JP3037019B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3037019B2
JP3037019B2 JP5105790A JP10579093A JP3037019B2 JP 3037019 B2 JP3037019 B2 JP 3037019B2 JP 5105790 A JP5105790 A JP 5105790A JP 10579093 A JP10579093 A JP 10579093A JP 3037019 B2 JP3037019 B2 JP 3037019B2
Authority
JP
Japan
Prior art keywords
electrode
film
etching
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5105790A
Other languages
Japanese (ja)
Other versions
JPH06318693A (en
Inventor
和久 永屋
Original Assignee
九州日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九州日本電気株式会社 filed Critical 九州日本電気株式会社
Priority to JP5105790A priority Critical patent/JP3037019B2/en
Publication of JPH06318693A publication Critical patent/JPH06318693A/en
Application granted granted Critical
Publication of JP3037019B2 publication Critical patent/JP3037019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に二層以上の電極構造を有する半導体装置の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having an electrode structure having two or more layers.

【0002】[0002]

【従来の技術】半導体装置(以下LSIと称す)には機
能別に種々の構造のものがあるが、容量素子(以下コン
デンサと称す)を多数有するアナログ回路LSIやアナ
ログ,デジタル混載LSIのように、コンデンサを形成
する為の二層の電極構造を有するLSI(第一層目の電
極と第二層目の電極の間に誘電体膜を挟んでコンデンサ
を形成したLSI)や、類似の目的のために二層もしく
は三層の電極構造を有するLSIが多数開発,製品化さ
れている。DRAM,SRAMや、UVPROM,EP
ROMなどは、その代表的なものである。
2. Description of the Related Art Semiconductor devices (hereinafter referred to as "LSI") have various structures according to their functions. However, such as an analog circuit LSI having a large number of capacitive elements (hereinafter referred to as "capacitors") and an analog / digital mixed LSI. LSI with a two-layer electrode structure for forming a capacitor (LSI with a dielectric film sandwiched between a first-layer electrode and a second-layer electrode with a capacitor) or for similar purposes Many LSIs having a two-layer or three-layer electrode structure have been developed and commercialized. DRAM, SRAM, UVPROM, EP
The ROM and the like are typical examples.

【0003】このような二層以上の電極構造を有するL
SIに於いては、下層の電極はコンデンサの形成等に用
いるのが主であり、最上層の電極は、コンデンサの上層
の電極板として用いる場合もあるが、主たる目的はMO
Sトランジスタ等のゲート電極や抵抗素子を形成すると
いうのが一般的である。ところが、近年のLSIの高密
度化,高速化の要求の中でゲート電極そのものの抵抗を
下げることと、ゲート電極とメタル配線の接触抵抗を下
げることの必要性から、最上層の電極は低抵抗の材料
(例えばタングステンなど)を用いるようになってき
た。このような低抵抗の材料では上述した抵抗素子を形
成するのが困難となるため、高抵抗材料でよい下層の電
極で抵抗素子を形成するようになっており、このような
構造が今後もますます主流となってくる。
An L having such an electrode structure of two or more layers
In SI, the lower electrode is mainly used for forming a capacitor, and the uppermost electrode is sometimes used as an upper electrode plate of a capacitor.
Generally, a gate electrode and a resistance element such as an S transistor are formed. However, with the recent demand for higher density and higher speed of LSI, it is necessary to lower the resistance of the gate electrode itself and to lower the contact resistance between the gate electrode and the metal wiring. (For example, tungsten) has come to be used. Since it is difficult to form the above-described resistance element with such a low-resistance material, the resistance element is formed by using a lower-layer electrode that can be formed of a high-resistance material, and such a structure will be used in the future. Increasingly mainstream.

