en) 1997-08-05 1997-08-05 Manufacturing method of wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21104897A JP3054388B2 (en) 1997-08-05 1997-08-05 Manufacturing method of wiring board

Publications (2)

Publication Number Publication Date
JPH1154912A JPH1154912A (en) 1999-02-26
JP3054388B2 true JP3054388B2 (en) 2000-06-19

Family

ID=16599527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21104897A Expired - Fee Related JP3054388B2 (en) 1997-08-05 1997-08-05 Manufacturing method of wiring board

Country Status (1)

Country Link
JP (1) JP3054388B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050868A (en) * 1999-08-06 2002-02-15 Ibiden Co Ltd Method of manufacturing multilayered printed wiring board
EP1207730B1 (en) 1999-08-06 2009-09-16 Ibiden Co., Ltd. Electroplating solution, method for fabricating multilayer printed wiring board using the solution, and multilayer printed wiring board

Also Published As

Publication number Publication date
JPH1154912A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US7583512B2 (en) Printed circuit board including embedded passive component
KR20090104142A (en) Multilayer printed wiring board
TWI566649B (en) Wiring board
JP2000244127A (en) Wiring board and its manufacture
JP3054388B2 (en) Manufacturing method of wiring board
JP4089198B2 (en) Manufacturing method of substrate for semiconductor device
JP4137279B2 (en) Printed wiring board and manufacturing method thereof
JPH05327224A (en) Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture
TWI566648B (en) Wiring board
JP2003209359A (en) Core board and its manufacturing method
JP2655447B2 (en) Multilayer printed wiring board for surface mounting and method of manufacturing the same
JPH036880A (en) Printed wiring board and manufacture thereof
JP4705972B2 (en) Printed wiring board and manufacturing method thereof
JP3599957B2 (en) Method for manufacturing multilayer wiring board
JP4180331B2 (en) Printed wiring board, metal plate with relief pattern for printed wiring board, and method for manufacturing printed wiring board
JPH06120640A (en) Production of flexible printed wiring board
JP4464790B2 (en) Wiring board manufacturing method
TWI815596B (en) Additive thin circuit board manufacturing method
JP3713726B2 (en) Multilayer printed wiring board
JPH1168308A (en) Manufacture of wiring board
JPH08186357A (en) Printed wiring board and manufacture thereof
JPH1064341A (en) Anisotropic conductive film and manufacture thereof
JPH05325669A (en) Manufacture of anisotropic conductive film
JPS62156898A (en) Manufacture of through-hole printed wiring board
JPH03225894A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

LAPS Cancellation because of no payment of annual fees