JP2881147B1 - バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法 - Google Patents

バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法

Info

Publication number
JP2881147B1
JP2881147B1 JP10555598A JP10555598A JP2881147B1 JP 2881147 B1 JP2881147 B1 JP 2881147B1 JP 10555598 A JP10555598 A JP 10555598A JP 10555598 A JP10555598 A JP 10555598A JP 2881147 B1 JP2881147 B1 JP 2881147B1
Authority
JP
Japan
Prior art keywords
bump
information
inspection
area
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10555598A
Other languages
English (en)
Other versions
JPH11287624A (ja
Inventor
正人 長崎
智好 恒川
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14410812&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2881147(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP10555598A priority Critical patent/JP2881147B1/ja
Priority to US09/122,891 priority patent/US6028673A/en
Application granted granted Critical
Publication of JP2881147B1 publication Critical patent/JP2881147B1/ja
Publication of JPH11287624A publication Critical patent/JPH11287624A/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【要約】 【課題】 平バンプが形成された基板においても、その
バンプ体積の検査を正確にかつ迅速に行うことができる
検査装置及び方法を提供する。 【解決手段】 基板本体上に頂面の平坦なバンプを複数
形成したバンプ付基板1の、バンプの配列された検査面
CPに検査光LBを照射し、その反射光RBをPSD2
2にて受光しつつ検査光LBを検査面CP内にて二次元
的に走査し、そのときのPSD22の検知出力に基づい
て、検査面CP内の各位置の高さ値に関する情報と反射
光RBの輝度情報を生成する。また、その生成された反
射光輝度情報に基づき、検査面内における各バンプの頂
面の存在領域(バンプ頂面存在領域)を特定する。そし
て、そのバンプ頂面存在領域の寸法又は面積と、バンプ
頂面存在領域内の各位置の高さ値情報に基づいて生成さ
れるバンプ高さ情報とを用いて、バンプの体積情報を生
成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、フリップチップ接
合用基板やボールグリッドアレイ(BGA)基板など、
チップ−基板間あるいは基板−基板間の電気的接続をと
るためのバンプが二次元的に配列されたバンプ付基板の
検査装置、検査方法及びそれを用いたバンプ付基板の製
造方法に関する。
【0002】
【従来の技術】近年、マイクロプロセッサチップや計算
機チップなどの集積回路チップは、その集積度がますま
す大きくなる傾向にあり、チップの入出力部の端子数も
急増してきている。このようなチップを例えばフリップ
チップ形式で基板に接続する場合、その基板に形成され
る接続用のバンプの数は少ないもので数百個、多いもの
では数千個にも及んできている。ここで、基板上のバン
プは、例えばその形成位置がずれていたり、高さその他
の寸法が規定の範囲に入っていなかったりするとチップ
との間で接続不良を生じ、集積回路チップの作動に支障
を来たす問題があるので、その検査を厳重に行う必要が
ある。
【0003】従来、このようなバンプ付基板の例えば高
さの検査方法として最も一般的なものにレーザーを用い
た測定方法があり、具体的にはナイフエッジ法あるいは
共焦点法によりバンプ高さを求める方法がある。ところ
が、この方法では1個のバンプの高さを測定するのに数
秒程度を要することから、上記のように多数のバンプが
形成された基板の場合は、1つの基板の全てのバンプ高
さを測定するのに数10分から数時間もかかってしま
い、大量生産される基板の全数検査を行うことは事実上
不可能であった。
【0004】そこで、この問題を解決するために、特開
平6−167322号公報には、スポット光により基板
全面を走査することにより、バンプを含む基板全面の高
さデータを入力し、バンプ電極頂点の高さと基板の高さ
との差よりバンプの高さの検査を高速で行う装置が開示
されている。また、該公報に開示された装置では、各バ
ンプの頂点付近からの反射光を用いて算出されるバンプ
高さと、バンプのシルエット像の面積に基づいて算出さ
れるバンプ底面積とにより、バンプの体積を算出する方
法が開示されている。
【0005】
【発明が解決しようとする課題】しかしながら、上記公
報に開示された方法では、球状のバンプの体積は測定す
ることはできても、頂面が平坦につぶれた形状(例えば
円柱状、あるいは円錐台状のもの:以下、平バンプとい
う)のバンプの場合は、その体積を正確に測定できない
欠点がある。また、レーザー光を用いた三角測量法によ
る測定原理では、バンプ底面を表すシルエット領域が、
レーザー光の入射方向に影を落とす形で長く伸び、これ
をそのまま用いたのでは体積測定の誤差が大きくなる欠
点がある。
【0006】本発明の課題は、平バンプが形成された基
板においても、そのバンプ体積の検査を正確にかつ迅速
に行うことができるバンプ付基板の検査装置、検査方法
及びそれを用いたバンプ付基板の製造方法を提供するこ
とにある。
【0007】
【課題を解決するための手段及び作用・効果】本発明の
検査装置は、基板本体上に、頂面がほぼ平坦な形状の複
数のバンプが二次元的に配列されたバンプ付基板の検査
装置に係るものであり、上記課題を解決するために、下
記の要件を備えたことを特徴とする。すなわち、該検査
装置は、バンプ付基板の、少なくとも複数のバンプの配
列された領域を検査面として、該検査面に検査光を照射
する光源と、該検査光に基づく検査面からの反射光を受
光する受光部と、検査光を検査面内にて二次元的に走査
する光走査手段と、受光部の検知出力に基づいて、検査
面内の各位置の高さに関する情報を生成する高さ情報生
成手段と、受光部の検知出力に基づいて、検査面上の各
位置における反射光輝度情報を生成する反射光輝度情報
生成手段と、その生成された反射光輝度情報に基づき、
検査面内における各バンプの頂面の存在領域(バンプ頂
面存在領域)を特定するバンプ頂面領域特定手段と、そ
のバンプ頂面存在領域の寸法又は面積に関する情報(バ
ンプ頂面大きさ情報)を生成するバンプ頂面大きさ情報
生成手段と、バンプ頂面存在領域内の各位置の高さ情報
に基づいて、対応するバンプの高さに関する情報(バン
プ高さ情報)を生成するバンプ高さ情報生成手段と、そ
れらバンプ頂面大きさ情報とバンプ高さ情報とに基づい
て、対応するバンプの体積に関する情報(バンプ体積情
報)を生成するバンプ体積情報生成手段とを有し、少な
くともそのバンプ体積情報を含んだ検査情報を生成する
検査情報生成手段と、その生成した検査情報を出力する
検査情報出力手段と、を備えたことを特徴とする。
【0008】また、本発明の検査方法は、基板本体上
に、頂面がほぼ平坦な形状の複数のバンプが二次元的に
配列されたバンプ付基板の検査方法に係るものであり、
上記課題を解決するために下記の内容を有したことを特
徴とする。すなわち、バンプ付基板の、少なくとも複数
のバンプの配列された領域を検査面として、該検査面に
検査光を照射するとともに、該検査光に基づく検査面か
らの反射光を受光部にて受光しつつ、その検査光を検査
面内にて二次元的に走査し、そのときの受光部の検知出
力に基づいて、検査面内の各位置の高さに関する情報を
生成する。他方、受光部の検知出力に基づいて、検査面
上の各位置における反射光の輝度情報を生成し、その生
成された反射光輝度情報に基づき、検査面内における各
バンプの頂面の存在領域(バンプ頂面存在領域)を特定
する。そして、そのバンプ頂面存在領域の寸法又は面積
と、バンプ頂面存在領域内の各位置の高さ情報に基づい
て生成される対応するバンプの高さに関する情報(バン
プ高さ情報)とを用いて、対応するバンプの体積に関す
る情報(バンプ体積情報)を少なくとも含んだ検査情報
を生成する。
【0009】上記検査装置及び方法では、頂面がほぼ平
坦な形状のバンプ、すなわち平バンプが基板本体状に形
成されている場合に、各バンプの体積情報を、反射光輝
度情報に基づき特定されるバンプ頂面存在領域の寸法又
は面積の情報と、バンプ頂面存在領域内の各位置の高さ
情報に基づいて生成されるバンプ高さの情報とを用いて
生成するようにした。すなわち、バンプ頂面存在領域の
面積又は寸法を反射光輝度情報に基づいて把握した上で
体積算出を行うので、平バンプの場合でもその体積を問
題なく算出することができる。また、バンプ頂面の反射
光に基づいて形成されるバンプ頂面存在領域は、その周
囲に表れる後述のシルエット領域(バンプ側面の乱反射
等に基づく)と異なりレーザー光の入射方向に伸びない
ので、体積算出の精度が高められる。
【0010】次に、本発明のバンプ付基板の製造方法
は、基板本体上に複数のバンプが二次元的に配列された
バンプ付基板の製造方法であって、基板本体上にバンプ
を形成する工程と、以下の工程とを含むことを特徴とす
る。すなわち、バンプ付基板の、少なくとも複数のバン
プの配列された領域を検査面として、該検査面に検査光
を照射するとともに、該検査光に基づく検査面からの反
射光を受光部にて受光しつつ、その検査光を検査面内に
て二次元的に走査し、そのときの受光部の検知出力に基
づいて、検査面内の各位置の高さに関する情報を生成す
る。他方、受光部の検知出力に基づいて、検査面上の各
位置における反射光の輝度情報を生成し、その生成され
た反射光輝度情報に基づき、検査面内における各バンプ
の頂面の存在領域(バンプ頂面存在領域)を特定し、そ
のバンプ頂面存在領域の寸法又は面積と、前記バンプ頂
面存在領域内の各位置の高さ情報に基づいて生成される
対応するバンプの高さに関する情報(バンプ高さ情報)
とを用いて、前記対応するバンプの体積を測定する。そ
して、該バンプの体積が所定の範囲内にあるバンプ付基
板のみを検査・選別する。これによれば、上記本発明の
検査方法の利点を活かすことで、基板本体上にバンプを
形成して得られるバンプ付基板を、バンプ体積が所定の
範囲にあるか否かに基づいて簡易に選別することがで
き、ひいては品質保証されたバンプ付基板を能率よく製
造することが可能となる。
【0011】バンプ頂面大きさ情報生成手段は、バンプ
頂面存在領域をほぼ同面積の円で近似したときの、その
直径又は面積を反映した情報をバンプ頂面大きさ情報と
して生成するものとすることができる。円柱状あるいは
円錐台状等の形状のバンプの場合、バンプ頂面の形状を
円近似することで、その直径又は面積をより迅速に算出
することができる。
【0012】また、上記検査装置には、バンプ頂面存在
領域の外周縁に沿ってその外側に形成されるとともに、
受光部により検知される反射光の輝度が、バンプの頂面
とそのバンプの周囲に露出する基板本体表面とのいずれ
よりも低く表れるシルエット領域を、反射光輝度情報生
成手段が生成する反射輝度情報に基づき特定するシルエ
ット領域特定手段を設けることができる。また、検査情
報生成手段は、シルエット領域の寸法又は面積に関する
情報(シルエット領域大きさ情報)を生成するシルエッ
ト領域大きさ情報生成手段と、そのシルエット領域大き
さ情報に基づいて、対応するバンプ底面の寸法又は面積
に関する情報(バンプ底面大きさ情報)を生成するバン
プ底面大きさ情報生成手段とを備えたものとすることが
でき、バンプ体積情報生成手段は、バンプ頂面大きさ情
報と、バンプ底面大きさ情報と、バンプ高さ情報とに基
づいて、バンプ体積情報を生成するものとすることがで
きる。
【0013】上記構成によれば、バンプ頂面とバンプ底
面との両方の寸法又は面積の情報を用いることで、バン
プ体積をさらに精度高く算出することができる。なお、
シルエット領域は、バンプ側面の測定光の乱反射にのみ
基づくものであれば、シルエット領域の寸法又は面積か
ら、バンプ底面の寸法又は面積を直接的に求めることが
可能となる。また、バンプの底面の周囲に、溝部等、乱
反射の要因となる部分が別に存在する場合、その部分の
形状及び寸法が既知であれば、シルエット領域から該部
分に基づく領域を除外することで、バンプ底面の寸法又
は面積を求めることができる。
【0014】この場合、シルエット領域大きさ情報生成
手段は、検査面上に投影した検査光の入射方向と直交す
る向きにおけるシルエット領域の最大寸法を演算するシ