【0004】そこで、図3を用いて、二層電極構造のL
SIを例にとり二層のうちの第一層目の電極で抵抗素子
を形成する従来の一般的な製造方法について説明する。
同図は従来の半導体装置の製造方法を断面図で表わした
もので、説明の便宜上1ケの抵抗素子と1ケのコンデン
サが隣接する箇所の断面部分を抜粋して示してある。ま
ず図3(a)のように半導体基板1の表面側に絶縁膜2
を介して第一層目の電極材料でホトリソグラフィー技術
を用いて所望の抵抗素子4とコンデンサの下部電極(片
方の電極)3を形成する。次に図3(b)のように、抵
抗素子4とコンデンサ電極3並びに半導体基板1の表面
を酸化処理し絶縁膜2を形成する。次いで抵抗素子4と
コンデンサ電極3の上方に絶縁膜2とは異なる材質の絶
縁誘電膜8をホトリソグラフィー技術を用いて形成す
る。その後図3(c)のように、第二層目の電極材料9
を成膜したのち、ホトリソグラフィー技術を用いて図3
(d)のように所望のコンデンサ上部電極7を形成す
る。それ以降、層間絶縁膜形成,メタル配線を経て、L
SIとして回路を構成させ、製造が完了するがその部分
の説明は省略する。
[0004] Therefore, referring to FIG.
A conventional general manufacturing method for forming a resistive element with the electrode of the first layer of the two layers will be described by taking SI as an example.
FIG. 1 is a cross-sectional view showing a conventional method of manufacturing a semiconductor device. For convenience of explanation, a cross-sectional portion where one resistor element and one capacitor are adjacent is extracted and shown. First, as shown in FIG. 3A, an insulating film 2 is formed on the surface side of the semiconductor substrate 1.
Then, a desired resistance element 4 and a lower electrode (one electrode) 3 of a capacitor are formed by using a first layer of electrode material by photolithography. Next, as shown in FIG. 3B, the surface of the resistance element 4, the capacitor electrode 3, and the surface of the semiconductor substrate 1 are oxidized to form an insulating film 2. Next, an insulating dielectric film 8 of a material different from that of the insulating film 2 is formed above the resistive element 4 and the capacitor electrode 3 by using photolithography. After that, as shown in FIG.
After forming a film, using photolithography technology
A desired capacitor upper electrode 7 is formed as shown in FIG. After that, after forming an interlayer insulating film and metal wiring,
A circuit is configured as the SI, and the manufacture is completed, but the description of that part is omitted.

【0005】[0005]

【発明が解決しようとする課題】この従来の製造方法で
は、第二層目の電極材料をパターニングするホトリソグ
ラフィー工程中のドライエッチング工程に於いて、第一
層目の電極材料で形成しておいた抵抗素子部がダメージ
を受けるという問題がある。つまりこのドライエッチン
グ工程で第二層目の電極材料の不要部分をエッチグして
除去する際のオーバーエッチング(エッチング残りを防
ぐためのエッチング)により、下方にある抵抗素子部も
わずかにエッチングされ、その結果、抵抗素子部の断面
積が減少し抵抗値が増大してしまうという問題である。
特に近年のLSIの高密度化,高性能化の中で、抵抗素
子の抵抗値の精度はきびしく要求されており、このよう
なダメージによる抵抗値の増大は大幅な歩留低下,性能
劣化となる。このため上述のドライエッチング工程は、
製造マージンが非常に少なく、きびしい管理が要求され
るとともに、製造時のバラツキによりある確率で歩留低
下,性能劣化を起こしてしまうという問題点があった。
In this conventional manufacturing method, the first electrode material is formed in the dry etching step in the photolithography step of patterning the second layer electrode material. There is a problem that the resistive element portion which has been damaged is damaged. In other words, in this dry etching step, the resistive element portion below is slightly etched by over-etching (etching to prevent etching residue) when unnecessary portions of the second layer electrode material are removed by etching. As a result, there is a problem that the cross-sectional area of the resistance element portion decreases and the resistance value increases.
Particularly, in recent years, with the increase in the density and performance of LSIs, the precision of the resistance value of the resistive element is strictly required, and an increase in the resistance value due to such damage results in a significant decrease in yield and performance degradation. . For this reason, the above-mentioned dry etching step
There is a problem that the production margin is very small, strict management is required, and the yield and the performance are deteriorated at a certain probability due to variations in the production.

