JP2812275B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2812275B2
JP2812275B2 JP7330744A JP33074495A JP2812275B2 JP 2812275 B2 JP2812275 B2 JP 2812275B2 JP 7330744 A JP7330744 A JP 7330744A JP 33074495 A JP33074495 A JP 33074495A JP 2812275 B2 JP2812275 B2 JP 2812275B2
Authority
JP
Japan
Prior art keywords
film
gate electrode
electrode film
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7330744A
Other languages
Japanese (ja)
Other versions
JPH09172168A (en
Inventor
裕之 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7330744A priority Critical patent/JP2812275B2/en
Publication of JPH09172168A publication Critical patent/JPH09172168A/en
Application granted granted Critical
Publication of JP2812275B2 publication Critical patent/JP2812275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特にMOSトランジスタのゲート電極の形
成方法に関するものである。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a gate electrode of a MOS transistor.

【0002】[0002]

【従来の技術】図3は、素子分離技術としてLOCOS
(Local Oxidation of Silicon)法を用いた半導体装置
の製造工程を示す図である。従来、この種の半導体装置
では、まず、図3(a)に示すように、シリコン基板1
上にLOCOS酸化膜2、ゲート酸化膜3を形成した
後、図3(b)に示すように、CVD法によりウェハー
全面にポリシリコン膜4を成長させ、ポリシリコン膜4
にリンをドープした上で、図3(c)に示すように、ウ
ェハー全面にフォトレジスト膜5を回転塗布する。
2. Description of the Related Art FIG. 3 shows LOCOS as an element isolation technique.
FIG. 4 is a diagram illustrating a manufacturing process of a semiconductor device using a (Local Oxidation of Silicon) method. Conventionally, in a semiconductor device of this type, first, as shown in FIG.
After a LOCOS oxide film 2 and a gate oxide film 3 are formed thereon, as shown in FIG. 3B, a polysilicon film 4 is grown on the entire surface of the wafer by a CVD method.
Then, a photoresist film 5 is spin-coated on the entire surface of the wafer as shown in FIG.

【0003】次に、図3(d)に示すように、フォトレ
ジスト膜5をフォトリソグラフィー技術を用いて露光、
現像し、ゲート電極を形成すべき部分にのみフォトレジ
スト膜5を残す。そして、図3(e)に示すように、残
したフォトレジスト膜5をエッチングのマスク材とし
て、異方性のプラズマエッチングを用いてポリシリコン
膜4をエッチングし、ゲート電極6を形成する。その
後、フォトレジスト膜5を除去することにより、図3
(f)に示すようなゲート電極6が完成する。
Next, as shown in FIG. 3D, the photoresist film 5 is exposed using photolithography technology.
Development is performed, and the photoresist film 5 is left only in the portion where the gate electrode is to be formed. Then, as shown in FIG. 3E, the polysilicon film 4 is etched using anisotropic plasma etching using the remaining photoresist film 5 as an etching mask material to form a gate electrode 6. After that, the photoresist film 5 is removed, whereby FIG.
The gate electrode 6 as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来の半導体装置の製造方法では、ゲート電極の加工時に
次のような問題が生じていた。すなわち、図4に示すよ
うに、LOCOS酸化膜2の段差があるためにポリシリ
コン膜4の上面が平坦にならない。さらに、フォトレジ
スト膜5が塗布膜であるため、ポリシリコン膜4上のフ
ォトレジスト膜5の膜厚が均一にはならず、隣り合うL
OCOS酸化膜2同士の間隔が狭い箇所では膜厚が厚く
なり、逆に同間隔が広い箇所では薄くなる、というよう
に、フォトレジスト膜厚が隣り合うLOCOS酸化膜2
同士の間隔に依存していた。
However, in the above-described conventional method for manufacturing a semiconductor device, the following problem has occurred when processing the gate electrode. That is, as shown in FIG. 4, the upper surface of the polysilicon film 4 is not flat due to the step of the LOCOS oxide film 2. Further, since the photoresist film 5 is a coating film, the thickness of the photoresist film 5 on the polysilicon film 4 is not uniform, and the adjacent L
The LOCOS oxide films 2 whose photoresist film thicknesses are adjacent are such that the thickness of the LOCOS oxide film 2 becomes thicker at a portion where the distance between the OCOS oxide films 2 is narrow, and becomes thinner at a portion where the distance between the OCOS oxide films 2 is wide.
It depended on the distance between each other.