ルエット領域最大寸法演算手段を備え、該シルエット領
域をその最大寸法を直径とする円で近似したときの、そ
の直径又は面積を反映した情報をシルエット領域大きさ
情報として生成するものとすることができる。前述の通
り、このシルエット領域は、検査光の入射方向には長く
伸びて形成されるが、これと直交する向きにはほとんど
伸びないので、該向きに表れるシルエット領域の寸法
は、バンプ底面の寸法を比較的正確に反映したものとな
る。そして、円柱状あるいは円錐台状等の形状のバンプ
の場合、シルエット領域を、該向きの最大寸法を直径と
する円で近似してバンプ底面の寸法又は面積を算出する
ことで、バンプ体積をさらに正確に算出することが可能
となる。
【0015】また、バンプ体積情報生成手段は、バンプ
の形状を、バンプ頂面大きさ情報により特定される直径
を有した円形頂面と、バンプ底面大きさ情報により特定
される直径を有した円形底面と、バンプ高さ情報により
特定される高さとを有する円錐台により近似して、バン
プの体積値を演算するバンプ体積演算手段を備えるもの
として構成できる。バンプ頂面とバンプ底面がいずれも
円状であり、かつバンプ頂面がバンプ底面よりも小さく
形成されたバンプの場合、このように近似することによ
りバンプ体積を精度よくしかも迅速に算出することがで
きる。
【0016】本発明には、以下の内容の発明を適宜加え
た構成とすることができる。まず、基板本体上に複数の
バンプが二次元的に配列・形成されるとともに、バンプ
間に露出している基板本体の表面(バックグラウンド表
面)が、所定の検査光に対しバンプ表面とは異なる反射
率を有するバンプ付基板の検査を行う場合、上記検査装
置には、その生成された反射光輝度情報に反映されるバ
ックグラウンド表面の反射光輝度とバンプ表面の反射光
輝度との差に基づき、検査面におけるバンプの存在領域
(例えばバンプ頂面の存在領域)を特定するバンプ存在
領域特定手段を設けることができる。この場合、検査情
報生成手段は、その特定されたバンプ存在領域内の各位
置に対応する高さ情報に基づいて、該バンプ存在領域に
対応するバンプの高さ情報を少なくとも含んだ検査情報
を生成するものとして構成することができる。
【0017】この構成では、バックグラウンド表面とバ
ンプ表面との反射光輝度の差に基づき、バンプ付基板の
検査面上のバンプ存在領域を特定するようにした。これ
により、バンプとバックグラウンド表面を形成する基板
本体とが反射率の異なる材質(例えば前者が半田等の金
属、後者がプラスチック等の高分子)で構成されている
場合に両者を容易に判別することができ、ひいてはこの
ような材質の組み合わせからなる基板の、バンプ高さ等
の検査を高速かつ正確に行うことが可能となる。
【0018】例えば、基板本体が、バンプよりも検査光
に対する反射率の低い高分子材料で構成されたものが使
用される場合、バンプ存在領域特定手段は、高分子材料
表面での反射光輝度レベルよりも高く設定された所定の
閾値以上の反射光輝度が検出される領域を、バンプ存在
領域として特定するものとして構成することができる。
これにより、オーガニックパッケージ基板など、プラス
チック等の高分子材料を素材とした基板本体上のバンプ
を極めて容易に識別することができる。また、その識別
されたバンプ存在領域内の各位置の高さ情報を用いるこ
とで、対応するバンプの高さを正確に知ることができ、
検査精度を高めることができる。
【0019】上記検査装置には、生成された反射光輝度
情報に基づき、検査面において上記閾値以上の反射光輝
度を示す領域(高輝度領域)を特定する高輝度領域特定
手段と、その特定された個々の高輝度領域のうち基準面
積以上のものを、各バンプの要部が存在するバンプ要部
存在領域として識別するバンプ要部存在領域識別手段を
設けることができる。この場合、検査情報生成手段は、
その識別されたバンプ要部存在領域内の各位置の高さ情
報に基づいて、該バンプ要部存在領域に対応するバンプ
の高さ情報を少なくとも含んだ検査情報を生成するもの
とすることができる。
【0020】この構成によれば、バンプ付基板の検査面
から閾値以上の反射光輝度が得られる領域を高輝度領域
として特定し、さらにその高輝度領域のうち、基準面積
以上の拡がりを持ったもののみを各バンプの要部が存在
するバンプ要部存在領域として識別するようにした。す
なわち、頂面が平坦な平バンプ等の場合も、その高輝度
領域の拡がりを二次元的に捕えて処理がなされるので、
1つの高輝度領域から生ずる2以上の高さデータを、異
なるバンプに由来するものと誤認する心配がなくなり、
ひいてはどのようなバンプが形成された基板であって
も、その検査を正確かつ迅速に行うことができるように
なる。その結果、例えば頂面に凹みが形成されたバンプ
の場合でも、高輝度領域の拡がりに基づいて確実に識別
できるようになる。また、バンプ表面状態等の影響を受
けて、1つのバンプに由来する高輝度領域が2以上のも
のに分裂することもありうるが、この場合は、基準面積
未満の高輝度領域はバンプ要部存在領域とみなされない
ので、これを2以上のバンプと誤認するトラブルが発生
しにくくなり、ひいては基板上に形成された複数のバン
プを精度よく識別することが可能となる。その結果、例
えば球状バンプと比較して高輝度領域が広く現われ、ま
た領域の分裂も起こりやすい平バンプの検査を問題なく
行うことができる。また、該バンプ要部存在領域内の各
位置の高さ情報を用いることで、対応するバンプの高さ
を正確に知ることができ、検査精度を高めることができ
る。
【0021】具体的には検査情報生成手段は、検査面に
対し、各バンプ要部存在領域と所定の位置関係を満足
し、かつ該バンプ要部存在領域を個々に包含する所定寸
法のバンプ高さ決定領域を設定するバンプ高さ決定領域
設定手段と、その設定されたバンプ高さ決定領域内の各
位置の高さ情報に基づいてバンプの高さ値を演算するバ
ンプ高さ演算手段とを備えたものとすることができる。
平バンプのように頂面が平坦なバンプの場合、該頂面に
対応してバンプ要部存在領域がかなり広く現われ、その
バンプ要部存在領域内にてバンプ高さに分布を生じてい
ることも多い。そこで、上記のように、バンプ要部存在
領域を含むようにバンプ高さ決定領域を設定し、そのバ
ンプ高さ決定領域内の各位置の高さ情報に基づいてバン
プの高さ値を演算するようにすれば、そのようなバンプ
高さの分布による高さ測定の誤差を生じにくくなり、よ
り精度の高い高さ情報を得ることが可能となる。
【0022】他方、上記検査装置には、設定されたバン
プ高さ決定領域の外側に、対応するバンプ周囲における
バックグラウンド表面の高さを求めるためのバックグラ
ウンド高さ決定領域設定手段と、バックグラウンド高さ
決定領域内の各位置の高さ情報に基づいてバックグラウ
ンド表面の高さを演算するバックグラウンド高さ演算手
段とを設けることもできる。これにより、各バンプ毎
に、その周囲のバックグラウンド表面の高さを容易に求
めることができる。この場合、バンプの高さとバックグ
ラウンド表面の高さとの差に基づいて、該バンプのバッ
クグラウンド表面からの突出高さを演算するバンプ突出
高さ演算手段を設けておけば、個々のバンプ毎に、周囲
のバックグラウンド表面からの突出高さを精度高く算出
することが可能となる。
【0023】例えば、基板本体が高分子材料で構成され
ていると、内部に形成された金属配線部と高分子材料と
の熱膨張係数の差により、製造工程での熱履歴等をうけ
て基板表面に反りやうねりを生じ、バックグラウンド表
面の高さレベルが位置的にばらつくことがある。ここ
で、バンプの突出高さを測定する場合、バックグラウン
ド表面の高さレベルを一律に同じ値として突出高さの算
出を行うと、上記ばらつきの影響を受けて測定誤差が大
きくなる場合がある。しかしながら上記方式では、バン
プ毎に周囲のバックグラウンド表面の高さレベルを測定
して、バンプの高さレベルからの差をとることにより突
出高さを求めるようにしたから、そのようなばらつきの
影響を受けにくく、測定精度を高めることが可能とな
る。
【0024】バンプ高さ決定領域は、バンプ要部存在領
域と実質同一のものとして設定することもできるし、バ
ンプ要部存在領域よりも広く設定されたものとすること
もできる。前者の場合は、バンプ要部存在領域内の高さ
情報に基づいてバンプの高さが演算される。
【0025】また、後者の場合は、例えば設定されたバ
ンプ高さ決定領域内に存在する高輝度領域のうち、バン
プ要部存在領域を含め、基準面積よりも小さく設定され
た所定の閾面積以上のものをバンプ高さ決定用高輝度領
域として抽出するバンプ高さ決定用高輝度領域抽出手段
を設けるようにする。そして、バンプ高さ演算手段を、
バンプ高さ決定領域内の各位置のうち、抽出されたバン
プ高さ決定用高輝度領域内に属するものの高さ情報に基
づいて、対応するバンプの高さを演算するものとして構
成するようにする。これにより、バンプ要部存在領域に
加え、種々の要因により該バンプ要部存在領域から分裂
した高輝度領域からの高さ情報も、バンプ高さの演算に
使用されるので、バンプ高さをより精度高く測定するこ
とが可能となる。この場合、上記閾面積はゼロであって
もよいが、ノイズ等の影響により誤検出される高輝度領
域を除去するために、ゼロでない所定の値に設定してお
くことが望ましいといえる。
【0026】次に、バックグラウンド高さ決定領域設定
手段は、バンプ要部存在領域の外側にこれを取り囲む領
域内側限界線を設定し、その領域内側限界線のさらに外
側においてこれを取り囲む領域外側限界線を設定し、そ
れら領域内側限界線と領域外側限界線との間に挟まれた
領域をバックグラウンド高さ決定領域として設定するも
のとすることができる。例えばバンプからの反射光に基
づき形成されるバンプ要部存在領域の周囲には、バンプ
周面等での乱反射等に基づき、反射光のほとんど検出さ
れない領域(シルエット領域)が形成されることが多
い。そこで、バンプ要部存在領域の外側において(例え
ばその外形線から所定距離だけ離れた位置に)、これを
取り囲む領域内側限界線を設定し、上記シルエット領域
がバックグラウンド高さ決定領域になるべくかからない
ようにすることで、バックグラウンド高さの算出精度を
高めることができる。
【0027】なお、バンプ高さ決定領域設定手段は、バ
ンプ高さ決定領域を、バンプ要部存在領域の幾何学的重
心位置を中心とする円状領域、又は該幾何学的重心位置
を対角線交点位置とする四辺形状領域、及びバンプ要部
存在領域に外接する四辺形状領域のいずれかとして設定
するものとして構成できる。このようにバンプ高さ決定
領域を設定することで、該バンプ高さ決定領域内におけ
るバンプが本来存在しない領域の比率を少なくすること
ができ、ひいてはバンプ高さの測定精度をさらに向上さ
せることができる。他方、バックグラウンド高さ決定領
域設定手段は、例えばバンプ高さ決定領域の外側に円状
または四辺形状の領域外側限界線を該バンプ高さ決定領
域と同心的に設定し、そのバンプ高さ決定領域の外形線
を領域内側限界線として、これと領域外側限界線との間
に挟まれた領域をバックグラウンド高さ決定領域として
設定するものとして構成することができる。
【0028】バンプ高さ演算手段は、バンプ高さ決定用
高輝度領域内の各位置の高さを該領域内において平均化
することにより得られる平均高さ、各位置の高さの最大
値である最大高さ、同じく最小値である最小高さ、及び
各位置の高さの最頻値である最頻高さの少なくともいず
れかを対応するバンプの高さとして演算するものとして
構成することができる。これにより、平バンプのように
頂面が平坦で、かつその頂面内でバンプ高さに分布を生
じている場合でも、バンプ高さに対する合理的な評価な
いし判定を行うことができる。また、必要に応じて、上
記平均高さ、最大高さ、最小高さ及び最頻高さの2以上
のもの(例えば平均高さと最大高さなど)を演算し、両
者を組み合わせて評価を行うようにすることもでき、こ
れにより一層精度の高いバンプ高さ評価を行うことがで
きるようになる。
【0029】他方、バックグラウンド高さ演算手段も、
バックグラウンド高さ決定用高輝度領域内の各位置の高
さを該領域内において平均化することにより得られる平
均高さ、各位置の高さの最大値である最大高さ、同じく
最小値である最小高さ、及び各位置の高さの最頻値であ
る最頻高さの少なくともいずれかを、対応するバックグ
ラウンド表面の高さとして演算するものとして構成する
ことができる。
【0030】検査情報生成手段は、検査面上の互いに異
なる位置に設定された複数のバックグラウンド高さ決定
領域において、それぞれバックグラウンド高さ演算手段
が演算した各領域のバックグラウンド表面の高さに基づ
き、基板本体表面のうねりを反映した情報を生成する表
面うねり情報生成手段を含むものとして構成できる。該
構成では、バンプの突出高さを求めるために算出したバ
ックグラウンド表面の高さを、さらに積極的に利用する
ことにより、基板本体の表面うねりの情報も得られるよ
うにしたので、より多面的な検査が可能となる。
【0031】上記本発明の装置には、バンプ付基板の検
査面に対し、各バンプの形成位置の許容範囲を規定する
位置許容範囲規定ウィンドウを設定する位置許容範囲規
定ウィンドウ設定手段と、その設定された位置許容範囲
規定ウィンドウ内の高輝度領域の面積、又は該位置許容
範囲規定ウィンドウ内に占める高輝度領域の面積率を算
出する面積算出手段と、その面積算出手段が算出する高
輝度領域の面積又は面積率に基づいて、該位置許容範囲
規定ウィンドウに対応するバンプの形成状態の良否を判
