JP2876947B2 - マイクロ波発振器 - Google Patents
マイクロ波発振器Info
- Publication number
- JP2876947B2 JP2876947B2 JP5204584A JP20458493A JP2876947B2 JP 2876947 B2 JP2876947 B2 JP 2876947B2 JP 5204584 A JP5204584 A JP 5204584A JP 20458493 A JP20458493 A JP 20458493A JP 2876947 B2 JP2876947 B2 JP 2876947B2
- Authority
- JP
- Japan
- Prior art keywords
- negative resistance
- microwave oscillator
- resistance element
- oscillation
- microstrip line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/18—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
- H03B5/1864—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator
- H03B5/187—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator the active element in the amplifier being a semiconductor device
- H03B5/1876—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B2202/00—Aspects of oscillators relating to reduction of undesired oscillations
- H03B2202/05—Reduction of undesired oscillations through filtering or through special resonator characteristics
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/18—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
- H03B5/1841—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
- H03B5/1847—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
- H03B5/1852—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
Landscapes
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【0001】
【産業上の利用分野】本発明は誘電体共振器を用いたマ
イクロ波発振器に関する。
イクロ波発振器に関する。
【0002】
【従来の技術】従来の誘電体共振器を用いたマイクロ波
発振器を図3を参照して説明する。
発振器を図3を参照して説明する。
【0003】 図3の(A)を参照すると、たとえば、
GaAsFET等よりなる負性抵抗素子1に接続された
特性インピーダンスZ0のマイクロストリップ線路2の
近傍に誘電体共振器3が設けられており、マイクロスト
リップ線路2に磁気的に結合している。マイクロストリ
ップ線路2の一端は終端抵抗4を介して接地されてい
る。終端抵抗4の接地方法としては、図3の(B)に示
すように、発振周波数f0の波長λの1/4の長さを有
する先端開放スタブ5を接続する方法が用いられてい
る。この場合、先端開放スタブ5の入力インピーダンス
が零になるのは発振周波数f0の1/(2n−1)倍
(n=1,2,…)の周波数のときであり、それ以外の
周波数では、マイクロストリップ線路2の一端の無反射
終端条件はくずれてしまう。従って、負性抵抗素子1か
ら終端抵抗4側の反射係数と負性抵抗素子1側の反射係
数とが発振条件を満たすと、不要発振あるいはモードジ
ャンプが発生する可能性があり、マイクロ波の発振が不
安定になる。このようなマイクロ波の発振の不安定を防
止するものとして図3の(C)、(D)に示すマイクロ
波発振器がある。
GaAsFET等よりなる負性抵抗素子1に接続された
特性インピーダンスZ0のマイクロストリップ線路2の
近傍に誘電体共振器3が設けられており、マイクロスト
リップ線路2に磁気的に結合している。マイクロストリ
ップ線路2の一端は終端抵抗4を介して接地されてい
る。終端抵抗4の接地方法としては、図3の(B)に示
すように、発振周波数f0の波長λの1/4の長さを有
する先端開放スタブ5を接続する方法が用いられてい
る。この場合、先端開放スタブ5の入力インピーダンス
が零になるのは発振周波数f0の1/(2n−1)倍
(n=1,2,…)の周波数のときであり、それ以外の
周波数では、マイクロストリップ線路2の一端の無反射
終端条件はくずれてしまう。従って、負性抵抗素子1か
ら終端抵抗4側の反射係数と負性抵抗素子1側の反射係
数とが発振条件を満たすと、不要発振あるいはモードジ
ャンプが発生する可能性があり、マイクロ波の発振が不
安定になる。このようなマイクロ波の発振の不安定を防
止するものとして図3の(C)、(D)に示すマイクロ
波発振器がある。
【0004】図3の(C)においては、先端開放スタブ
5’の長さを不要発振周波数の波長λS の1/4の長さ