【0006】本発明の目的は、このような問題点に鑑み
て成されたものであり、下層の電極材料で形成した抵抗
素子等の素子が、その上層の電極材料をドライエッチン
グする際のダメージを受けない半導体装置の製造方法を
提供することにある。
An object of the present invention has been made in view of such a problem, and an element such as a resistance element formed of a lower electrode material may be damaged by dry etching of an upper electrode material. It is an object of the present invention to provide a method of manufacturing a semiconductor device which is not affected by the problem.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、二層以上の多層の電極を形成する製造過程に
おいて、一つの層の電極を形成後、該電極表面に絶縁膜
とこの絶縁膜と異なる絶縁誘電体膜を順次形成し、次に
形成する上層電極の形成時に保護を要する既に形成した
層のうち保護を要する電極部のみの表面側に保護膜を設
けたのちに前記上層電極の形成を行うことを特徴として
構成される。
According to the method of manufacturing a semiconductor device of the present invention, in a manufacturing process for forming a multi-layered electrode having two or more layers, after forming one layer of electrode , an insulating film is formed on the surface of the electrode.
And an insulating dielectric film different from this insulating film are sequentially formed, and protection is required at the time of forming the next upper electrode to be formed.
Configured as characterized by performing the formation of the upper electrode after a protective film on the Mino surface side of the electrode portions requiring protection of the layers.

【0008】[0008]

【実施例】次に本発明について、図面を参照して説明す
る。図1は本発明の一実施例の二層電極構造を有する半
導体装置の製造方法を説明するために工程順に示した断
面図で、説明の便宜上,1ケの抵抗素子と1ケのコンデ
ンサが隣接する箇所の断面部分を抜粋して示してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating a method of manufacturing a semiconductor device having a two-layer electrode structure according to an embodiment of the present invention in the order of steps, in which one resistive element and one capacitor are adjacent to each other for convenience of explanation. The cross-sectional portion of the portion to be performed is extracted and shown.

【0009】まず、図1(a)のように、半導体基板1
の表面側に、シリコン酸化膜などの絶縁膜2を介して、
ホトリソグラフィ技術を用いて第一層目の電極材料でコ
ンデンサの下部電極3と抵抗素子4を形成する。この第
一層目の電極材料は、比較的高抵抗の得られる多結晶シ
リコンを200〜300nmの厚さにして用いる。次に
図1(b)のように、抵抗素子4とコンデンサ電極3の
表面および半導体基板表面を10〜15nmの厚さで酸
化処理し、絶縁膜を形成し、その抵抗素子4とコンテン
サ電極3の上方に、絶縁膜2とは異なる材質の絶縁誘電
膜8を形成する。この絶縁誘電膜8の材質はシリコン窒
化膜(Si3 4 )で、その形成方法としては、CVD
法により厚さ20〜30nmで成膜したのち、ホトリソ
グラフィー技術を用い、所望領域以外の膜をドライエッ
チングすることで達成している。
First, as shown in FIG.
Through an insulating film 2 such as a silicon oxide film
The lower electrode 3 and the resistive element 4 of the capacitor are formed from the first layer electrode material by using the photolithography technique. The first-layer electrode material is made of polycrystalline silicon having a relatively high resistance and a thickness of 200 to 300 nm. Next, as shown in FIG. 1B, the surfaces of the resistance element 4 and the capacitor electrode 3 and the surface of the semiconductor substrate are oxidized to a thickness of 10 to 15 nm to form an insulating film, and the resistance element 4 and the capacitor electrode 3 are formed. Above, an insulating dielectric film 8 of a material different from that of the insulating film 2 is formed. The material of the insulating dielectric film 8 is a silicon nitride film (Si 3 N 4 ).
This is achieved by forming a film with a thickness of 20 to 30 nm by a method, and then dry-etching a film other than a desired region using a photolithography technique.

【0010】次に、図1(c)のように、本発明の保護
膜5を抵抗素子4の全体を覆う様に形成する。この保護
膜5の材質はシリコン酸化膜(SiO2 )で、CVD法
により成膜しており、厚さは、後述する第二層目の電極
材料をドライエッチングする時の条件に応じて、任意に
設定できるが、本実施例では50nmとしている。そし
て、その形成方法としては、ホトリソグラフィー技術を
用いるが、エッチングはバッファード弗散を用いたウェ
ットエッチングで行なう。これは、バッファード弗散に
よるエッチングではシリコン酸化膜はエッチングされる
が、シリコン窒化膜はほとんどエッチングされないとい
う性質を利用する為で、このエッチングによる絶縁誘電
膜8の膜減りを無視できるレベルにおさえられるという
利点がある。
Next, as shown in FIG. 1C, a protective film 5 of the present invention is formed so as to cover the entire resistive element 4. The material of the protective film 5 is a silicon oxide film (SiO 2 ), which is formed by a CVD method, and the thickness thereof is optional depending on the conditions when dry-etching the second-layer electrode material described later. Can be set to 50 nm in this embodiment. Then, a photolithography technique is used as the formation method, and the etching is performed by wet etching using buffered diffusion. This is because the silicon oxide film is etched by the buffered diffusion etching, but the silicon nitride film is hardly etched. Therefore, the reduction in the thickness of the insulating dielectric film 8 due to the etching is suppressed to a negligible level. There is an advantage that it can be.