定する判定手段とを設けることができる。これにより、
形成位置ずれや欠損等を生じた不良バンプを、位置許容
範囲規定ウィンドウ内に一定以上の面積の高輝度領域を
生じているか否かに基づいて容易に判別することができ
る。
【0032】次に、検査情報生成手段は、バンプ要部存
在領域の幾何学的重心位置を、対応するバンプの中心位
置として算出するバンプ中心算出手段を備えたものとす
ることができる。この場合、検査情報としてバンプの中
心位置座標を生成するように構成することができる。ま
た、検査情報生成手段は、バンプ要部存在領域の寸法に
基づいて、対応するバンプの寸法を演算するバンプ寸法
演算手段を備えたものとすることができる。この場合、
検査情報としてバンプのバンプ寸法情報を生成するよう
に構成することができる。
【0033】例えば前記公報に記載された従来技術にお
いては、バンプ径やバンプ中心位置をバンプのシルエッ
ト像に基づいて求めるようにしていたが、レーザー光が
基板表面に斜めに入射する関係上、該シルエット像は、
一般には実際のバンプ形状を正確に反映したものにはな
らない。また、バンプの周囲にパッド部や溝等が形成さ
れていたり、バンプ周囲部分の基板の表面状態が一定し
ない場合等においては、その影響を受けてシルエット像
の形が変化することもある。従って、このようなシルエ
ット像を用いて決定されたバンプ寸法や中心位置には、
しかるべき補正を行わないかぎり、少なからぬ誤差を生
じてしまう問題がある。しかしながら、反射光により形
成されるバンプ要部存在領域は、バンプ形状を直接反映
したプロファイルとしての意味を持つので、これを用い
ることによりバンプ中心位置やバンプ寸法をより正確に
求めることができる。
【0034】なお、バンプ中心算出手段は、バンプ要部
存在領域に外接する四辺形状領域(例えば長方形状領
域)の対角線交点位置を、対応するバンプの中心位置と
して算出するものとして構成することができる。例えば
重心位置をバンプ中心として算出する方法は、中心決定
の方法としてより正確ではあるが、算出に際しては高輝
度領域を構成する多数の輝度データの位置座標値を使用
するため、演算回数は若干多くなる。しかしながら、上
記のようにバンプ要部存在領域に外接する四辺形状領域
(及び、その対角線交点位置)を求める方法では、その
領域決定の演算処理が重心座標演算に比べるとずっと簡
単であり、処理速度の向上を図ることができる。
【0035】なお、バンプ付基板は、基板保持体に保持
させた状態でその検査面に検査光を照射することができ
る。この場合、バンプ高さ演算手段は、各バンプの高さ
を、基板保持体との間で一定の位置関係を満たす基準高
さレベルからの高さ(コプラナリティ決定用高さ)とし
て演算するものとすることができる。そして、検査情報
生成手段は、その演算された各バンプのコプラナリティ
決定用高さのうち、その最大値z’maxと最小値z’min
とに基づいて、バンプ付基板の各バンプの高さの不均一
性を反映した情報であるコプラナリティ情報を生成する
コプラナリティ情報生成手段を含むものとして構成する
ことができる。
【0036】基板上に設けられた個々のバンプは、接続
対象となる集積回路チップ(例えばフリップチップの場
合)やプリント基板(例えばBGA基板の場合)との接
続性等を高めるために、その高さができる限り揃ってい
ることが望ましいとされる。この場合、簡易なパラメー
タとしては上記z’maxとz’minとの差(z’max−
z’min)の値が小さいほどバンプ高さは揃っているこ
とを意味し、バンプ高さの不均一性を表す指標となる。
【0037】本発明においては、上記z’max−z’min
を含め、z’maxとz’minとを用いて算出される、バン
プ高さの不均一性を表す指標を広義にコプラナリティと
称する。例えば、本発明においては、z’max−z’min
のほか、各バンプの頂点位置(平バンプの場合はバンプ
頂面上の所定位置:例えば、前述のバンプ中心位置に対
応する頂面上の位置)に対応する最小二乗平面を頂点基
準面P0とし、その頂点基準面P0と平行でかつ高さ最大
のバンプの頂点を通る平面をPmax、同じく高さ最小の
バンプの頂点を通る平面をPminとしたときのPmaxとP
minとの面間距離として定義される狭義のコプラナリテ
ィなど、各種指標を採用することができる。また、基板
上に形成された多数のバンプのうち、最も距離が大きく
なるもの同士(例えば長方形ないし正方形状の領域にマ
トリックス状にバンプが配置される場合は、その領域の
対角線の両端にそれぞれ位置するバンプ同士)のバンプ
間距離LDにて上記指標となる距離を割った、単位長さ
辺りのコプラナリティを用いてもよい。いずれにしろ、
上記のようなコプラナリティ情報生成手段を設けること
で、バンプ付基板のコプラナリティ評価を簡単に行うこ
とができるようになる。
【0038】なお、バンプ高さは、基準レベルから見た
バンプ頂点(あるいは頂面)までの高さとして表現でき
るが、例えば基準レベルをバンプが突出形成されている
基板本体の表面に設定した場合、バンプ高さは該表面か
らの突出高さを意味することとなる。しかしながら、図
20(a)に示すように、基板本体表面が反っていたり
すると、基板本体表面からのバンプ突出高さが揃ってい
ても、バンプ頂点位置が該反りの影響で不揃いになり、
コプラナリティ不良となることもある。従って、上記構
成では、コプラナリティに及ぼす上記のような基板保持
体側からの影響も考慮できるよう、バンプ高さは、基板
保持体との間で一定の位置関係を満たす基準高さレベル
からの高さにより表したものを用いるのである。
【0039】
【発明の実施の形態】図1は、本発明の検査装置の検査
対象となるバンプ付基板1の一例を示している。該バン
プ付基板1は、例えば約25mm角、板厚約1mmのプ
ラスチック製の基板本体2上の中央部に例えば正方形状
に形成されたバンプ配列領域BPに対し、Sn−Pb二
元合金等からなる半田合金により構成されたバンプ3が
多数、例えば格子状あるいは千鳥状に2次元的に配列・
固着された構造を有する、フリップチップ基板として構
成されている。そして、検査面CPはこのバンプ配列領
域BPを包含する形で設定される。
【0040】本実施例では、各バンプ3は、図6に示す
ように、頂面が平坦に形成された平バンプとして形成さ
れているものとする。基板本体2上には、各バンプ3の
配置位置に対応して凹所2aが形成され、その底面に例
えば無電解Ni−Pメッキ層とこれを覆う無電解Auメ
ッキ層とからなる下地導電性パッド(以下、単にパッド
と称する)4が形成されるとともに、このパッド4上に
バンプ3が固着されている。また、バンプ3と凹所2a
の側面との間は幅Wの環状の溝部6となっている。な
お、基板本体2のその他の表面部位には、アクリル樹脂
やエポキシ樹脂等により、図示しないソルダーレジスト
層が形成されている。
【0041】このようなバンプ付基板は各種公知の方法
で得ることができるが、一例として、半田ペーストをス
クリーンマスク(あるいはメタルマスク)を介して基板
本体2上の所定位置に印刷し、さらにこれを加熱して半
田ペーストを溶融させることにより基板状にバンプを形
成する半田ペースト印刷法がある。
【0042】ここで、バンプ3の表面は金属光沢を呈す
る一方、基板本体2の表面はプラスチック製であるた
め、可視光(すなわち、後述する検査光たるレーザ光)
に対する反射率は前者において高く、後者において低く
なる。
【0043】図2は、本発明の装置の一実施例におけ
る、測定系10の要部の構成を模式的に示したものであ
る。測定系10は、半導体レーザ光源12、ビームエキ
スパンダ14、ポリゴンミラー16、f・θレンズ1
8、結像レンズ20、半導体位置検出器(PSD)22
(受光部)を含んで構成される。半導体レーザ光源12
からのレーザー光(入射光)LBが、回転するポリゴン
ミラー16で反射され、バンプ付き基板1の検査面CP
に対し、その縦横のバンプ配列のいずれか一方に沿う方
向(以下、これをx方向という)に振られながら照射さ
れる。照射された入射光LBは検査面CPで反射されて
反射光RBとなり、結像レンズ20を経てPSD22に
より受光される。
【0044】図3は、測定系10の具体的な構成例を示
している((a)は側面図、(b)は背面図である)。
この構成においては、(b)に示すように、縦長のケー
ス36内においてその上部には半導体レーザ光源12が
配置され、(a)に示すように、その下端面に形成され
たビーム孔から斜め前方下向きにレーザ光LBを出射す
るようになっている。レーザ光LBは、コリメータレン
ズ24を経て第一の光路変更ミラー26により後方下向
きに反射され、その光路上に配置されたビームエキスパ
ンダ14を経て、(b)に示すように第二の光路変更ミ
ラー28により、側方上向きに反射される。
【0045】第二の光路変更ミラー28で反射されたレ
ーザ光LBは、ケース36の幅方向において、その側方
やや上寄りに配置されたポリゴンミラー16に入射され
る。同図(a)に示すように、ポリゴンミラー16は、
ケース36の内部においてその下部後方に形成された傾
斜壁36aに対し、回転軸RAが前方上向きに傾いた形
となるように取り付けられている。そして、このポリゴ
ンミラー16で反射されたレーザ光LBは、該ポリゴン
ミラー16の斜め下方に配置されたf・θレンズ18を
通って、ケース36の底面に形成された開口部6aか
ら、その下側においてワークホルダ(基板保持体)38
によりほぼ水平に保持されたバンプ付基板(以下、ワー
クともいう)1の検査面CPに入射される。
【0046】そして、レーザ光LBは、検査面CPで斜
め前方上向きに反射されて反射光RBとなり、f・θレ
ンズ18の前方において、ほぼ直立形態で配置された第
三の光路変更ミラー30により斜め後方上向きに反射さ
れる。そして、f・θレンズ18の斜め前方上側に配置
された結像レンズ20を通り、ポリゴンミラー16の斜
め前方上側に配置された第四の光路変更ミラー32によ
り前方に反射され、ケース36の前面内側に配置された
PSD22により受光される。
【0047】ここで、ケース36内において、半導体レ
ーザ光源12、コリメータレンズ24及びビームエキス
パンダ14を含む第一の光学系グループ(本実施例で
は、上側から順に配列された半導体レーザ光源12、コ
リメータレンズ24、第一の光路変更ミラー26、ビー
ムエキスパンダ14、第二の光路変更ミラー28)は、
該ケース36の幅方向において一方の側に寄せた形で配
置されている。他方、ポリゴンミラー16、f・θレン
ズ18、結像レンズ20及びPSD22を含む第二の光
学系グループ(本実施例では、ポリゴンミラー16、f
・θレンズ18、第三の光路変更ミラー30、結像レン
ズ20、第四の光路変更ミラー32及びPSD22から
なる)が、ケース36の幅方向において上記第一の光学
系グループに隣接する形で配置されている。そして、第
一の光学系グループからのレーザ光LBは、光路変更ミ
ラー28により第二の光学系グループ側に導かれるよう
になっている。このようなレイアウトを採用することに
より、ケース36内に生ずるデッドスペースを効果的に
削減でき、装置全体を極めてコンパクトに構成すること
が可能となっている。
【0048】次に、検査対象となるワーク1は、凹所等
の形でワークホルダ38(基板保持体)に形成されたワ
ーク装着部38aに装着される。本実施例では、1つの
ワークホルダ38に対し複数のワーク1を、縦横所定数
ずつのマトリックス状に装着するようにしている。そし
て、図4に示すように、そのワークホルダ38が、例え
ばx駆動ねじ軸43及びx駆動モータ42(以下、x駆
動系という)と、y駆動ねじ軸45及びy駆動モータ4
4(以下、y駆動系という)とによりx方向及びy方向
にそれぞれ独立に駆動されるx−yテーブル40に着脱
可能に装着される。ここで、そのy方向は、ワーク1の
検査面CPに沿う平面内において前述のx方向、すなわ
ち図2において、f・θレンズ18を介したポリゴンミ
ラー16によるレーザ光LBの走査方向と直交する向き
に定められている。そして、図4において、ポリゴンミ
ラー16によりレーザ光をx方向に走査しつつ、テーブ
ル40をy方向に所定の間隔で寸動させることにより、
該レーザ光LBは、ワーク1の検査面CPにて二次元的
に走査されることになる。従って、本実施例では、ポリ
ゴンミラー16とx−yテーブル40のy駆動系とが光
走査手段を構成する。他方、x駆動系は、例えばワーク
ホルダ38にワーク1が、x方向に複数列隣接する形で
配置されるようになっている場合、次列のワーク1をレ
ーザ光の照射位置まで移動させるために使用される。
【0049】図5に、本発明の検査装置の制御系の構成
例を示す。該制御系50は、大きく分けて測定系制御部
51と、データ解析部81とからなる。測定系制御部5
1の中央制御ユニット52は、I/Oポート54と、こ
れに接続されたCPU56、RAM58、ROM60及
び高さ・輝度検出部75とを主体に構成される。また、
該I/Oポート54にはこの他に、レーザ発生部61、
ポリゴンミラー作動部63、x−yテーブル作動部69
がそれぞれ接続されている。なお、CPU56は、後述
の高さ演算部76及び輝度演算部77とともに、高さ情
報生成手段、反射光輝度情報生成手段の主体をなすもの
である。
【0050】レーザ発生部61は、半導体レーザ光源1
2と、中央制御ユニット52からの指令を受けることに
より、該半導体レーザ光源12にレーザ光LBを発生さ
せるレーザドライバ62とを備えて構成される。また、