【0005】図6は、一定の露光時間でゲート電極を加
工した際の、フォトレジスト膜の膜厚とゲート長の関係
を示す図である。図6に示すように、全体的に見ると、
フォトレジスト膜厚が厚くなるとゲート長は長くなる
が、部分的には、露光時の光がフォトレジスト膜中で散
乱し、また、ポリシリコン膜との界面で反射するため、
入射光と反射光の相互干渉によりゲート長が定在波状に
変化する。
FIG. 6 is a diagram showing the relationship between the thickness of a photoresist film and the gate length when a gate electrode is processed for a fixed exposure time. As shown in FIG. 6, when viewed as a whole,
As the photoresist film thickness increases, the gate length increases, but in part, light during exposure is scattered in the photoresist film and reflected at the interface with the polysilicon film.
The gate length changes like a standing wave due to the mutual interference between the incident light and the reflected light.

【0006】したがって、例えば、図4において、隣り
合うLOCOS酸化膜2同士の間隔が狭い箇所での膜厚
をt1 、広い箇所での膜厚をt2 とし(t1 >t2 )、
これら膜厚t1 、t2 が図6において定在波の山および
谷になった場合を考えると、フォトマスク上のゲート長
が同じであっても、隣り合うLOCOS酸化膜2同士の
間隔に起因してフォトレジスト膜厚t1 、t2 が変わ
り、その結果、図5に示すように、実際のゲート長はそ
れぞれL1 、L2 (L1 >L2 )というように変わって
しまう。
Therefore, for example, in FIG. 4, the film thickness at a place where the distance between adjacent LOCOS oxide films 2 is small is t1 and the film thickness at a wide place is t2 (t1> t2).
Considering the case where the film thicknesses t1 and t2 are the peaks and valleys of the standing wave in FIG. 6, even if the gate length on the photomask is the same, it is caused by the distance between adjacent LOCOS oxide films 2. As a result, the photoresist thicknesses t1 and t2 change, and as a result, as shown in FIG. 5, the actual gate lengths change as L1 and L2 (L1> L2), respectively.

【0007】このL1 、L2 の差は、主に、露光時に使
用する光源の波長と、フォトレジストの屈折率に依存す
るが、現在一般的に用いられている条件ではこの差が
0.1μm程度となり、例えばゲート長が0.5μm以
下のサブミクロンデバイスでは、この差がゲート長の2
0%以上も占めることになる。すると、トランジスタの
閾値電圧やオン電流およびパンチスルー耐圧等に与える
影響が大きくなり、設計値と実際のトランジスタの特性
が異なることにより、集積回路の誤動作が生じるととも
に、製品寿命が短くなる、といった不具合があった。
The difference between L1 and L2 mainly depends on the wavelength of the light source used at the time of exposure and the refractive index of the photoresist, but under the conditions generally used at present, this difference is about 0.1 μm. For example, in a submicron device having a gate length of 0.5 μm or less, this difference is equal to the gate length of 2 μm.
It will account for more than 0%. Then, the influence on the transistor threshold voltage, on-state current, punch-through withstand voltage, and the like becomes large, and a malfunction occurs in an integrated circuit due to a difference between a design value and an actual transistor characteristic, and the product life is shortened. was there.