【0011】以上のように、抵抗素子4を保護膜5で保
護したのち、図1(d)のように、第二層目の電極材料
を成膜し、フォトリソグラフィー技術によりコンデンサ
の上部電極7を形成する。この二層目の電極材料は、比
較的低抵抗な材料であるタングステン系の金属を300
〜400nmの厚さで成膜し、ドライエッチングにより
不要部分を除去する事で形成する。このドライエッチン
グの際、前述した様に抵抗素子4の部分のオーバーエッ
チングによるダメージが従来問題となっていたが、本実
施例では本発明の保護膜5を有しているため、オーバー
エッチングをこの保護膜内でおさえて、抵抗素子4自身
がダメージを受けることは無い。
After the resistance element 4 is protected by the protective film 5 as described above, a second layer of electrode material is formed as shown in FIG. 1D, and the upper electrode 7 of the capacitor is formed by photolithography. To form The electrode material of the second layer is made of a tungsten-based metal which is a material having a relatively low resistance of 300.
A film is formed with a thickness of about 400 nm, and an unnecessary portion is removed by dry etching. At the time of this dry etching, damage due to over-etching of the resistance element 4 has conventionally been a problem as described above. However, in this embodiment, since the protective film 5 of the present invention is provided, the over-etching is performed. The resistance element 4 itself is not damaged by being held in the protective film.

【0012】以上のエッチングが終了したら、エッチン
グのマスクとして用いたフォトレジストを剥離し、その
後バッファード弗酸により全面をウェットエッチングす
る事により保護膜5と、素子領域以外の絶縁膜2を同時
に除去すると、図1(e)の構造となる。
When the above etching is completed, the photoresist used as an etching mask is removed, and then the entire surface is wet-etched with buffered hydrofluoric acid to simultaneously remove the protective film 5 and the insulating film 2 other than the element region. Then, the structure shown in FIG.

【0013】以後は、通常のLSI製造技術により、層
間膜形成,メタル配線等を経て所望のLSIを完成させ
ていくが、その部分の説明は、本発明を説明する上で特
に必要ではないので、ここでは省略する。
Thereafter, a desired LSI is completed by an ordinary LSI manufacturing technique through formation of an interlayer film, metal wiring, and the like. However, the description of this portion is not particularly necessary for explaining the present invention, so that it is not necessary. , Is omitted here.

【0014】なお、本実施例では、第一層目で電極材料
で形成する素子の例として、抵抗素子をとり上げている
が、言うまでもなく、それ以外の全ての素子、例えばM
OSトランジスタのゲート電極などにも適用できること
は言うまでもない。
In this embodiment, a resistance element is taken up as an example of an element formed of an electrode material in the first layer. Needless to say, all other elements, for example, M
Needless to say, the present invention can be applied to a gate electrode of an OS transistor and the like.