ポリゴンミラー作動部63は、ポリゴンミラー16(図
3)を回転駆動するポリゴンミラー駆動モータ17と、
中央制御ユニット52からの指令を受けてその作動制御
を司るサーボ駆動ユニット64と、ポリゴンミラー駆動
モータ17すなわちポリゴンミラー16の回転速度及び
回転角度位置を検出するロータリエンコーダ(本実施例
ではアブソリュート型のものを使用する:以下、ABS
と略記する)66とを備える。サーボ駆動ユニット64
は、ABS66からフィードバックされる回転速度情報
に基づいて、ポリゴンミラー駆動モータ17の作動制御
を行う。他方、ABS66による回転角度位置は、レー
ザ光LBによる走査点のx座標を特定するx座標特定情
報、及びポリゴンミラー16の使用中のミラー面を特定
するミラー面特定情報として使用される。
【0051】また、x−yテーブル作動部69は、x駆
動モータ42、y駆動モータ44、及び中央制御ユニッ
ト52からの指令を受けてそれらの作動制御を司るサー
ボ駆動ユニット68及び72、及び各モータ42,44
の回転角度位置を検出するロータリーエンコーダ(本実
施例ではインクリメント型のものを使用する:以下、I
NCと略記)70,74を備える。サーボ駆動ユニット
68,72は、各々INC70,74からフィードバッ
クされる回転速度情報に基づいて、x駆動モータ42及
びy駆動モータ44の作動制御を行う。また、y駆動モ
ータ44側のINC74による回転角度位置は、レーザ
光LBによる走査点のx座標を特定するy座標特定情報
としても使用される。
【0052】次に、高さ・輝度検出部75は、前述のP
SD22と、その各電極からの出力をデジタル変換する
A/D変換器78,79と、それらA/D変換器78,
79によりデジタル変換されたPSD22の出力を用い
て高さ及び輝度を演算し、結果を中央制御ユニット52
に出力する高さ演算部76及び輝度演算部77等を含ん
で構成される。以下、レーザ光による高さ検出原理につ
いて説明する。
【0053】すなわち、図6に示すように、基板本体2
の板面とほぼ平行に高さ基準面SLPを設定し、この高
さ基準面SLPに対して一定の入射角θでレーザ光LB
を入射させるようにする。ここで、この高さ基準面SL
Pにて反射が起こった場合には、PSD22は基準受光
位置DP0でその反射光を受けることとなる。しかしな
がら、バンプ3等の存在により反射面位置が高さz’だ
け高くなると、受光位置はDP1にずれる。該受光位置
DP1の基準受光位置DP0からでのずれ量L、換言すれ
ば反射面の高さ位置z’は、PSD22の2つの出力端
子A及びBの出力電流をIA,IBに基づいて測定でき
る。なお、以下においては、高さ基準面SLPを基準と
した高さ値z’を高さレベル値(あるいは高さレベル)
z’と呼ぶことにする。
【0054】ここで、基準受光位置DP0で受光したと
きの出力端子Aの出力電流をIA0、同じく出力端子Bの
出力電流をIB0として、IA0=IB0となるようにPSD
22の受光位置を調整しておけば、上記ずれ量Lは、
(IA−IB)/(IA+IB)に比例して大きくなる。図
5に示すように高さ演算部76は、デジタル変換された
IA,IBの情報から(IA−IB)/(IA+IB)に相当
する値を演算し、これを高さレベル信号として出力す
る。他方、PSD22の両端子の出力電流の和IA+IB
は、受光する光の強さ(輝度)にほぼ比例して大きくな
るので、輝度演算部77は同じく(IA+IB)に相当す
る値を演算し、これを輝度信号として出力する。上記I
A,IBを電圧変換して増幅し、さらに演算回路にて(I
A−IB)/(IA+IB)に対応する電圧信号を作り、こ
れを高さレベル信号として出力する。他方、PSD22
の両端子の出力電流の和IA+IBは、受光する光の強さ
(輝度)にほぼ比例して大きくなるので、輝度演算部7
7は所定の演算回路により(IA+IB)に対応する電圧
信号を作り、これを輝度信号として出力する。
【0055】また、中央制御ユニット52のCPU56
は、ROM60に格納された制御プログラム60aに基
づき、RAM58をワークエリアとして、レーザ発生部
61、ポリゴンミラー作動部63及びx−yテーブル作
動部69の作動制御を行う。他方、クロックパルス(図
示しないクロック回路が発生する)が与えるタイミング
に従い、レーザ光の走査位置のx座標を与えるABS6
6からの出力値XABSと、同じくy座標を与えるINC
74のパルスカウント値YINCとを取り込んで、位置デ
ータ(XABS,YINC)を生成するとともに、高さ・輝度
検出部75からのデジタル化された高さレベル信号及び
輝度信号を順次取り込むことにより、該位置に対応する
高さレベルデータz”及び輝度データIを生成する。そ
して、各走査位置毎に得られる高さレベルデータz”、
輝度データI及び位置データ(XABS,YINC)の組を、
I/Oポート54からデータ解析部81に転送する。
【0056】なお、図3において、検査面CPに対する
x方向の走査開始点に対応する位置には、ポリゴンミラ
ー16からのレーザ光LBの光路中間位置に対応してプ
リズム25と光検出器27とが設けられている。これら
プリズム25と光検出器27とは、レーザ光LBに基づ
く高さデータ及び輝度データのx方向のデータサンプリ
ング開始タイミングを検出するためのものである。すな
わち、ポリゴンミラー16の回転に伴い、レーザ光LB
がワーク1上のデータサンプリング開始位置に到来する
とこれがプリズム25に入射して、その分岐光がビーム
検出器27で検出される。測定系制御部51はこれを受
けてx方向のデータサンプリングを開始することとな
る。
【0057】図5に戻り、データ解析部81は、I/O
ポート84とこれに接続されたCPU86、RAM8
8、ROM90等を備える解析用のコンピュータ82を
主体に構成され、そのコンピュータ82のI/Oポート
84には、測定系制御部51から受信する高さレベルデ
ータz”、輝度データI及び位置データ(XABS,YIN
C)の組を一時格納するための受信データ格納RAM9
2と、ハードディスク装置等で構成された記憶装置9
4、モニタ制御部96とこれにつながれたモニタ98、
キーボードやマウス等の入力部100、プリンタ102
等が接続される。なお、モニタ98とプリンタ102と
は検査結果出力手段として機能する。また、CPU86
は、後述のデータ解析/検査プログラムに基づき、バン
プ存在領域特定手段(あるいは高輝度領域特定手段)、
バンプ要部存在領域認識手段、検査情報生成手段、高さ
決定領域設定手段、バンプ高さ演算手段、高さ決定用高
輝度領域抽出手段、バックグラウンド高さ決定領域設定
手段、バックグラウンド高さ演算手段、位置許容範囲規
定ウィンドウ設定手段、面積算出手段、判定手段、バン
プ中心決定手段、バンプ配列間隔演算手段、バンプ寸法
演算手段、コプラナリティ情報生成手段、表面うねり情
報生成手段、バンプ体積情報生成手段、シルエット領域
特定手段及びバンプ底面大きさ情報生成手段等の主体と
して機能する。
【0058】また、記憶装置94には、データ解析/検
査プログラム記憶部94a、補正済データ記憶部94
b、補正用データ群記憶部94c、検査標準データ記憶
部94d及び検査結果データ記憶部94eが形成され、
それぞれ対応するプログラムないしデータが記憶されて
いる。なお、各データの内容とプログラム処理の内容に
ついては後述する。
【0059】以下、測定系制御部51における制御処理
の流れについて、図23のフローチャートを用いて説明
する。まず、D10において、ワーク1を装着したワー
クホルダ38をx−yテーブル40にセットする(図4
参照)。D20では、x−yテーブル40を最初のワー
クの走査開始位置へ移動させる。なお、測定系の立ち上
げ時に、図示しない原点位置センサによりx−yテーブ
ル40の原点位置を確認し、以降の各種位置決め処理の
基準とする。そして、D40にてレーザ光LBをワーク
の検査面CPに照射し、同時にx−yテーブル40のy
駆動とポリゴンミラー16の回転を開始する。そして、
D50では、各走査点毎に前述の高さレベルデータ
z”、輝度データI及び位置データ(XABS,YINC)の
組を生成し、これをデータ解析部81へ転送する。
【0060】なお、後の解析処理の簡略化を図るため、
y方向のデータサンプリング距離をx方向のそれよりも
大きくして(あるいはその逆も可能)、取り込むデータ
組の数を削減することができる。この場合、例えばy方
向のデータサンプリング距離を大きくするために、x方
向及びy方向のデータサンプリングの時間間隔はほぼ同
じとし、y方向の走査速度をx方向の走査速度よりも大
きくするようにしてもよいし、逆にy方向の走査速度と
x方向の走査速度とをほぼ同じとし、y方向のデータサ
ンプリングの時間間隔をx方向のそれよりも長くするよ
うにしてもよい。また、別の方法として、x方向とy方
向とをほぼ同じデータサンプリング距離にてデータ取込
みを行い、解析時にx方向あるいはy方向の少なくとも
いずれかにおいて取り込んだデータ組を間引き、使用す
るデータ組の数を削減するようにしてもよい。
【0061】そして、そのワークに対するデータの取込
み/転送が終了すれば、y方向に並ぶ次のワークの走査
開始位置へ移動し(D60→D61)、D40に戻って
以下同様の処理を繰り返す。こうして、y方向に並ぶワ
ーク列について、上記データの組が順次取り込まれ、そ
の列のワークが尽きればx−yテーブル40のx駆動を
行って次列先頭のワークの走査開始位置へ移動し、さら
に同様の処理を繰り返す(D62→D63→D40の流
れ)。そして、全てのワークについてのデータの生成・
転送が完了すれば、処理を終了する。
【0062】データ解析部81側では測定系制御部51
からのデータを受け、図12(a)に示すように、
z”、I及び(XABS,YINC)のデータの組ODを、各
走査点と対応付けた形で受信データ格納RAM92(図
5)に格納する。以下、データ解析部81側での処理の
流れについて、図24〜図33のフローチャートを用い
て説明する。なお、この処理は、コンピュータ82(図
5)のCPU86が、記憶装置94に記憶されたデータ
解析/検査プログラムに基づき、RAM88をワークエ
リアとして実行するものである。
【0063】まず、図24のS1において、最初のワー
クのデータの組ODのデータを読み出し、S2に進んで
位置データ解析処理となる。その詳細を図25に示して
いる。まず、(XABS,YINC)は、エンコーダからの出
力値あるいはパルスカウント値になっているので、これ
を各ワーク毎にその検査面CP毎に設定される位置座標
(以下、検査面座標という)上での座標値(x’,
y’)に変換する(なお、測定系制御部51側で予めこ
の変換を行い、(x’,y’)のデータの形でこれをデ
ータ解析部81へ転送するようにしてもよい)。
【0064】次に、図6に示すようにレーザ光LBは、
検査面CPに対して入射角θで斜めに入射する関係上、
高さ基準面SLPと、そこから高さzだけ隔たった面と
では、同じ入射光でもΔbだけ反射位置が異なることに
なる。ここで、図からも明らかなように、 Δb=L・cosθ/sinφ‥‥‥(1) φ=180°−2θ‥‥‥(2) であるから、θとLの値からΔbを求めることができ
る。このΔbにより、座標値(x’,y’)を、例えば
高さ基準面SLPに対する入射状態を基準とした座標値
に補正する。ここで、図7に示すように、レーザ光源1
2からの光は、ポリゴンミラー16によりy方向とのな
す角度δが変化しながらx方向に走査されるので、Δb
によるx方向への補正量はΔb・sinδ、同じくy方
向への補正量はΔb・cosδで求められる。なお、入
射角θの値は、例えば図10に示すように、補正用デー
タ群記憶部94cに格納されたものを適宜読み出して使
用する。
【0065】他方、図11に示すように、ポリゴンミラ
ー16に面倒れ角の誤差Δλがあると、検査面CPに対
するレーザ光LBの照射位置に、ずれΔdが生ずる。こ
のずれΔdの大きさは、使用するf・θレンズ18の焦
点距離をfとすると、f・2Δλで求めることができ
る。他方、この照射位置のずれにより、高さの計測誤差
Δhも生ずる。この計測誤差Δhは、前述の角度φ(=
180°−2θ)を用いて、Δd/tanφで求めるこ
とができる。
【0066】そこで、図10に示すように、補正用デー
タ群記憶部94cに、ポリゴンミラー16の各面毎の面
倒れ角に基づくずれ量Δdを格納しておき、前述のXAB
Sの値から使用中のポリゴンミラー16の面を特定し
て、対応するずれ量Δdを読み出すようにする(図2
5:S203)。そして、図25のS204において、
このずれ量Δdからx及びyの各方向の補正量と、高さ
レベルz”に対する補正量を求め、これにより補正され
た座標値と高さレベルとを、検査面座標における補正済
座標値(x,y)及び高さレベルz’の組ADとして、
各走査点と対応付けた形で補正済データ記憶部94bに
格納し(図12(b)は、その格納状態を示してい
る)、位置データ解析処理を終了する。
【0067】図24に戻り、次いで、S3のバンプデー
タ解析処理に進む。図26にその詳細な流れを示してい
る。まず、S301で、各データ組の位置座標(x,
y)を、例えばRAM88(図5)のアドレス空間内に
設定したデータビット平面の各ビットに一対一に対応付
け、輝度Iが閾値ISH以上となっているか否かによりビ
ットマップデータを生成する。
【0068】図8は、バンプ3を横切るようにレーザ光
LBを走査することにより得られる、高さレベルz’及