【0008】本発明は、上記の課題を解決するためにな
されたものであって、基板上の段差部同士の間隔が異な
る箇所にMOSトランジスタが形成される場合でも、そ
れらトランジスタのゲート長バラツキを低減し得る半導
体装置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. Even when MOS transistors are formed at different positions on a substrate at different intervals between step portions, variations in the gate lengths of the transistors are reduced. It is an object to provide a method for manufacturing a semiconductor device which can be reduced.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置の製造方法は、基板上に段差
部が形成されその段差部の間隔が異なっている半導体装
置の製造方法であって、基板全面にゲート電極膜を堆積
させる工程と、ゲート電極膜上に、ゲート電極膜に対す
るエッチング選択比の大きな絶縁膜を、この絶縁膜が段
差部に沿って生じるゲート電極膜の凹部を埋めて絶縁膜
の最も低い部分が少なくともゲート電極膜の最も高い部
分よりも高くなるだけの膜厚分、堆積させる工程と、絶
縁膜の上面を平坦化する工程と、絶縁膜上に形成したフ
ォトレジスト膜を用いてゲート電極膜をパターニングす
る工程を有することを特徴とするものである。また、本
発明の半導体装置の製造方法は、基板全面にゲート電極
膜を堆積させる工程と、該ゲート電極膜上に、該ゲート
電極膜に対するエッチング選択比の大きな絶縁膜を、該
絶縁膜が前記段差部に沿って生じる前記ゲート電極膜の
凹部を埋めて該絶縁膜の最も低い部分が少なくとも前記
ゲート電極膜の最も高い部分よりも高くなるだけの膜厚
分、堆積させる工程と、前記絶縁膜の上面を平坦化し基
板全体に絶縁膜を残す工程と、該絶縁膜上に形成したフ
ォトレジスト膜を用いて前記ゲート電極膜をパターニン
グする工程を有することを特徴とするものである。
In order to achieve the above object, a method for manufacturing a semiconductor device according to the present invention comprises a step on a substrate.
Semiconductor device in which a step is formed and the gap between the steps is different
A step of depositing a gate electrode film on the entire surface of the substrate, and forming an insulating film having a large etching selectivity with respect to the gate electrode film on the gate electrode film, wherein the insulating film is formed along the step portion. Depositing an insulating film by filling the concave portion of the electrode film so that the lowest portion of the insulating film is at least as thick as the highest portion of the gate electrode film; flattening the upper surface of the insulating film; And a step of patterning the gate electrode film using the photoresist film formed thereon. Also book
The method of manufacturing a semiconductor device according to the present invention includes the steps of:
Depositing a film, and forming the gate on the gate electrode film.
An insulating film having a large etching selectivity to the electrode film is
An insulating film formed along the step portion of the gate electrode film;
Filling the recesses, the lowest part of the insulating film is at least
Thickness that is higher than the highest part of the gate electrode film
And depositing the insulating film, and planarizing the upper surface of the insulating film.
Leaving an insulating film on the entire board; and forming a film formed on the insulating film.
Patterning the gate electrode film using a photoresist film;
Characterized in that it has a step of performing

【0010】また、前記ゲート電極膜をパターニングす
る方法としては、前記フォトレジスト膜をマスクとして
絶縁膜をエッチングした後、フォトレジスト膜を除去
し、残った絶縁膜をマスクとしてゲート電極膜のエッチ
ングを行っても良いし、もしくは、フォトレジスト膜を
マスクとして絶縁膜およびゲート電極膜のエッチングを
連続して行っても良い。
Further, as a method of patterning the gate electrode film, after etching the insulating film using the photoresist film as a mask, the photoresist film is removed, and the gate electrode film is etched using the remaining insulating film as a mask. The etching may be performed, or the insulating film and the gate electrode film may be continuously etched using the photoresist film as a mask.

【0011】本発明の半導体装置の製造方法によれば、
ゲート電極膜上に絶縁膜が堆積された上、その絶縁膜の
上面が平坦化されることにより、絶縁膜上にゲート電極
加工用のフォトレジストが塗布される際に、基板全面に
わたって段差部の有無にかかわらずフォトレジストの膜
厚が均一になるため、定在波効果が抑制されることでゲ
ート長のバラツキが低減される。
According to the method of manufacturing a semiconductor device of the present invention,
An insulating film is deposited on the gate electrode film, and the upper surface of the insulating film is planarized, so that when a photoresist for processing a gate electrode is applied on the insulating film, a step portion is formed over the entire surface of the substrate. Irrespective of the presence or absence of the photoresist, the thickness of the photoresist becomes uniform, so that the standing wave effect is suppressed, thereby reducing the variation in the gate length.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施の形態を図
1および図2を参照して説明する。図1は、素子分離技
術としてLOCOS法を用いた半導体装置の製造工程を
示す図である。まず、図1(a)に示すように、シリコ
ン基板1上にLOCOS酸化膜2、ゲート酸化膜3を形
成した後、CVD法によりゲート電極となるポリシリコ
ン膜4(ゲート電極膜)をウェハー全面に成長させ、電
気抵抗を下げるためにリン等の不純物をドープする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a manufacturing process of a semiconductor device using a LOCOS method as an element isolation technique. First, as shown in FIG. 1A, after a LOCOS oxide film 2 and a gate oxide film 3 are formed on a silicon substrate 1, a polysilicon film 4 (gate electrode film) serving as a gate electrode is formed on the entire surface of the wafer by a CVD method. And doped with impurities such as phosphorus to reduce the electric resistance.