にすることにより不要発振を抑える(参照:特開昭64
−16106号公報)。また、図3の(D)において
は、発振周波数f0 の波長λの1/4の長さの先端開放
スタブ5に加えて不要発振周波数の波長λS の1/4の
長さの先端開放スタブ5’の両方を終端抵抗4に接続す
ることにより不要発振をい抑える(参照:特開平3−1
40003号公報)。
5’の長さを不要発振周波数の波長λS の1/4の長さ
にすることにより不要発振を抑える(参照:特開昭64
−16106号公報)。また、図3の(D)において
は、発振周波数f0 の波長λの1/4の長さの先端開放
スタブ5に加えて不要発振周波数の波長λS の1/4の
長さの先端開放スタブ5’の両方を終端抵抗4に接続す
ることにより不要発振をい抑える(参照:特開平3−1
40003号公報)。
【0005】
【発明が解決しようとする課題】上述の図3の(C)、
(D)に示すマイクロ波発振器においては、不要発振周
波数で終端抵抗の接地インピーダンスを零となるように
し、これにより、不要発振を起こさない発振器を構成し
ている。しかしながら、実際に接地インピーダンスが零
となるのは、先端開放スタブの長さで共振する周波数の
みであり、その周波数からわずかでも異なる周波数はイ
ンピーダンスは零にはならない。従って、確実に不要発
振を止めることはできない。
(D)に示すマイクロ波発振器においては、不要発振周
波数で終端抵抗の接地インピーダンスを零となるように
し、これにより、不要発振を起こさない発振器を構成し
ている。しかしながら、実際に接地インピーダンスが零
となるのは、先端開放スタブの長さで共振する周波数の
みであり、その周波数からわずかでも異なる周波数はイ
ンピーダンスは零にはならない。従って、確実に不要発
振を止めることはできない。
【0006】なお、理想的な例として、図3の(A)に
示すごとく、終端抵抗を直接接地することができたとし
ても実際には終端抵抗4の寄生容量成分により全周波数
で無反射終端を実現することはできない。つまり、不要
発振なる現象は負性抵抗素子1側の反射係数と終端抵抗
4側の反射係数とのかね合いで起こるものであるから、
理想的に終端抵抗4を接地できたとしても、負性抵抗素
子1側の反射係数によってはその終端条件が発振条件と
なっている場合もあるからである。
示すごとく、終端抵抗を直接接地することができたとし
ても実際には終端抵抗4の寄生容量成分により全周波数
で無反射終端を実現することはできない。つまり、不要
発振なる現象は負性抵抗素子1側の反射係数と終端抵抗
4側の反射係数とのかね合いで起こるものであるから、
理想的に終端抵抗4を接地できたとしても、負性抵抗素
子1側の反射係数によってはその終端条件が発振条件と
なっている場合もあるからである。
【0007】このようにある特性インピーダンスZ
0 (通常は50Ω付近)で終端していれば不要発振が起
こらないというものではない。従って、図3の(B)、
(C)、(D)に示すごとく、ある特定の周波数のみで
終端している場合にはさらに不要発振の可能性が高くな
る。従って、本発明の目的は不要発振を抑えた安定なマ
イクロ発振器を提供することにある。
0 (通常は50Ω付近)で終端していれば不要発振が起
こらないというものではない。従って、図3の(B)、
(C)、(D)に示すごとく、ある特定の周波数のみで
終端している場合にはさらに不要発振の可能性が高くな
る。従って、本発明の目的は不要発振を抑えた安定なマ
イクロ発振器を提供することにある。
【0008】
【課題を解決するための手段】上述の課題を解決するた
めに本発明においては、マイクロストリップ線路上の、
該マイクロストリップ線路と負性抵抗素子との接続点か
ら不要発振周波数の1/4波長(λS )の(2n−1)
(n=1,2,…)だけ離れた位置にスタブを設けた。
めに本発明においては、マイクロストリップ線路上の、
該マイクロストリップ線路と負性抵抗素子との接続点か
ら不要発振周波数の1/4波長(λS )の(2n−1)
(n=1,2,…)だけ離れた位置にスタブを設けた。
【0009】
【作用】上述の手段によれば、マイクロストリップ線路
上のスタブが終端抵抗から負性抵抗側をみれば終端側を
見たインピータンスが不要発振を起こし易い不要発振周
波数において高いインピータンスとなり、従って、コル
ピッツの発振条件を満たせなくなり、この結果、不要発
振周波数では発振条件を満たすことができなくなる。つ
まり、負性抵抗素子がGaAsFETであれば、そのゲ
ートとソースとの間に誘導性のインピータンス(インダ
クタンス)を付加した型となり、この結果、コルピッツ
の発振条件を満たさなくなり、不要発振が抑えられる。
このように、マイクロストリップ線路上に設けたスタブ
は本来不要発振を起こしやすかった負性抵抗の周波数特
性をもった負性抵抗素子に対して不要周波数での負性抵
抗値を下げることができるのでより安定したマイクロ波
発振器を構成することになる。
上のスタブが終端抵抗から負性抵抗側をみれば終端側を
見たインピータンスが不要発振を起こし易い不要発振周
波数において高いインピータンスとなり、従って、コル
ピッツの発振条件を満たせなくなり、この結果、不要発
振周波数では発振条件を満たすことができなくなる。つ
まり、負性抵抗素子がGaAsFETであれば、そのゲ
ートとソースとの間に誘導性のインピータンス(インダ
クタンス)を付加した型となり、この結果、コルピッツ
の発振条件を満たさなくなり、不要発振が抑えられる。
このように、マイクロストリップ線路上に設けたスタブ
は本来不要発振を起こしやすかった負性抵抗の周波数特
性をもった負性抵抗素子に対して不要周波数での負性抵
抗値を下げることができるのでより安定したマイクロ波
発振器を構成することになる。
【0010】
【実施例】図1は本発明に係るマイクロ波発振器の一実