び輝度Iのプロファイルの一例を示している。すなわ
ち、プラスチック製の基板本体2は金属製のバンプ3よ
りも反射率が低いため、輝度Iはバンプ3の頂面に対応
する領域TSで高く、基板本体2の露出領域、すなわち
バンプ周囲のバックグラウンド領域BSで低くなる。そ
して、上記閾値ISHは、基板本体2の表面に対し、所定
レベルの強度のレーザ光を入射したときの、平均的な反
射光輝度レベルよりも高く設定されている。なお、バン
プ頂面の表面状態が同じであれば、図中一点鎖線で表す
ように、バンプ高さレベルz’が低くなっても、輝度I
のレベルはほぼ同じとなる。
【0069】上記のように反射光輝度に対し閾値ISHを
定めることにより、検査面上におけるバンプ3の存在領
域を、前述のビットマップデータ上で特定することが可
能となる。例えば、図14に示すように、閾値ISH以上
のビットを「1」(ハッチングを施したビット)、そう
でないビットを「0」(ハッチングを施さないビット)
で表せば、「1」ビットが集合して現われる領域がバン
プの存在領域(請求項でいう高輝度領域に対応)を表す
こととなる。以下、本実施例では、バンプ存在領域のビ
ットを「1」、そうでない領域のビットを「0」で表す
ものとする。
【0070】他方、図8において、バンプ3の側面と溝
部6に対応する領域は、斜めに入射するレーザ光LBが
乱反射されたり遮られたりするので反射光がほとんど生
じず、輝度Iが非常に小さいシルエット領域SAとなっ
ている。また、この領域SAでは、反射光がほとんど生
じないため、高さデータは欠損した形になっている(実
際の処理上では、例えば高さゼロに近い値として扱うこ
とができる)。従って、上記ビットマップデータ上で特
定されるバンプ存在領域は、バンプ頂面存在領域を表し
ているものともいえる。
【0071】次いで、図26のS302に進み、ビット
マップデータ上において個々のバンプの存在領域に分離
する処理を行う。すなわち、図14に示すように、ビッ
トマップデータを所定の方向(例えばx方向)に走査
し、「1」ビットの途切れが一定数(例えば3ビット)
以上生じたか否かにより、同一のバンプ存在領域である
か別のバンプ存在領域であるかを判別しながら、各ビッ
トにラベリング符号(本実施例では、1、2‥‥等の数
字で表している)を施してゆく。なお、走査2列目以降
は、「0」ビットの検出状態から「1」ビットの検出に
転じた時に、その「1」ビットを取り囲む例えば8つの
ビットのラベリング状態を判別し、既に認識済のビット
のラベリング符号が検出されれば、これと同一のラベリ
ング符号を施し、何も検出されなければ新たなラベリン
グ符号を施すようにする。そして、異なるラベリング符
号が付されたビットの集合同士は、異なるバンプ存在領
域として認識することとなる。
【0072】例えば、図13(a)のように高さレベル
データz’が分布し、輝度データIが同図(b)のよう
に分布したデータ組の場合、輝度閾値ISHを7に設定す
ることで、バンプ存在領域は(c)に示すような形でビ
ットマップデータ上に現われる(ただし、この図では、
各位置のz’の値を対応する各ビットに書き込んだ形で
表している)。なお、輝度閾値ISHの値は、例えば図1
0に示すように、補正用データ群記憶部94cに格納さ
れたものを適宜読み出して使用する。
【0073】図26に戻り、次のS303では、図16
(a)に示すように、互いに分離されたバンプ存在領域
のうち、適宜に設定された基準面積S0以上のものを抽
出し、これを、個々のバンプ頂面の主要部が存在してい
る領域、すなわちバンプ要部存在領域(図では、BA1
〜BA3)として識別する。各領域の面積Sは、該領域
に属するビットの個数により求めることができる。な
お、ビット数が、基準面積S0に対応するビット数より
も小さいある閾値(例えば3ビット)に満たない領域
は、ノイズとして除去するようにする(例えば図16
(a)のBA5、BA6)。
【0074】そして、図26のS307〜S311で
は、抽出された各バンプ要部存在領域の幾何学的な重心
位置の座標を算出し、これを各バンプの中心Gの座標と
して決定する処理がなされる。具体的には図15に示す
ように、各ビットに対応付けられる検査平面上の座標P
のx座標値及びy座標値を、領域内の全てのビットにつ
いて合計し、そのx座標値の合計(Lx)と、y座標値
の合計(Ly)とをそれぞれビット総数NTで割ることに
より求めることができる。
【0075】なお、図37に示すように、バンプ要部存
在領域に対し、これに外接する四辺形領域を求め、その
四辺形領域の対角線交点位置としてバンプ中心Gの座標
を算出することもできる。この場合、例えばx方向の直
線をy軸に沿って平行移動させ、バンプ要部存在領域と
接点を生ずる2直線Lx1,Lx2を決定する。次いで、
y方向の直線をx軸に沿って平行移動させ、バンプ要部
存在領域と接点を生ずる2直線Ly1,Ly2を決定す
る。これにより、上記四辺形領域は長方形領域として設
定され、その対角線交点座標は、いずれか一方の対角線
の中点座標として演算することができる。このようにす
ることで、各ビットのx座標及びy座標の加算処理が不
要となり、バンプ中心座標の算出処理を簡略化すること
ができるようになる。
【0076】図26に戻り、各バンプの中心Gの座標が
算出されるとS312に進み、バンプ径Dの算出処理と
なる。すなわち、図17に示すように、中心Gからバン
プ要部存在領域の周縁までの距離の平均値(本実施例で
は、等角度間隔で並ぶ8方向の平均値としている)rm
を求め、バンプ径Dを2rmにより算出する。この処理
は、各バンプ要部存在領域のそれぞれに対する処理の形
で反復して行われる(図26:S304〜S306)。
こうして決定されたGの座標及びバンプ径Dの値は、図
5の検査結果データ記憶部94e(図19にその内容の
詳細を示す)に記憶される。なお、バンプ径Dは、バン
プ要部存在領域内のビット数から該バンプ要部存在領域
の面積を求め、これと同一面積の円の直径として算出す
るようにしてもよい。
【0077】ここで、図16(a)において、おおむね
正常なバンプであれば、BA1あるいはBA2のようにバ
ンプ要部存在領域は、バンプ頂面の形状をほぼ反映した
ものとなる。一方、表面が荒れていたり、欠損が生じて
いたりすると、BA3,BA4のように、同じバンプに由
来する2以上のバンプ存在領域が現われることもある。
この場合、同図(b)に示すように、基準面積S0以上
のBA3のみがバンプ要部存在領域として識別され、基
準面積S0を下回るBA4は、バンプ中心の設定対象から
除外される。これにより、BA4を別のバンプと誤認す
るトラブルが回避される。一方、同一バンプに由来する
バンプ存在領域が、いずれも基準面積S0以下の領域に
分裂した場合は、該バンプに対応するバンプ要部存在領
域は認識されないことになる。しかしながら、このよう
な結果は、もともとバンプ表面状態等が良好でないため
に生じたのであり、逆にこれを利用して不良バンプの存
在を推定することができる。
【0078】図21にその方法の一例を示している。す
なわち、バンプ付基板1の検査面CPに対し、(b)に
示すように各バンプの形成位置の許容範囲を規定する位
置許容範囲規定ウィンドウPWの組を設定する。そし
て、その設定された各位置許容範囲規定ウィンドウPW
内のバンプ存在領域(高輝度領域)BAの面積を求め、
その面積がウィンドウPWの面積に対して一定比率以下
となっているものは、そのウィンドウPW内に不良バン
プが存在していると判定することができる。なお、位置
許容範囲規定ウィンドウPWの組は、バンプ付基板の品
種が同一であれば、検査面に対する設定位置も同じとな
る。そこで、(a)に示すように、ウィンドウPWの組
をグループ化したウィンドウグループPWGと検査面C
Pとの位置関係を規定するターゲットマークを、基板1
上に形成しておき、検査時にはこのターゲットマークを
目印としてウィンドウグループPWGを位置合わせする
ようにすればよい。
【0079】なお、ターゲットマークに代えて、基板1
上の特定バンプの中心(例えば基板1上の4隅のバンプ
の中心)を目印にウィンドウグループPWGを位置合わ
せするようにしてもよい。
【0080】以上でバンプデータ解析処理は終了し、図
24のS4に進んで検査データ生成処理となる。図27
に示すように、検査データ生成処理は、本実施例では、
バンプ高さ演算処理(S410)、バンプ間隔演算処理
(S420)、コプラナリティ演算処理(S430)、
バックグラウンドうねり値演算処理(S440)、バン
プ体積演算処理(S450)の5つのステップからな
る。
【0081】図28にバンプ高さ演算処理の流れを示
す。処理の要部はS4103〜S4117であり、S4
103で、上記決定されたバンプ要部存在領域に対し、
Gを中心とするバンプ高さ決定ウィンドウ(バンプ高さ
決定領域)を、そのバンプ要部存在領域が包含される大
きさで設定する。例えば、図16(c)に示す例では、
バンプ高さ決定ウィンドウHWを、バンプ要部存在領域
の寸法よりも大きい所定半径rwの円として設定してい
る。そして、以下のS4102〜S4109において
は、上記バンプ高さ決定ウィンドウHW内に存在する全
てのバンプ存在領域(図16(c)ではBAとBA’)
について、各ビットに対応する高さレベルz’を加算
し、その加算値Lzをビット総数NTで割ることによ
り、各バンプのバンプ頂面の平均的な高さレベルz’m
=Lz/NTを求める。
【0082】ここで、基板本体2の板面が理想的な平面
に近ければ、該基板本体を高さ基準面に対して平行に配
置することで、基板本体2の表面の高さレベル、すなわ
ちバックグラウンド表面の高さレベルはほぼ一定値HS
を示すから、算出されたz’mからこのHSを減ずること
により、基板本体2の表面からのバンプの突出高さ(以
下、単に「バンプ高さ」と称する場合は、この突出高さ
を意味するものとする)zを、 z=z’m−HS‥‥‥(3) にて算出することができる。しかしながら、基板本体が
プラスチックで構成されていると、図34に示すよう
に、内部に形成された金属配線部(図示せず)と高分子
材料との熱膨張係数の差により、製造工程での熱履歴等
を受けて基板本体2の表面にうねりや反りを生じ、バッ
クグラウンド表面の高さレベルが位置的にばらつくこと
がある。
【0083】そこで、図28の処理の流れでは、S41
10〜S4116で、各バンプ周囲におけるバックグラ
ウンド表面の平均的な高さレベル(以下、うねり高さレ
ベルという)Tmを次のようにして算出している。すな
わち、図18に示すように、各バンプ要部存在領域及び
その周囲に生ずるシルエット領域の外側に、これらを取
り囲むように領域内側限界線を設定し、そのさらに外側
に領域外側限界線を設定して、それら限界線の間に挟ま
れる領域を、バックグラウンド高さ決定領域として設定
する(S4110)。本実施例では、領域内側限界線
は、バンプ要部存在領域の中心Gに対し、同心的に設定
される円とされ、領域外側限界線は、対角線交点位置が
上記Gと一致するように設定される正方形状とされてい
る(ただし、形状はこれらに限られるものではなく、例
えば領域外側限界線も円状とすることができる)。
【0084】そして、バックグラウンド高さ決定領域内
の各ビットに対応する高さレベルTを加算し、その加算
値LTをビット総数MTで割ることにより、うねり高さレ
ベルTmを、 Tm=LT/MT‥‥‥(4) により求める(S4112〜S4116)。そして、バ
ンプ高さzは、S4116で算出されたz’mから、こ
のTmを減ずることにより、 z=z’m−Tm‥‥‥(5) で求めることができる(S4117)。なお、上記処理
は、各バンプ要部存在領域のそれぞれに対する処理の形
で反復して行われる(S4100〜S4102)。こう
して求められた各バンプの高さzは、高さレベルz’m
及びうねり高さレベルTmとともに、図5あるいは図1
9に示す検査結果データ記憶部94eに記憶される。こ
こで、後述するコプラナリティを求める処理のために、
各バンプ要部存在領域毎のバンプ頂面の高さレベルの平
均値z’mの値(コプラナリティ決定用高さ)も合わせ
て記憶しておくようにする。
【0085】次に、図20(b)に示すように、基板1
上のバンプ3の配列状態(B11、B12‥‥等)は、前記
特定された各バンプ要部存在領域の中心Gによって特定
することができる。図29は、バンプ間隔演算処理の流
れを示すものである。該処理の要部はS4203〜S4
205であり、S4203で現在着目しているバンプの
中心Gの座標を読み込む。次いで、S4204で、図2
0(b)に示すように、そのバンプ中心をG0として、
これに近接する4つのバンプの中心座標G1〜G4を読み
込む。そして、S4205で、近接する各バンプとの間
の間隔を、その中心間距離として算出する(K1〜K
4)。こうして求められた各バンプ(あるいはバンプ要
部存在領域)毎のバンプ間隔K1〜K4は、図5あるいは
図19に示す検査結果データ記憶部94eに記憶され
る。なお、上記処理は、各バンプ要部存在領域のそれぞ
れに対する処理の形で反復して行われる(S4200〜
S4202)。
【0086】図30は、コプラナリティ演算処理の流れ
を示している。この処理では、S4301〜S4310
において、各バンプ要部存在領域のバンプ高さレベル平
均値z’mを逐次的に比較することによって、その最大
値MAXと最小値MINを求め、S4311でコプラナリティ
Cを両者の差MAX−MINの値として算出する。この値は、
図5あるいは図19に示す検査結果データ記憶部94e
に記憶される。
【0087】なお、コプラナリティCとして次のような
値を算出するようにしてもよい。例えば、図35(a)
に示すように、各バンプ3の頂点位置に対応する最小二
乗平面を頂点基準面P0とし、その頂点基準面P0と平行
でかつ高さ最大のバンプ3の頂点を通る平面をPmax、
同じく高さ最小のバンプ3の頂点を通る平面をPminと
したときのPmaxとPminとの面間距離をコプラナリティ
Cとする。なお、頂点位置の座標は、バンプ頂面内にて
高さレベルが最高となる位置の3次元座標(x,y,
z)を用いてもよいし、例えばバンプ中心Gの位置座標
を(xp,yp)と、前記算出されたバンプ頂面の高さレ
ベルz’の平均値z’mとを組み合わせて、(xp,y
p,z’m)を用いるようにしてもよい。
【0088】他方、図35(b)に示すように、バンプ
の高さレベルの順位において、最も高さの大きいものか
ら順に3つのものMAX1,MAX2,MAX3を抽出し、その3つ
のバンプの頂点が定める平面Pmaxから、最も高さの小
さいもの(MIN)の頂点までの距離(あるいはその頂点
を通ってPmaxと平行な平面をPminとしたときの、Pma
xとPminとの面間距離)をコプラナリティCとすること
もできる。また、この逆に、バンプの高さレベルの順位
において、最も高さの小さいものから順に3つのものMI
N1,MIN2,MIN3を抽出し、その3つのバンプの頂点が定
める平面Pminから、最も高さの大きいもの(MAX)の頂
点までの距離(あるいはその頂点を通ってPminと平行
な平面をPmaxとしたときの、PmaxとPminとの面間距
離)をコプラナリティCとすることもできる。
【0089】なお、コプラナリティCを算出するに当た
っては、基板1上の全てのバンプ3の高さを用いて算出
してもよいし、演算を簡略化するために、一部のバンプ
3の高さのみを用いて演算を行うようにしてもよい。
【0090】また、図31は、バックグラウンドうねり
値演算処理の流れを示している。この処理では、検査面
のバックグラウンド表面に予め定められた複数のうねり
サンプリング位置を定めておき、その各サンプリング位
置に対応するうねり高さレベルTmを読み出すととも
に、その読み出されたうねり高さレベルTmを用いてう
ねり値TA(表面うねり情報)の演算を行う。ここで
は、一例として、サンプリング位置の数をNaとし、サ
ンプリングしたうねり高さレベルを逐次的に比較するこ
とによって、その最大値LTMAXと最小値LTMIN
を求め、S4408でうねり値TAを両者の差LTMA
X−LTMINの値として算出する(S4400〜S4
408)。TAが大きいほど、基板本体2(あるいは検
査面CP)のうねりやそりの度合いが大きいことを意味
する。
【0091】なお、うねり値TAとして次のような値を
算出するようにしてもよい。例えば、各サンプリング位
置に対応する最小二乗平面を基準面LP0とし、その基
準面LP0と平行でかつ高さ最大のサンプリング位置を
通る平面をLPmax、同じく高さ最小のサンプリング
位置を通る平面をLPminとしたときのLPmaxと
LPminとの面間距離をうねり値TAとする。
【0092】他方、サンプリング位置のレベルの順位に
おいて、最も高さの大きいものから順に3つのものLP
MAX1、LPMAX2、LPMAX3を抽出し、その
3つのサンプリング位置が定める平面LPmaxから、
最も高さの小さいもの(MIN)の頂点までの距離をう
ねり値TAとすることもできる。
【0093】さらに、サンプリングしたうねり高さレベ
ルTmの和としてうねり値TAを算出してもよい。例え
ば、図22に示すように、検査面CP上の4隅のバンプ
A、B、C、Dに対応してサンプリング位置を設定して
おき、各周囲領域にて求めたうねり高さレベルTmA、
TmB、TmC、TmDを平均した値としてうねり値T
Aを算出してもよい。
【0094】また、うねり値は、例えば下記数1で表さ
れる中心線平均うねりとして算出してもよい。ただし、
サンプリング位置数はNaであり、そのうちのi番目の
サンプリング位置に対応するうねり高さレベルをTmi
で表している。
【0095】
【数1】
【0096】続いて、図32は、バンプ体積演算処理の
流れを示している。まずS4501で、先に算出したバ
ンプ径Dの値を読み出し、これをバンプ頂面径Duとす
る。次に、図35(a)に示すように、バンプ存在領域
の周囲に形成されるシルエット領域を特定する。図8に
示すように、このシルエット領域SAは、バンクグラウ
ンド表面SAの反射光レベルよりも低く設定された所定
の閾値ISH2よりも反射光輝度が低くなる領域として、
各バンプ毎に特定することができる。
【0097】そして、図35(b)に示すように、その
特定されたシルエット領域SAの外側外形線に対し、検
査光の入射方向と直交する向きにおける最大寸法Dkmax
を算出する(図32:S4502)。また、図6に示す
ように、基板本体2上においてバンプ3の底面3bの周
囲には円環状の溝6(幅W)が形成されており、図35
(b)に示すように、シルエット領域はこの溝の部分を
取り込んだ形で表れる。そこで、図32のS4503で
は、図35(b)に示すように、上記最大寸法Dkmaxか
ら溝幅Wを減じた値Dkmax−Wを、バンプ底面径DBと
して求める。そして、S4504に進み、図36に示す
ようにバンプ体積Vを、頂面の直径がDu、底面の直径
がDBの円錐台で近似して、次の数2により算出する。
【0098】
【数2】
【0099】このVの値は、図5あるいは図19に示す
検査結果データ記憶部94eに記憶される。
【0100】図24に戻り、以上でS4の検査データ生
成処理は終了する。この状態における検査データ記憶部
94eの記憶内容は図19に示す通りである。まず、品
番はワークの種類を特定するためのものであり、検査品
Noは検査された複数のワーク(検査品)を個々に特定
するためのものである。いずれも、例えば入力部100
(図5)等から、処理に先立って入力されるものであ
る。そして、各バンプ(あるいはバンプ要部存在領域)
毎に、得られた検査データDB11、DB12‥‥等が記憶
されている。各検査データは、バンプ中心Gの座標、バ
ンプ径D、バンプ高さz、バンプ面積(バンプ要部存在
領域の面積である)S、バンプ間隔K1〜K4、バンプ体
積Vを含んでいる。また、基板1上のバンプ配列に対し
て算出されたコプラナリティCの値と、前述のうねり値
TAも記憶されている。
【0101】そして、図24においてはS5の判定/結
果出力処理に進む。図33にその流れを示している。ま
ず、図5及び図9の検査標準データ記憶部94dには、
判定対象となる各検査パラメータ(ここでは、D、Z、
S、K1〜K4、V、C、TA)の合格範囲のデータが、
基板1の品番毎に記憶されているので、対応する品番の
ものを読み出す。そして、図33のS501〜S509
の処理では、ワークの全てのバンプについて、上記得ら
れた検査パラメータのうちD、Z、S、K1〜K4、Vの
各値が、合格範囲に入っていれば良バンプと判定し(S
508)、入っていなければ不良バンプとして判定する
(S509)。この判定結果は、図19の検査結果デー
タ記憶部94eに、各バンプのデータと対応付けた形で
記憶してゆく(図では、良を○、不良を×で表してい
る)。また、S509では、不良バンプの検出個数を不
良バンプカウンタNDにより計数し、これも同様に検査
データ記憶部94eに記憶する。この不良バンプの個数
が所定数(本実施例では、例えば1としている)以上と
なったものを不可(×)、該所定数未満のものを可
(○)と判定する。
【0102】こうして、全てのバンプについて判定が終
了すればS503からS510に進んでコプラナリティ
の判定が行われる。すなわち、そのワークについて測定
されたコプラナリティCの値が、許容値Cmaxを超えて
いる場合は不可(×)、超えていない場合は可(○)と
判定し、結果を検査結果データ記憶部94eに記憶す
る。また、S512ではうねり値の判定が行われる。す
なわち、測定されたうねり値TAが、許容値TAmaxを超
えている場合は不可(×)、超えていない場合は可
(○)と判定し、結果を検査結果データ記憶部94eに
記憶する。そして、S514に進み、総合判定となる。
ここでは、不良バンプの個数判定、コプラナリティ判定
及びうねり値判定が、いずれも可となっているものを総
合判定合格(○)、一つでも不可となっているものを不
合格と判定している。この結果も検査結果データ記憶部
94eに記憶する。以上の結果は、検査結果データ記憶
部94eの記憶内容に基づき、例えば図5のモニタ98
あるいはプリンタ102から出力することができる(S
517)。以上で、判定/結果出力処理が終了する。こ
のような図24のS1〜S7の各処理が、検査を行った
各ワークに順次行われ、全てのワークについての処理が
完了すれば、データ解析/検査判定処理は終了となる。
【0103】なお、以上においては、本発明をフリップ
チップ基板の検査に適用した例について説明したが、バ
ンプを有する基板であれば、BGA基板等、他の種類の
基板についても本発明を適用できることはもちろんであ
る。
【図面の簡単な説明】
【図1】本発明の検査装置の検査対象となるバンプ付基
板の一例を示す斜視図。
【図2】本発明の検査装置における測定系の要部の構成
を模式的に示す図。
【図3】その具体的な構成例を示す側面図及び背面図。
【図4】x−yテーブルの平面模式図。
【図5】本発明の検査装置の制御系の構成を示すブロッ
ク図。
【図6】レーザー光による高さ検出原理を示す説明図。
【図7】補正量の説明図。
【図8】バンプを横切るようにレーザ光を走査すること
により得られる高さレベル及び輝度のプロファイル。
【図9】検査標準データ記憶部のデータ内容を示す説明
図。
【図10】補正用データ群記憶部のデータ内容を示す説
明図。
【図11】走査面に対するレーザ光の照射位置のずれ及
び計測誤差の説明図。
【図12】受信データ格納RAMの内容を示す説明図、
及び補正済データ記憶部の内容を示す説明図。
【図13】バンプ存在領域をビットマップデータ上に表
した状態の一例を示す説明図。
【図14】バンプの存在領域をビットマップデータ上で
特定する場合の一例を示す説明図。
【図15】各バンプの中心の座標を求める説明図。
【図16】バンプ要部存在領域を識別する際の説明図。
【図17】バンプ要部存在領域の中心から周縁までの距
離の平均値及びバンプ径を求める説明図。
【図18】バックグラウンド高さ決定領域の概念図。
【図19】検査結果データ記憶部の内容の一例を示す説
明図。
【図20】コプラナリティの説明図及びバンプの配列状
態を特定する処理の説明図。
【図21】不良バンプの存在を推定する方法の一例を示
す説明図。
【図22】うねり値算出の一例を示す説明図。
【図23】測定系駆動部における制御処理の流れを示す
フローチャート。
【図24】データ解析/判定処理の流れを示すフローチ
ャート。
【図25】その位置データ解析処理の詳細を示すフロー
チャート。
【図26】図24のバンプデータ解析処置の詳細を示す
フローチャート。
【図27】同じく検査データ生成処置の詳細を示すフロ
ーチャート。
【図28】そのバンプ高さ演算処置の詳細を示すフロー
チャート。
【図29】同じくバンプ間隔演算処理の詳細を示すフロ
ーチャート。
【図30】同じくコプラナリティ演算処理の詳細を示す
フローチャート。
【図31】バックグラウンドうねり値演算処理の詳細を
示すフローチャート。
【図32】バンプ体積演算処理の詳細を示すフローチャ
ート。
【図33】図24の判定/結果出力処理の詳細を示すフ
ローチャート。
【図34】基板本体の高さレベルがバンプ高さの測定に
及ぼす影響を説明する図。
【図35】シルエット領域の説明図。
【図36】円錐台近似によりバンプ体積を算出する概念
を説明する説明図。
【図37】バンプ中心座標の演算方式の変形例を示す説
明図。
【図38】コプラナリティCの別の概念をいくつか例示
して説明する図。
【符号の説明】
1 バンプ付基板 2 基板本体 3 バンプ 12 半導体レーザ光源(光源) 16 ポリゴンミラー(光走査手段) 22 半導体位置検出器(受光部) 38 ワークホルダ(基板保持体) 56 CPU(高さ値情報生成手段、反射光輝度生成手
段) 76 高さ値演算部(高さ値情報生成手段) 77 輝度演算部(反射光輝度生成手段) 86 CPU(バンプ存在領域特定手段(高輝度領域特
定手段)、バンプ要部存在領域認識手段、検査情報生成
手段、高さ決定領域設定手段、バンプ高さ演算手段、高
さ決定用高輝度領域抽出手段、バックグラウンド高さ決
定領域設定手段、バックグラウンド高さ演算手段、位置
許容範囲規定ウィンドウ設定手段、面積算出手段、判定
手段、バンプ中心決定手段、バンプ配列間隔演算手段、
バンプ寸法演算手段、コプラナリティ情報生成手段、表
面うねり情報生成手段、バンプ体積情報生成手段、シル
エット領域特定手段、バンプ底面大きさ情報生成手段) 98 モニタ(検査情報出力手段) 102 プリンタ(検査情報出力手段)
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−167322(JP,A) 特開 平8−193807(JP,A) 特開 平9−159415(JP,A) 特開 平9−329422(JP,A) 特開 平10−160445(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 102 G01N 21/84 - 21/91 H05K 3/00 H05K 3/34