【0013】次に、図1(b)に示すように、膜厚2μ
m程度の厚いプラズマ酸化膜7(絶縁膜)をウェハー全
面に成長させる。この際、プラズマ酸化膜7はLOCO
S酸化膜2による段差部に沿うポリシリコン膜4の凹部
を完全に埋め、プラズマ酸化膜7の最も低い部分が(L
OCOS酸化膜2上の)ポリシリコン膜4の最も高い部
分よりも高い状態となる。その後、図1(c)に示すよ
うに、ウェハー全面をCMP(Chemical Mechanical Po
lish)法により研磨し、プラズマ酸化膜7の初期膜厚の
50〜60%(1.0〜1.2μm)程度を研磨する。
その結果、プラズマ酸化膜7の上面は平坦な面となる。
Next, as shown in FIG.
A plasma oxide film 7 (insulating film) having a thickness of about m is grown on the entire surface of the wafer. At this time, the plasma oxide film 7 is
The concave portion of the polysilicon film 4 along the step formed by the S oxide film 2 is completely filled, and the lowest portion of the plasma oxide film 7 is (L
The state is higher than the highest portion of the polysilicon film 4 (on the OCOS oxide film 2). Thereafter, as shown in FIG. 1C, the entire surface of the wafer is subjected to CMP (Chemical Mechanical Po
Polishing by the lish) method, and polishing about 50 to 60% (1.0 to 1.2 μm) of the initial film thickness of the plasma oxide film 7.
As a result, the upper surface of the plasma oxide film 7 becomes a flat surface.

【0014】そして、図1(d)に示すように、ウェハ
ー全面にフォトレジスト膜5を回転塗布する。ついで、
フォトリソグラフィー技術によりウェハーの露光、現像
を行い、ゲート電極を形成すべき部分にフォトレジスト
膜5を残すようにパターニングを行う。その後、フォト
レジスト膜5をエッチングのマスク材として異方性のプ
ラズマエッチングを施すことにより、図1(e)に示す
ように、プラズマ酸化膜7をエッチングする。この際、
プラズマ酸化膜7とポリシリコン膜4のエッチング選択
比が大きいため、ポリシリコン膜4はほとんどエッチン
グされない。
Then, as shown in FIG. 1D, a photoresist film 5 is spin-coated on the entire surface of the wafer. Then
Exposure and development of the wafer are performed by photolithography, and patterning is performed so that the photoresist film 5 is left in a portion where a gate electrode is to be formed. Thereafter, by performing anisotropic plasma etching using the photoresist film 5 as an etching mask material, the plasma oxide film 7 is etched as shown in FIG. On this occasion,
Since the etching selectivity between the plasma oxide film 7 and the polysilicon film 4 is large, the polysilicon film 4 is hardly etched.

【0015】次に、フォトレジスト膜5を除去した後、
残ったプラズマ酸化膜7をエッチングのマスク材として
異方性のプラズマエッチングを施すことにより、図1
(f)に示すように、ポリシリコン膜4をエッチング
し、ゲート電極6を形成する。最後に、マスク材とした
プラズマ酸化膜7をウェットエッチング等の等方性のエ
ッチングにより除去すると、図1(g)に示すゲート電
極6が形成される。その後、ソース、ドレイン拡散層を
形成することによってMOSトランジスタが完成する。
Next, after removing the photoresist film 5,
By performing anisotropic plasma etching using the remaining plasma oxide film 7 as a mask material for etching, FIG.
As shown in (f), the polysilicon film 4 is etched to form a gate electrode 6. Finally, when the plasma oxide film 7 used as the mask material is removed by isotropic etching such as wet etching, the gate electrode 6 shown in FIG. 1G is formed. Thereafter, a MOS transistor is completed by forming source and drain diffusion layers.