施例を示す構成図である。図1においては、図3の
(A)の構成要素に対して、特性インピーダンスZ0 に
対して所望の発振周波数f0 以外で負性抵抗が大きくな
っている周波数の波長λS の1/4の長さだけ負性抵抗
素子1との接続点Aから離れた位置に容量性のスタブ6
を付加したものである。これにより、図2に示すように
従来不要発振を起こしやすかった周波数での負性抵抗値
が下がり、その周波数では発振できなくなる。つまり、
従来は、負性抵抗素子側のインピーダンスには触れるこ
となく単に無反射終端の実現を目指していたが、本発明
では負性抵抗素子側のインピーダンスによって終端イン
ピーダンスを意識的にずらし、結果として不要発振を抑
えて、安定なマイクロ波発振器を構成したものである。
なお、負性抵抗素子1として、GaAsFETを用いる
が、バイポーラトランジスタやガンダイオードも使用で
きる。
施例を示す構成図である。図1においては、図3の
(A)の構成要素に対して、特性インピーダンスZ0 に
対して所望の発振周波数f0 以外で負性抵抗が大きくな
っている周波数の波長λS の1/4の長さだけ負性抵抗
素子1との接続点Aから離れた位置に容量性のスタブ6
を付加したものである。これにより、図2に示すように
従来不要発振を起こしやすかった周波数での負性抵抗値
が下がり、その周波数では発振できなくなる。つまり、
従来は、負性抵抗素子側のインピーダンスには触れるこ
となく単に無反射終端の実現を目指していたが、本発明
では負性抵抗素子側のインピーダンスによって終端イン
ピーダンスを意識的にずらし、結果として不要発振を抑
えて、安定なマイクロ波発振器を構成したものである。
なお、負性抵抗素子1として、GaAsFETを用いる
が、バイポーラトランジスタやガンダイオードも使用で
きる。
【0011】
【発明の効果】以上説明したように本発明によれば、不
要周波数での負性抵抗を小さくすることができ不要発振
が起こらない安定したマイクロ波発振器を構成できる。
要周波数での負性抵抗を小さくすることができ不要発振
が起こらない安定したマイクロ波発振器を構成できる。
【図1】本発明に係るマイクロ波発振器の一実施例を示
す構成図である。
す構成図である。
【図2】終端抵抗から見た負性抵抗素子側の反射係数/
周波数特性を示すグラフである。
周波数特性を示すグラフである。
【図3】従来のマイクロ波発振器の示す構成図である。
1…負性抵抗素子 2…マイクロストリップ線路 3…誘電体共振器 4…終端抵抗 5、5’…先端開放スタブ 6…容量性スタブ
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01P 7/10 H03B 5/00 - 5/28
Claims (4)
- 【請求項1】 誘電体共振器(3)と、該誘電体共振器
に磁気結合したマイクロストリップ線路(2)と、該マ
イクロストリップ線路の一端に接続された終端抵抗
(4)と、前記マイクロストリップ線路線路の他端に接
続された負性抵抗素子(1)とを具備するマイクロ波発
振器において、 前記マイクロストリップ線路上の、該マイクロストリッ
プ線路と前記負性抵抗素子との接続点(A)から不要発
振周波数の1/4波長(λS )の(2n−1)(n=
1,2,…)だけ離れた位置に容量性スタブ(6)を設
けたことを特徴とするマイクロ波発振器。 - 【請求項2】 前記負性抵抗素子がGaAsFETであ
る請求項1に記載のマイクロ波発振器。 - 【請求項3】 前記負性抵抗素子がバイポーラトランジ
スタである請求項1に記載のマイクロ波発振器。 - 【請求項4】 前記負性抵抗素子がガンダイオードであ
る請求項1に記載のマイクロ波発振器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5204584A JP2876947B2 (ja) | 1993-07-27 | 1993-07-27 | マイクロ波発振器 |
US08/280,852 US5446419A (en) | 1993-07-27 | 1994-07-26 | Microwave oscillation apparatus capable of suppressing spurious oscillation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5204584A JP2876947B2 (ja) | 1993-07-27 | 1993-07-27 | マイクロ波発振器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07176954A JPH07176954A (ja) | 1995-07-14 |
JP2876947B2 true JP2876947B2 (ja) | 1999-03-31 |
Family
ID=16492890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5204584A Expired - Fee Related JP2876947B2 (ja) | 1993-07-27 | 1993-07-27 | マイクロ波発振器 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5446419A (ja) |
JP (1) | JP2876947B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148933A (ja) * | 1994-11-22 | 1996-06-07 | Murata Mfg Co Ltd | 電圧制御型発振器 |
DE19702261C2 (de) * | 1997-01-23 | 2000-02-03 | Grieshaber Vega Kg | Mikrowellen-Pulsgenerator |