Claims (7)

    (57)【特許請求の範囲】
  1. 【請求項1】 基板本体上に、頂面がほぼ平坦な形状の
    複数のバンプが二次元的に配列されたバンプ付基板の検
    査装置であって、 前記バンプ付基板の、少なくとも前記複数のバンプの配
    列された領域を検査面として、該検査面に検査光を照射
    する光源と、 前記検査面からの前記検査光に基づく反射光を受光する
    受光部と、 前記検査光を前記検査面内にて二次元的に走査する光走
    査手段と、 前記受光部の検知出力に基づいて、前記検査面内の各位
    置の高さに関する情報を生成する高さ情報生成手段と、 前記受光部の検知出力に基づいて、前記検査面上の各位
    置における反射光輝度情報を生成する反射光輝度情報生
    成手段と、 その生成された反射光輝度情報に基づき、前記検査面内
    における各バンプの頂面の存在領域(以下、バンプ頂面
    存在領域という)を特定するバンプ頂面領域特定手段
    と、 そのバンプ頂面存在領域の寸法又は面積に関する情報
    (以下、バンプ頂面大きさ情報という)を生成するバン
    プ頂面大きさ情報生成手段と、前記バンプ頂面存在領域
    内の各位置の高さ情報に基づいて、対応するバンプの高
    さに関する情報(以下、バンプ高さ情報という)を生成
    するバンプ高さ情報生成手段と、それらバンプ頂面大き
    さ情報とバンプ高さ情報とに基づいて、前記対応するバ
    ンプの体積に関する情報(以下、バンプ体積情報とい
    う)を生成するバンプ体積情報生成手段とを有し、少な
    くともそのバンプ体積情報を含んだ検査情報を生成する
    検査情報生成手段と、 その生成した検査情報を出力する検査情報出力手段と、 を備えたことを特徴とするバンプ付基板の検査装置。
  2. 【請求項2】 前記バンプ頂面大きさ情報生成手段は、
    前記バンプ頂面存在領域をほぼ同面積の円で近似したと
    きの、その直径又は面積を反映した情報を前記バンプ頂
    面大きさ情報として生成するものである請求項1記載の
    検査装置。
  3. 【請求項3】 前記バンプ頂面存在領域の外周縁に沿っ
    てその外側に形成されるとともに、前記受光部により検
    知される前記反射光の輝度が、前記バンプの頂面とその
    バンプの周囲に露出する前記基板本体表面とのいずれよ
    りも低く表れるシルエット領域を、前記反射光輝度情報
    生成手段が生成する前記反射輝度情報に基づき特定する
    シルエット領域特定手段を備え、 前記検査情報生成手段は、前記シルエット領域の寸法又
    は面積に関する情報(以下、シルエット領域大きさ情報
    という)を生成するシルエット領域大きさ情報生成手段
    と、そのシルエット領域大きさ情報に基づいて、対応す
    るバンプ底面の寸法又は面積に関する情報(以下、バン
    プ底面大きさ情報という)を生成するバンプ底面大きさ
    情報生成手段とを備え、 前記バンプ体積情報生成手段は、前記バンプ頂面大きさ
    情報と、前記バンプ底面大きさ情報と、前記バンプ高さ
    情報とに基づいて、前記バンプ体積情報を生成するもの
    である請求項1又は2に記載のバンプ付基板の検査装
    置。
  4. 【請求項4】 前記シルエット領域大きさ情報生成手段
    は、前記検査面上に投影した前記検査光の入射方向と直
    交する向きにおける、前記シルエット領域の最大寸法を
    演算するシルエット領域最大寸法演算手段を備え、該シ
    ルエット領域をその最大寸法を直径とする円で近似した
    ときの、その直径又は面積を反映した情報を前記シルエ
    ット領域大きさ情報として生成するものである請求項3
    記載の検査装置。
  5. 【請求項5】 前記バンプ体積情報生成手段は、前記バ
    ンプの形状を、前記バンプ頂面大きさ情報により特定さ
    れる直径を有した円形頂面と、前記バンプ底面大きさ情
    報により特定される直径を有した円形底面と、前記バン
    プ高さ情報により特定される高さとを有する円錐台によ
    り近似して、前記バンプの体積値を演算するバンプ体積
    演算手段を備える請求項3又は4に記載の検査装置。
  6. 【請求項6】 基板本体上に、頂面がほぼ平坦な形状の
    複数のバンプが二次元的に配列されたバンプ付基板の検
    査方法であって、 前記バンプ付基板の、少なくとも前記複数のバンプの配
    列された領域を検査面として、該検査面に前記検査光を
    照射するとともに、前記検査面からの前記検査光に基づ
    く反射光を受光部にて受光しつつ、その検査光を前記検
    査面内にて二次元的に走査し、 そのときの受光部の検知出力に基づいて、前記検査面内
    の各位置の高さに関する情報を生成し、 他方、前記受光部の検知出力に基づいて、前記検査面上
    の各位置における前記反射光の輝度情報を生成し、 その生成された反射光輝度情報に基づき、前記検査面内
    における各バンプの頂面の存在領域(以下、バンプ頂面
    存在領域という)を特定し、 そのバンプ頂面存在領域の寸法又は面積と、前記バンプ
    頂面存在領域内の各位置の高さ情報に基づいて生成され
    る対応するバンプの高さに関する情報(以下、バンプ高
    さ情報という)とを用いて、前記対応するバンプの体積
    に関する情報(以下、バンプ体積情報という)を少なく
    とも含んだ検査情報を生成することを特徴とするバンプ
    付基板の検査方法。
  7. 【請求項7】 基板本体上に、頂面がほぼ平坦な形状の
    複数のバンプが二次元的に配列されたバンプ付基板の製
    造方法であって、 前記基板本体上に前記バンプを形成する工程と、 前記バンプ付基板の、少なくとも前記複数のバンプの配
    列された領域を検査面として、該検査面に前記検査光を
    照射するとともに、前記検査面からの前記検査光に基づ
    く反射光を受光部にて受光しつつ、その検査光を前記検
    査面内にて二次元的に走査し、 そのときの受光部の検知出力に基づいて、前記検査面内
    の各位置の高さに関する情報を生成し、 他方、前記受光部の検知出力に基づいて、前記検査面上
    の各位置における前記反射光の輝度情報を生成し、その
    生成された反射光輝度情報に基づき、前記検査面内にお
    ける各バンプの頂面の存在領域(以下、バンプ頂面存在
    領域という)を特定し、 そのバンプ頂面存在領域の寸法又は面積と、前記バンプ
    頂面存在領域内の各位置の高さ情報に基づいて生成され
    る対応するバンプの高さに関する情報(以下、バンプ高
    さ情報という)とを用いて、前記対応するバンプの体積
    を測定し、 該バンプの体積が所定の範囲内にあるバンプ付基板のみ
    を検査・選別する工程と、 を含むことを特徴とするバンプ付基板の製造方法。
JP10555598A 1998-03-31 1998-03-31 バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法 Expired - Lifetime JP2881147B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10555598A JP2881147B1 (ja) 1998-03-31 1998-03-31 バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法
US09/122,891 US6028673A (en) 1998-03-31 1998-07-28 Inspection of solder bumps of bump-attached circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10555598A JP2881147B1 (ja) 1998-03-31 1998-03-31 バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法