【0016】本実施の形態の半導体装置の製造方法によ
れば、フォトレジスト膜5を回転塗布する際に、その下
地であるプラズマ酸化膜7の表面がCMP法により平坦
化されているため、図2に示すように、形成されたフォ
トレジスト膜5の膜厚tはLOCOS酸化膜2同士の間
隔によらず均一となる。すると、フォトレジスト膜厚t
が均一であり、露光時に前述した定在波の影響を受けな
いため、フォトレジストパターンはほぼフォトマスク寸
法通りのゲート長として形成され、ゲート長のバラツキ
は従来の半分以下に抑えられる。したがって、閾値電
圧、オン電流、パンチスルー耐圧等、トランジスタの実
際の諸特性としてほぼ設計値通りのものが得られるた
め、集積回路の誤動作が生じたり、製品寿命が短くな
る、といった従来の問題点を解決することができる。
According to the method of manufacturing the semiconductor device of the present embodiment, when the photoresist film 5 is spin-coated, the surface of the plasma oxide film 7 as the base is flattened by the CMP method. As shown in FIG. 2, the thickness t of the formed photoresist film 5 becomes uniform irrespective of the distance between the LOCOS oxide films 2. Then, the photoresist film thickness t
Is uniform and is not affected by the above-described standing wave during exposure, so that the photoresist pattern is formed with a gate length substantially equal to the dimensions of the photomask, and variations in the gate length can be suppressed to less than half the conventional values. Therefore, since the actual characteristics of the transistor, such as the threshold voltage, the on-state current, and the punch-through withstand voltage, can be obtained almost as designed, the conventional problems such as malfunctioning of the integrated circuit and shortening of the product life are obtained. Can be solved.

【0017】なお、本発明の技術範囲は上記実施の形態
に限定されるものではなく、本発明の趣旨を逸脱しない
範囲において種々の変更を加えることが可能である。例
えば本実施の形態では、ポリシリコン膜4をパターニン
グする際に、プラズマ酸化膜7を一旦パターニングした
後、フォトレジスト膜5を除去し、プラズマ酸化膜7の
パターンをマスクとしてポリシリコン膜4のエッチング
を行ったが、この方法に代えて、プラズマ酸化膜上に形
成したフォトレジストパターンをマスクとしてプラズマ
酸化膜およびポリシリコン膜のエッチングを連続して行
うようにしても良い。
The technical scope of the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention. For example, in the present embodiment, when the polysilicon film 4 is patterned, after the plasma oxide film 7 is once patterned, the photoresist film 5 is removed, and the polysilicon film 4 is etched using the pattern of the plasma oxide film 7 as a mask. However, instead of this method, the etching of the plasma oxide film and the polysilicon film may be performed continuously using the photoresist pattern formed on the plasma oxide film as a mask.

【0018】また、ポリシリコン膜上に設ける絶縁膜と
しては、ポリシリコン膜に対するエッチング選択比の大
きいものであれば、プラズマ酸化膜以外にも種々の絶縁
膜を用いることができる。そして、その絶縁膜を平坦化
する手段はCMP法に限らず例えばエッチバック法等を
用いてもよい。さらに、本実施の形態ではLOCOS酸
化膜により段差部が形成された例を示したが、種々の構
造により基板上に段差部が形成される場合に本発明を適
用することが可能である。
As the insulating film provided on the polysilicon film, various insulating films other than the plasma oxide film can be used as long as they have a large etching selectivity with respect to the polysilicon film. The means for flattening the insulating film is not limited to the CMP method, but may be, for example, an etch-back method. Further, in this embodiment, the example in which the step portion is formed by the LOCOS oxide film is described. However, the present invention can be applied to the case where the step portion is formed on the substrate by various structures.

【0019】[0019]

【発明の効果】以上、詳細に説明したように、本発明の
半導体装置の製造方法によれば、ゲート電極加工用のフ
ォトレジスト膜を塗布する際にその下地である絶縁膜の
上面が平坦化されているため、形成されるフォトレジス
ト膜の膜厚は段差部の有無にかかわらず基板上で均一と
なり、パターンがほぼフォトマスク寸法通りのゲート長
となって、バラツキも従来の半分以下となる。したがっ
て、閾値電圧、オン電流、パンチスルー耐圧等、MOS
トランジスタの実際の諸特性としてほぼ設計値通りのも
のが得られるため、集積回路の誤動作が生じたり、製品
寿命が短くなる、といった従来の問題点を解決すること
ができる。
As described in detail above, according to the method of manufacturing a semiconductor device of the present invention, when a photoresist film for processing a gate electrode is applied, the upper surface of an insulating film as a base is flattened. Therefore, the thickness of the formed photoresist film becomes uniform on the substrate regardless of the presence or absence of the step portion, and the pattern becomes a gate length almost according to the photomask dimension, and the variation is less than half of the conventional one. . Therefore, the threshold voltage, ON current, punch-through withstand voltage, etc.
Since the actual characteristics of the transistor are almost as designed, the conventional problems such as malfunction of the integrated circuit and shortened product life can be solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である半導体装置の製造
方法を順を追って示す縦断面図である。
FIG. 1 is a longitudinal sectional view sequentially showing a method of manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】同方法により得られた半導体装置の縦断面図で
ある。
FIG. 2 is a longitudinal sectional view of a semiconductor device obtained by the same method.

【図3】従来一般の半導体装置の製造方法を順を追って
示す縦断面図である。
FIG. 3 is a longitudinal sectional view sequentially showing a conventional method of manufacturing a general semiconductor device.

【図4】同方法におけるフォトレジスト塗布時の状態を
示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing a state at the time of applying a photoresist in the same method.

【図5】同方法におけるゲート電極加工時の状態を示す
縦断面図である。
FIG. 5 is a longitudinal sectional view showing a state at the time of processing a gate electrode in the same method.

【図6】フォトレジスト膜厚とゲート長の関係を示す縦
断面図である。
FIG. 6 is a longitudinal sectional view showing a relationship between a photoresist film thickness and a gate length.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 LOCOS酸化膜 3 ゲート酸化膜 4 ポリシリコン膜 5 フォトレジスト膜 6 ゲート電極 7 プラズマ酸化膜(絶縁膜) REFERENCE SIGNS LIST 1 silicon substrate 2 LOCOS oxide film 3 gate oxide film 4 polysilicon film 5 photoresist film 6 gate electrode 7 plasma oxide film (insulating film)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に段差部が形成されその段差部の
間隔が異なっている半導体装置の製造方法において、基
板全面にゲート電極膜を堆積させる工程と、 該ゲート電極膜上に、該ゲート電極膜に対するエッチン
グ選択比の大きな絶縁膜を、該絶縁膜が前記段差部に沿
って生じる前記ゲート電極膜の凹部を埋めて該絶縁膜の
最も低い部分が少なくとも前記ゲート電極膜の最も高い
部分よりも高くなるだけの膜厚分、堆積させる工程と、 前記絶縁膜の上面を平坦化する工程と、 該絶縁膜上に形成したフォトレジスト膜を用いて前記ゲ
ート電極膜をパターニングする工程を有することを特徴
とする半導体装置の製造方法。
A step is formed on a substrate, and the step is formed on the substrate .
In the method for manufacturing a semiconductor device having different intervals, a step of depositing a gate electrode film over the entire surface of the substrate; and forming an insulating film having a large etching selectivity with respect to the gate electrode film on the gate electrode film. Depositing a concave portion of the gate electrode film formed along a step portion so as to deposit a film having a thickness such that a lowest portion of the insulating film is at least higher than a highest portion of the gate electrode film; A method of manufacturing a semiconductor device, comprising: flattening an upper surface of a semiconductor device; and patterning the gate electrode film using a photoresist film formed on the insulating film.
【請求項2】 基板上に段差部が形成された半導体装置2. A semiconductor device having a step on a substrate.
の製造方法において、基板全面にゲート電極膜を堆積さA gate electrode film deposited on the entire surface of the substrate.
せる工程と、And the process of 該ゲート電極膜上に、該ゲート電極膜に対するエッチンEtching on the gate electrode film on the gate electrode film
グ選択比の大きな絶縁膜を、該絶縁膜が前記段差部に沿An insulating film having a large selectivity is formed along the step.
って生じる前記ゲート電極膜の凹部を埋めて該絶縁膜のFilling the recesses of the gate electrode film caused by the
最も低い部分が少なくとも前記ゲート電極膜の最も高いThe lowest part is at least the highest of the gate electrode film.
部分よりも高くなるだけの膜厚分、堆積させる工程と、Depositing the film by a thickness that is higher than the portion, 前記絶縁膜の上面を平坦化し基板全体に絶縁膜を残す工Work to flatten the upper surface of the insulating film and leave the insulating film on the entire substrate
程と、About 該絶縁膜上に形成したフォトレジスト膜を用いて前記ゲUsing the photoresist film formed on the insulating film,
ート電極膜をパターニングする工程を有することを特徴Having a step of patterning a gate electrode film.
とする半導体装置の製造方法。Manufacturing method of a semiconductor device.
【請求項3】 請求項1または請求項2に記載の半導体3. The semiconductor according to claim 1 or claim 2.
装置の製造方法において、In the method of manufacturing the device, 前記ゲート電極膜をパターニングする際に、前記フォトWhen patterning the gate electrode film, the photo
レジスト膜をマスクとして前記絶縁膜をエッチングしたThe insulating film was etched using the resist film as a mask
後、前記フォトレジスト膜を除去し、残った絶縁膜をマThereafter, the photoresist film is removed, and the remaining insulating film is masked.
スクとして前記ゲート電極膜のエッチングを行うことをEtching the gate electrode film as a mask.
特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device.
【請求項4】 請求項1または請求項2に記載の半導体4. The semiconductor according to claim 1 or claim 2.
装置の製造方法において、In the method of manufacturing the device, 前記ゲート電極膜をパターニングする際に、前記フォトWhen patterning the gate electrode film, the photo
レジスト膜をマスクとして前記絶縁膜および前記ゲートThe insulating film and the gate using a resist film as a mask
電極膜のエッチングを行うことを特徴とする半Performing etching of the electrode film; 導体装置Conductor device
の製造方法。Manufacturing method.
JP7330744A 1995-12-19 1995-12-19 Method for manufacturing semiconductor device Expired - Fee Related JP2812275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330744A JP2812275B2 (en) 1995-12-19 1995-12-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7330744A JP2812275B2 (en) 1995-12-19 1995-12-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH09172168A JPH09172168A (en) 1997-06-30
JP2812275B2 true JP2812275B2 (en) 1998-10-22