【0015】次に図2を用いて本発明の効果を具体的に
説明する。図2は本発明の製造方法及び従来の製造方法
において、第二層目の電極材料をドライエッチングする
際のオーバーエッチング量を0%〜15%まで振った時
に、第一層目の電極材料で形成した抵抗素子の抵抗値
(R)がその抵抗素子の設計の抵抗値(R0 )に対し
て、どのように変化するかをバラツキも含めてR/R0
で示したものである。これから明らかな様に従来構造の
場合には、オーバーエッチング量が多くなるにつれて抵
抗素子の受けるダメージが増加することにより抵抗値が
増大し、R/R0 が大きくなり、またバラツキも大きく
なっているが、本発明の構成の製造方法を適用すると、
実験を行なった0〜15%のオーバーエッチングの範囲
内では全くその抵抗値の増大、バラツキ増大は認められ
ず、その効果の著しいことがわかる。
Next, the effect of the present invention will be specifically described with reference to FIG. FIG. 2 shows that in the manufacturing method of the present invention and the conventional manufacturing method, when the amount of over-etching when dry-etching the electrode material of the second layer is varied from 0% to 15%, the electrode material of the first layer is used. R / R 0 including how the resistance value (R) of the formed resistance element changes with respect to the resistance value (R 0 ) of the design of the resistance element, including variations.
It is shown by. As is apparent from the above, in the case of the conventional structure, as the over-etching amount increases, the damage to the resistance element increases, so that the resistance value increases, R / R 0 increases, and the variation also increases. However, when applying the manufacturing method of the configuration of the present invention,
Within the range of over-etching of 0 to 15% in which the experiment was performed, no increase in the resistance value and no increase in the variation were recognized, indicating that the effect was remarkable.

【0016】また、本発明の製造方法の特徴の一つに、
保護膜は、上層の電極材料のエッチングが終了したの
ち、完全に取り除いてしまう(図1(e))という点が
ある。これを取り除く理由は、仮に、保護膜をそのまま
残しておいた場合、この保護膜と抵抗素子等の間に生じ
る寄生容量を考慮しなければならないからである。従っ
て、新たに開発するLSIの場合には、その寄生容量を
考慮した上で設計すれば何ら問題はないが、既に量産中
の既存のLSIに対しては、上述の寄生容量によって、
多少の性能のずれを生じる恐れがある。ところが、本発
明の製造方法によれば、保護膜はその主たる目的を達し
たのちは、完全に取り除いてしまうために、上述したよ
うな寄生容量を考慮する必要など全くなく、従って既に
量産している様な開発,設計済の既存のLSIに対して
も即座に適用できるという大きな効果を有している。
One of the features of the manufacturing method of the present invention is that
There is a point that the protective film is completely removed after the etching of the upper electrode material is completed (FIG. 1E). The reason for removing this is that if the protection film is left as it is, the parasitic capacitance generated between the protection film and the resistance element or the like must be considered. Therefore, in the case of a newly developed LSI, there is no problem if it is designed in consideration of its parasitic capacitance. However, the above-mentioned parasitic capacitance is not applied to an existing LSI already in mass production.
There may be a slight performance deviation. However, according to the manufacturing method of the present invention, after the protective film has achieved its main purpose, it is completely eliminated, so there is no need to consider the parasitic capacitance as described above, and thus the protective film has already been mass-produced. There is a great effect that it can be immediately applied to existing LSIs already developed and designed.

【0017】[0017]

【発明の効果】以上説明した様に本発明は、下層の電極
材料で形成した抵抗等の素子を保護するための保護膜を
設けたので、これらの抵抗素子等がその上層の電極材料
をドライエッチングする際のオーバーエッチングによる
ダメージを受ける事が無くなり、従来エッチングのマー
ジンが狭く、管理に苦慮していたと同時に、歩留低下,
性能劣化を招いていたという問題に対し、エッチングマ
ージンが著しく広がり、歩留低下および抵抗値バラツキ
等の性能劣化も全く無いという効果を有する。
As described above, according to the present invention, since a protective film for protecting elements such as resistors formed by a lower electrode material is provided, these resistive elements and the like can dry an upper electrode material. Damage due to over-etching during etching is eliminated, and the conventional etching margin was narrow and management was troublesome.
In order to solve the problem of performance degradation, there is an effect that the etching margin is remarkably widened, and there is no performance degradation such as yield reduction and resistance value variation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するために工程順に示
した半導体装置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device shown in the order of steps for explaining one embodiment of the present invention.

【図2】本発明の効果を説明するためのオーバーエッチ
ング量と抵抗値変化の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between an over-etching amount and a change in resistance value for explaining the effect of the present invention.