Publications (2)

Publication Number Publication Date
JP2881147B1 true JP2881147B1 (ja) 1999-04-12
JPH11287624A JPH11287624A (ja) 1999-10-19

Family

ID=14410812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10555598A Expired - Lifetime JP2881147B1 (ja) 1998-03-31 1998-03-31 バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法

Country Status (1)

Country Link
JP (1) JP2881147B1 (ja)

Also Published As

Publication number Publication date
JPH11287624A (ja) 1999-10-19

Similar Documents

Publication Publication Date Title
US6028673A (en) Inspection of solder bumps of bump-attached circuit board
JP2888829B1 (ja) ランド付基板の検査装置
US6606788B1 (en) Component recognizing method and apparatus
JP3020280B2 (ja) 三角測量法に基づく3次元画像化のための方法およびシステム
JP5421763B2 (ja) 検査装置および検査方法
US5621530A (en) Apparatus and method for verifying the coplanarity of a ball grid array
JP2006136923A (ja) レーザ加工機及びレーザ加工方法
US6118538A (en) Method and apparatus for electronic component lead measurement using light based sensors on a component placement machine
JP2881148B1 (ja) バンプ付基板の検査装置
JP2881146B1 (ja) バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法
JPH09329422A (ja) 高さ測定方法及び装置
JP2881147B1 (ja) バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法
JP3706504B2 (ja) 高さ計測装置
JP2888823B1 (ja) バンプ付基板の検査装置、検査方法及びバンプ付基板の製造方法
JP3926347B2 (ja) 電子部品実装装置
US20040099710A1 (en) Optical ball height measurement of ball grid arrays
JP2877061B2 (ja) コプラナリティ検査装置
JP2000074845A (ja) バンプ検査方法及びバンプ検査装置
JP3949257B2 (ja) 部品認識方法および部品検査、実装方法
JP3124535B2 (ja) 表面実装部品検査装置
JPH10132524A (ja) 基板検査装置
JP3923168B2 (ja) 部品認識方法及び部品実装方法
JP3397098B2 (ja) 導電性ボールの移載方法
JPH0213802A (ja) 回路部品実装状態検査装置
JP3073485B2 (ja) 高さ計測装置及びこれを用いた半導体パッケージの検査装置

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term