Family

ID=18236076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330744A Expired - Fee Related JP2812275B2 (en) 1995-12-19 1995-12-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2812275B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008858B2 (en) * 1996-09-06 2000-02-14 日本電気株式会社 Method for manufacturing semiconductor device
KR100876877B1 (en) * 2002-12-10 2008-12-31 주식회사 하이닉스반도체 Manufacturing method of semiconductor device
JP6072845B2 (en) * 2015-03-31 2017-02-01 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing system, substrate processing apparatus, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930022481A (en) * 1992-04-27 1993-11-24 존엠. 클락 3세 Integrated circuit fabrication method to planarize polycrystalline silicon gate

Also Published As

Publication number Publication date
JPH09172168A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US6579757B2 (en) Method for fabricating semiconductor device which prevents gates of a peripheral region from being oxidized
KR0136569B1 (en) Fabrication method of contact hole in semiconductor device
US5346587A (en) Planarization of a gate electrode for improved gate patterning over non-planar active area isolation
JP2812275B2 (en) Method for manufacturing semiconductor device
US20060194397A1 (en) Application of single exposure alternating aperture phase shift mask to form sub 0.18 micron polysilicon gates
JP3141010B2 (en) Manufacturing method of memory cell
JP2000114258A (en) Semiconductor device
US6074905A (en) Formation of a thin oxide protection layer at poly sidewall and area surface
JP2790084B2 (en) Method for manufacturing semiconductor device
JP3030550B2 (en) Method for manufacturing analog semiconductor device
JP2771057B2 (en) Method for manufacturing semiconductor device
KR0121106B1 (en) Method of metal wiring of semiconductor element
CN109920761B (en) Method for manufacturing semiconductor element
KR100390458B1 (en) method for fabricating capacitor in semiconductor device
KR0166204B1 (en) Contact forming method of semiconductor device
KR100379521B1 (en) Method for Fabricating of Semiconductor Device
KR0172768B1 (en) Method of fabricating transistor having gate electrode of polycide structure
KR960007805B1 (en) Method of forming pattern of semiconductor i.c.
KR0172778B1 (en) Method of manufacturing semiconductor device
KR100344826B1 (en) Method for fabricating node contact of semiconductor device
JP2867935B2 (en) Method for manufacturing semiconductor device
KR100280549B1 (en) Manufacturing Method For Capacitor
KR100418921B1 (en) manufacturing method of Semiconductor device
KR100237758B1 (en) Manufacture of semiconductor device
KR100386625B1 (en) method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980707

LAPS Cancellation because of no payment of annual fees