【図3】従来の半導体装置の製造方法を説明するために
工程順に示した半導体装置の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor device shown in the order of steps for describing a conventional method of manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 絶縁膜 3 コンデンサの下部電極 4 抵抗素子 5 保護膜 6 第二層目の電極材料 7 コンデンサの上部電極 8 絶縁誘電膜 9 第二層目の電極材料 REFERENCE SIGNS LIST 1 semiconductor substrate 2 insulating film 3 capacitor lower electrode 4 resistive element 5 protective film 6 second layer electrode material 7 capacitor upper electrode 8 insulating dielectric film 9 second layer electrode material

フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 29/40 (58)調査した分野(Int.Cl.7,DB名) H01L 27/04 H01L 21/3065 H01L 21/822 H01L 23/29 H01L 23/31 H01L 29/40 Continued on the front page (51) Int.Cl. 7 identification code FI H01L 29/40 (58) Investigated field (Int.Cl. 7 , DB name) H01L 27/04 H01L 21/3065 H01L 21/822 H01L 23 / 29 H01L 23/31 H01L 29/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二層以上の多層の電極構造を有する半導
体装置の電極を形成する製造過程に於いて、一つの層の
電極形成後、該電極表面に絶縁膜とこの絶縁膜と異なる
絶縁誘電体膜を順次形成し、次に形成する上層電極の形
成時に既に形成した層のうち保護を要する電極部のみの
前記誘電体膜表面に保護膜を設けたのちに前記上層電極
形成を行う事を特徴とする半導体装置の製造方法。
In a manufacturing process for forming an electrode of a semiconductor device having a multi-layered electrode structure of two or more layers, after an electrode of one layer is formed, an insulating film and a material different from the insulating film are formed on the surface of the electrode.
An insulating dielectric layer is sequentially formed, the electrode portions requiring protection of the layers already formed during the formation of the upper electrode is formed next Mino
After providing a protective film on the surface of the dielectric film, the upper electrode
The method of manufacturing a semiconductor device, characterized in that performing the formation.
【請求項2】 前記保護膜は前記上層電極形成が終了
したのち、完全に除去する事を特徴とする請求項1記載
の半導体装置の製造方法。
2. The method according to claim 1, wherein the protection film is completely removed after the formation of the upper electrode is completed.
JP5105790A 1993-05-07 1993-05-07 Method for manufacturing semiconductor device Expired - Fee Related JP3037019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105790A JP3037019B2 (en) 1993-05-07 1993-05-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5105790A JP3037019B2 (en) 1993-05-07 1993-05-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH06318693A JPH06318693A (en) 1994-11-15
JP3037019B2 true JP3037019B2 (en) 2000-04-24

Family

ID=14416934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105790A Expired - Fee Related JP3037019B2 (en) 1993-05-07 1993-05-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3037019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137620A1 (en) * 2011-04-05 2012-10-11 ルネサスエレクトロニクス株式会社 Semiconductor device
JP7272098B2 (en) * 2019-05-09 2023-05-12 富士通セミコンダクターメモリソリューション株式会社 Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH06318693A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
US4536949A (en) Method for fabricating an integrated circuit with multi-layer wiring having opening for fuse
KR20010072659A (en) Method for producing semiconductor components
JP3037019B2 (en) Method for manufacturing semiconductor device
JPS60128640A (en) Manufacture of semiconductor device
JP3030550B2 (en) Method for manufacturing analog semiconductor device
JPH0714931A (en) Manufacture of semiconductor device
JP3623377B2 (en) Manufacturing method of semiconductor device
JP3132451B2 (en) Semiconductor device and method of manufacturing the same
JP2812275B2 (en) Method for manufacturing semiconductor device
JPH0671070B2 (en) Method of manufacturing semiconductor memory device
JPH10209393A (en) Semiconductor device and its manufacture
JP3271090B2 (en) Semiconductor device manufacturing method
JP2940448B2 (en) Semiconductor integrated circuit
JPH05129549A (en) Semiconductor device and manufacture thereof
JPH05175428A (en) Integrated circuit device
KR940000311B1 (en) Method of fabricating a resistor for sram
JPH05347392A (en) Manufacture of semiconductor device
JP3166749B2 (en) Semiconductor device and method of manufacturing the same
JPH05109983A (en) Semiconductor device and its manufacture
KR920010669B1 (en) Semiconductor device and its manufacturing method
JPH08306878A (en) Method of fabricating semiconductor device
JP2758729B2 (en) Semiconductor device
KR0165340B1 (en) Semiconductor device and manufacture thereof
KR100221631B1 (en) Semiconductor capacitor manufacturing method
JPH0555211A (en) Forming method of wiring

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

LAPS Cancellation because of no payment of annual fees