US6380815B1 (en) * | 1997-01-23 | 2002-04-30 | Vega Grieshaber Kg | Microwave pulse generator |
JP3175763B2 (ja) | 1998-10-06 | 2001-06-11 | 日本電気株式会社 | マイクロ波発振器 |
GB0106581D0 (en) * | 2001-03-16 | 2001-05-09 | Marconi Applied Techn Ltd | Microwave oscillator |
CN1942777B (zh) * | 2005-01-28 | 2010-05-19 | 安立股份有限公司 | 雷达振荡器 |
JP2008177748A (ja) * | 2007-01-17 | 2008-07-31 | Oki Electric Ind Co Ltd | 高周波信号検出回路 |
JP5632599B2 (ja) * | 2009-09-07 | 2014-11-26 | キヤノン株式会社 | 発振器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047764B2 (ja) * | 1977-01-21 | 1985-10-23 | ソニー株式会社 | 集積回路化マイクロ波発振器 |
JPS55161403A (en) * | 1979-06-04 | 1980-12-16 | Matsushita Electric Ind Co Ltd | High frequency oscillating circuit |
JPS6416106A (en) * | 1987-07-10 | 1989-01-19 | Murata Manufacturing Co | Microwave oscillator |
JPH03140003A (ja) * | 1989-10-26 | 1991-06-14 | Matsushita Electric Ind Co Ltd | マイクロ波発振器 |
-
1993
- 1993-07-27 JP JP5204584A patent/JP2876947B2/ja not_active Expired - Fee Related
-
1994
- 1994-07-26 US US08/280,852 patent/US5446419A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5446419A (en) | 1995-08-29 |
JPH07176954A (ja) | 1995-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4149127A (en) | Dielectric resonator stabilized micro-strip oscillators | |
JPH0618290B2 (ja) | マイクロ波発振器 | |
JP3175763B2 (ja) | マイクロ波発振器 | |
US4630003A (en) | FET oscillator exhibiting negative resistance due to high impedance at the source of an FET thereof | |
JP2876947B2 (ja) | マイクロ波発振器 | |
JPH0135531B2 (ja) | ||
EP0202652B2 (en) | Microwave oscillator | |
JPS6343001B2 (ja) | ||
US4949053A (en) | Oscillator having feedback isolated from its output | |
JP5451987B2 (ja) | 電圧制御発振器 | |
US5180996A (en) | High frequency oscillator having capacitor and microstrip line output filter | |
JP3173593B2 (ja) | マイクロ波共振回路及びマイクロ波発振器 | |
JP3206543B2 (ja) | ショートスタブ整合回路 | |
US5451905A (en) | Microwave semiconductor device comprising stabilizing means | |
JP2722054B2 (ja) | 増幅器 | |
JP2923851B2 (ja) | マイクロ波・ミリ波発振器 | |
US6172577B1 (en) | Oscillator and oscillation apparatus using the oscillator | |
JPH03140003A (ja) | マイクロ波発振器 | |
JPH0722244B2 (ja) | マイクロ波発振器 | |
US20040222860A1 (en) | Integrated high-frequency mos oscillator | |
KR900009190B1 (ko) | 마이크로파 발진기 | |
JPS6256004A (ja) | マイクロ波発振器 | |
JPH0983246A (ja) | 誘電体共振発振器 | |
JPH0628819Y2 (ja) | マイクロストリップ線路により構成したマイクロ波発振器 | |
EP1235343A2 (en) | Microwave oscillator having improved phase noise of oscillation signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |