JP2846704B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JP2846704B2
JP2846704B2 JP2086766A JP8676690A JP2846704B2 JP 2846704 B2 JP2846704 B2 JP 2846704B2 JP 2086766 A JP2086766 A JP 2086766A JP 8676690 A JP8676690 A JP 8676690A JP 2846704 B2 JP2846704 B2 JP 2846704B2
Authority
JP
Japan
Prior art keywords
thin film
polycrystalline silicon
silicon thin
type
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2086766A
Other languages
Japanese (ja)
Other versions
JPH03284881A (en
Inventor
繁 能口
浩志 岩多
景一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2086766A priority Critical patent/JP2846704B2/en
Publication of JPH03284881A publication Critical patent/JPH03284881A/en
Application granted granted Critical
Publication of JP2846704B2 publication Critical patent/JP2846704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、基板上に多結晶シリコン薄膜を形成した光
電変換素子に関する。
The present invention relates to a photoelectric conversion element in which a polycrystalline silicon thin film is formed on a substrate.

(ロ)従来の技術 太陽電池、センサ等に用いられる半導体薄膜として、
非晶質シリコン薄膜や多結晶シリコン薄膜が広く用いら
れている。多結晶シリコンは、非晶質シリコンに比べて
移動度が1〜2桁程度高く、熱的に安定しており、信頼
性が高いという特性を有している。ところが、多結晶シ
リコンは非晶質シリコンと比較して、形成温度が高く、
また光吸収係数が低いので膜厚を厚くする必要があり、
コスト的には劣っている。
(B) Conventional technology Semiconductor thin films used in solar cells, sensors, etc.
Amorphous silicon thin films and polycrystalline silicon thin films are widely used. Polycrystalline silicon has characteristics of higher mobility than amorphous silicon by about one to two digits, thermal stability, and high reliability. However, polycrystalline silicon has a higher formation temperature than amorphous silicon,
In addition, since the light absorption coefficient is low, it is necessary to increase the film thickness.
Cost is inferior.

また、多結晶シリコン薄膜を基板上に形成する方法が
種々提案されており、例えば、第50回応物学会予稿集p.
567(1989秋)の記事「液相法による太陽電池用多結晶S
i薄膜の成長」に示されているように、単結晶シリコン
及びキャスト多結晶シリコン基板上に20〜30μm厚のn
型多結晶シリコン薄膜を液相成長法により形成し、この
多結晶シリコン薄膜上にプラズマCVD法によるp型微結
晶シリコン薄膜及び透明電極(ITO)を順次形成して、
太陽電池を作成している。
Also, various methods for forming a polycrystalline silicon thin film on a substrate have been proposed, for example, the 50th Proceedings of the Society for Response Science, p.
567 (Autumn 1989) article "Polycrystalline S for solar cells by liquid phase method"
As shown in “Thin Film Growth”, a 20-30 μm thick n is deposited on single crystal silicon and cast polycrystalline silicon substrates.
A polycrystalline silicon thin film is formed by a liquid phase growth method, and a p-type microcrystalline silicon thin film and a transparent electrode (ITO) are sequentially formed on the polycrystalline silicon thin film by a plasma CVD method.
Creating solar cells.

(ハ)発明が解決しようとする課題 ところで、前述した液相成長は、高純度カーボン製ボ
ートのるつぼ内で溶解しているシリコン(Si)と錫(S
n)の表面に基板の表面が接するように配置し、基板表
面に多結晶シリコン薄膜を形成するものである。
(C) Problems to be Solved by the Invention By the way, the above-mentioned liquid phase growth is performed by dissolving silicon (Si) and tin (S) dissolved in a crucible of a high-purity carbon boat.
The substrate is arranged so that the surface of the substrate is in contact with the surface of n), and a polycrystalline silicon thin film is formed on the substrate surface.

従って、第4図に示すように、多結晶シリコン薄膜中
には、1019cm-3程度のSnが不純物として混入する。この
混入したSnはバルク中で1019cm-3程度であり、多結晶シ
リコン薄膜表面では、更に多くのSnが混入し、界面状態
が不安定であった。そのため、この上に直接非晶質又は
微結晶シリコン薄膜を形成すると、界面状態が不安定な
ため、太陽電池特性が悪くなるという欠点があった。
Therefore, as shown in FIG. 4, about 10 19 cm −3 of Sn is mixed into the polycrystalline silicon thin film as an impurity. This mixed Sn was about 10 19 cm −3 in the bulk, and more Sn was mixed on the surface of the polycrystalline silicon thin film, and the interface state was unstable. Therefore, when an amorphous or microcrystalline silicon thin film is directly formed thereon, the interface state is unstable, and there is a disadvantage that the solar cell characteristics deteriorate.

そこで、従来は、不安定な界面状態の影響を少なくす
るため、多結晶シリコン薄膜表面上を全面エッチングし
て、できるだけ不安定な界面を除去し、この上に非晶質
又は微結晶シリコン薄膜を形成して太陽電池特性の向上
を図っていた。
Therefore, conventionally, in order to reduce the influence of the unstable interface state, the entire surface of the polycrystalline silicon thin film is etched to remove the unstable interface as much as possible, and an amorphous or microcrystalline silicon thin film is formed thereon. It was intended to improve the solar cell characteristics.

しかしながら、上述した従来の方法では、多結晶シリ
コン薄膜を形成した後に、全面エッチングを行う必要が
あり、工程が複雑になるという難点があった。
However, in the above-described conventional method, it is necessary to perform the entire surface etching after forming the polycrystalline silicon thin film, and there is a problem that the process becomes complicated.

本発明は、上述した従来の難点に鑑みなされたものに
して、製造が簡単にして、太陽電池としての特性を向上
せしめた光電変換素子を提供することをその課題とす
る。
An object of the present invention is to provide a photoelectric conversion element which has been made in view of the above-described conventional disadvantages, has simple manufacturing, and has improved characteristics as a solar cell.

(ニ)課題を解決するための手段 本発明は、基板上に少なくともシリコンと錫の溶液か
ら液相成長させた錫が混入するn又はp型の多結晶シリ
コン薄膜を有する光電変換素子において、前記多結晶シ
リコン薄膜上に、直接p又はn型の非晶質シリコン錫を
主成分とする半導体薄膜を形成したことを特徴とする。
(D) Means for Solving the Problems The present invention relates to a photoelectric conversion element having an n-type or p-type polycrystalline silicon thin film on a substrate, at least tin mixed in a liquid phase from a solution of silicon and tin is mixed. A semiconductor thin film mainly composed of p or n-type amorphous silicon tin is directly formed on a polycrystalline silicon thin film.

(ホ)作用 本発明は、シリコンの錫の溶液から液相成長させた多
結晶シリコン薄膜上に直接錫が混入する非晶質シリコン
錫(以下、a−SiSnと略記する。)を形成することで、
多結晶シリコン薄膜表面の界面状態に関係なく、太陽電
池特性が向上する。
(E) Function The present invention forms amorphous silicon tin (hereinafter abbreviated as a-SiSn) in which tin is directly mixed on a polycrystalline silicon thin film grown in a liquid phase from a solution of silicon tin. so,
The solar cell characteristics are improved irrespective of the interface state of the polycrystalline silicon thin film surface.

(ヘ)実施例 以下、本発明の実施例につき、図面を参照して説明す
る。
(F) Example Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を示す断面図である。こ
の図において、1はn型の単結晶シリコンあるいは多結
晶シリコンからなる基板であり、この基板1には液相成
長(LPE)法によりn型の多結晶シリコン薄膜2が形成
される。この多結晶シリコン薄膜2中には、前述の第4
図に示すように、錫(Sn)が1019cm-3程度不純物として
混入し、そして表面では更に多くのSnが混入している。
FIG. 1 is a sectional view showing one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a substrate made of n-type single-crystal silicon or polycrystalline silicon. An n-type polycrystalline silicon thin film 2 is formed on the substrate 1 by a liquid phase epitaxy (LPE) method. In the polycrystalline silicon thin film 2, the fourth
As shown in the figure, tin (Sn) is mixed as impurities of about 10 19 cm -3 , and more Sn is mixed in the surface.

3はp型のa−SiSnを主成分とする半導体薄膜であ
り、この多結晶シリコン薄膜2表面に直接プラズマCVD
法により形成される。
Numeral 3 is a semiconductor thin film mainly composed of p-type a-SiSn.
It is formed by a method.

4はITOなどからなる透明電極、5はアルミニウム(A
l)あるいは金(Au)からなる裏面電極である。
4 is a transparent electrode made of ITO or the like, 5 is aluminum (A
l) or a back electrode made of gold (Au).

次に、このような構成からなる本実施例の製造方法に
ついて説明する。
Next, a manufacturing method of the present embodiment having such a configuration will be described.

第2図は、本実施例の製造に用いられる製造装置の概
略模式図である。
FIG. 2 is a schematic diagram of a manufacturing apparatus used for manufacturing the present embodiment.

まず、高純度カーボン製トレイ10上に、比抵抗0.01Ω
cm以下、厚さ400μm程度のn型単結晶シリコンからな
る基板1を保持させる。そして、トレイ10上に保持され
た基板1をLPE室11内に搬入する。次に、LPE室11内の高
純度カーボン製ボート12のるつぼ内で溶解しているSiSn
溶液13表面と基板1の表面が接するように、トレイ10を
停止する。このSiSn溶液13におけるSiソースとしては、
比抵抗5Ωcm以下のn型単結晶シリコン粒が用いられ
る。
First, a specific resistance of 0.01Ω is placed on the high-purity carbon tray 10.
A substrate 1 made of n-type single crystal silicon having a thickness of about 400 μm or less and a thickness of about 400 μm is held. Then, the substrate 1 held on the tray 10 is carried into the LPE chamber 11. Next, the SiSn dissolved in the crucible of the high-purity carbon boat 12 in the LPE chamber 11
The tray 10 is stopped so that the surface of the solution 13 is in contact with the surface of the substrate 1. As the Si source in this SiSn solution 13,
An n-type single crystal silicon grain having a specific resistance of 5 Ωcm or less is used.

続いて、水素1気圧雰囲気中で、るつぼ温度を1000℃
に設定し、基板1をセットした後、毎分1〜2℃の速度
で降温させ、るつぼ温度が900℃まで降温すると基板1
をLPE室11からプラズマCVD室15へ移動させる。このLPE
プロセスにより、基板1上に約50μmのn型多結晶シリ
コン薄膜2が形成される。
Subsequently, the temperature of the crucible was set to 1000 ° C. in an atmosphere of hydrogen at 1 atm.
After the substrate 1 is set, the temperature is lowered at a rate of 1 to 2 ° C./min.
Is moved from the LPE chamber 11 to the plasma CVD chamber 15. This LPE
By the process, an n-type polycrystalline silicon thin film 2 of about 50 μm is formed on the substrate 1.

その後、プラズマCVD室15内の約250℃に加熱された電
極16上でトレイ10を停止する。そして、プラズマCVD法
で多結晶シリコン薄膜2上に膜厚約100Åのp型a−SiS
n:H膜3を形成する。このときの形成条件を第1表に示
す。
After that, the tray 10 is stopped on the electrode 16 heated to about 250 ° C. in the plasma CVD chamber 15. Then, a p-type a-SiS having a thickness of about 100 ° is formed on the polycrystalline silicon thin film 2 by a plasma CVD method.
An n: H film 3 is formed. Table 1 shows the forming conditions at this time.

このように、基板1上に、LPE室11内でn型多結晶シ
リコン薄膜2を形成し、そしてプラズマCVD室15内で、
p型a−SiSnからなる半導体薄膜3を順次形成した素子
を取り出した後、光入射側となるp型a−SiSnからなる
半導体薄膜3上にスパッタ法などによりITO等の厚さ約7
00Åの透明電極4を裏面側に抵抗加熱法等でアルミニウ
ムなどからなる裏面電極5を形成して、本実施例に係る
光電変換素子が得られる。
Thus, the n-type polycrystalline silicon thin film 2 is formed on the substrate 1 in the LPE chamber 11, and is formed in the plasma CVD chamber 15.
After the element on which the semiconductor thin film 3 of p-type a-SiSn is sequentially formed is taken out, the semiconductor thin film 3 of p-type a-SiSn on the light incident side is made to a thickness of about 7
A back electrode 5 made of aluminum or the like is formed on the back surface side of the transparent electrode 4 of 00 ° by a resistance heating method or the like, and the photoelectric conversion element according to this embodiment is obtained.

次に、本発明に係る光電変換素子の特性を評価する上
での比較例として2種の従来の光電変換素子を準備し
た。
Next, two types of conventional photoelectric conversion elements were prepared as comparative examples for evaluating the characteristics of the photoelectric conversion element according to the present invention.

比較例1は、上述した本実施例と同様に基板上にLPE
法によりn型多結晶シリコン薄膜2を形成した後、この
多結晶シリコン薄膜表面に全面エッチングを施し、薄膜
2の表面層を除去する。そして、この薄膜2上に本実施
例と同じ膜厚のp型a−Si薄膜をプラズマCVD法にて形
成したものである。
In Comparative Example 1, the LPE was
After forming the n-type polycrystalline silicon thin film 2 by the method, the entire surface of the polycrystalline silicon thin film is etched to remove the surface layer of the thin film 2. Then, a p-type a-Si thin film having the same thickness as that of the present embodiment is formed on the thin film 2 by a plasma CVD method.

比較例2についても、同様にLPE法により基板上にn
型多結晶シリコン薄膜を形成した後、この薄膜表面に全
面エッチングを施した後、p型の微結晶シリコン薄膜を
形成したものである。
Similarly, in Comparative Example 2, n was formed on the substrate by the LPE method.
A p-type microcrystalline silicon thin film is formed after forming a polycrystalline silicon thin film and etching the entire surface of the thin film.

尚、比較例1及び2の夫々の薄膜形成条件を第2表に
示す。
Table 2 shows the thin film forming conditions of Comparative Examples 1 and 2.

第3図は、本発明の実施例(A)と比較例1(B)、
比較例2(C)との収集効率スペクトルを示す特性図で
ある。
FIG. 3 shows Example (A) of the present invention and Comparative Example 1 (B),
It is a characteristic view which shows the collection efficiency spectrum with the comparative example 2 (C).

第3図から明らかなように、本発明(A)において
は、比較例1(B)及び2(C)に比して、収集効率が
向上していることが判る。
As is clear from FIG. 3, it can be seen that in the present invention (A), the collection efficiency is improved as compared with Comparative Examples 1 (B) and 2 (C).

次に、基準光源(AM)1.5、100mW/cm2照射下におい
て、上述した本実施例と比較例1及び2の各セル特性を
測定した結果を第3表に示す。
Next, Table 3 shows the results obtained by measuring the cell characteristics of the above-described Example and Comparative Examples 1 and 2 under irradiation with a reference light source (AM) of 1.5 and 100 mW / cm 2 .

第3表より明らかなように、本発明に係る実施例にお
いては、比較例1及び2に比して特性が向上している。
As is clear from Table 3, the characteristics of the examples according to the present invention are improved as compared with Comparative Examples 1 and 2.

ところで、本発明は、LPE法により形成した多結晶シ
リコン薄膜表面において、エッチングを施していないの
で、界面状態が不安定であるにもかかわらず、その上に
直接a−SiSn薄膜を形成することで、接合界面付近の再
結合損が理由は定かではないが減少し、接合の浅い部分
の収集効率が向上したため特性が向上したと考えられ
る。
By the way, according to the present invention, since the surface of the polycrystalline silicon thin film formed by the LPE method is not etched, the a-SiSn thin film is formed directly on the surface even though the interface state is unstable. It is not clear why the recombination loss near the junction interface is reduced, but it is considered that the characteristics are improved because the collection efficiency of the shallow portion of the junction is improved.

(ト)発明の効果 以上説明したように、本発明によれば少なくともシリ
コンと錫の溶液からLPE法により形成した多結晶シリコ
ン薄膜表面に関係なく、太陽電池としての特性が向上す
る。しかも、多結晶シリコン薄膜表面に全面エッチング
を施す必要がないので、製造工程も簡略化できる。
(G) Effects of the Invention As described above, according to the present invention, the characteristics as a solar cell are improved at least irrespective of the surface of the polycrystalline silicon thin film formed by the LPE method from a solution of silicon and tin. In addition, since it is not necessary to etch the entire surface of the polycrystalline silicon thin film, the manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明に係る光電変換素子の製造に用いられる製造装置を示
す概略模式図、第3図は本発明と比較例との収集効率ス
ペクトルの特性図である。第4図はLPE法による多結晶
シリコン薄膜中に含有される錫(Sn)及び炭素(C)の
量を示す測定図である。 1……基板、2……多結晶シリコン薄膜、 3……半導体薄膜(a−SiSn)、4……透明電極、 5……裏面電極。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a schematic diagram showing a manufacturing apparatus used for manufacturing a photoelectric conversion element according to the present invention, and FIG. It is a characteristic diagram of a collection efficiency spectrum. FIG. 4 is a measurement diagram showing the amounts of tin (Sn) and carbon (C) contained in a polycrystalline silicon thin film by the LPE method. DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Polycrystalline silicon thin film, 3 ... Semiconductor thin film (a-SiSn), 4 ... Transparent electrode, 5 ... Back electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−110776(JP,A) 特開 昭62−48928(JP,A) 特開 昭54−81093(JP,A) 特開 昭62−92380(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04,31/10──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-110776 (JP, A) JP-A-62-48928 (JP, A) JP-A-54-81093 (JP, A) JP-A-62 92380 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 31/04, 31/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に少なくともシリコンと錫の溶液か
ら液相成長させた錫が混入するn又はp型の多結晶シリ
コン薄膜を有する光電変換素子において、前記多結晶シ
リコン薄膜上に、直接p又はn型の非晶質シリコン錫を
主成分とする半導体薄膜を形成したことを特徴とする光
電変換素子。
1. A photoelectric conversion device having an n-type or p-type polycrystalline silicon thin film mixed with tin grown at least from a solution of silicon and tin on a substrate, wherein p-type polycrystalline silicon thin film is directly formed on the polycrystalline silicon thin film. Alternatively, a photoelectric conversion element in which a semiconductor thin film containing n-type amorphous silicon tin as a main component is formed.
JP2086766A 1990-03-30 1990-03-30 Photoelectric conversion element Expired - Fee Related JP2846704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086766A JP2846704B2 (en) 1990-03-30 1990-03-30 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086766A JP2846704B2 (en) 1990-03-30 1990-03-30 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH03284881A JPH03284881A (en) 1991-12-16
JP2846704B2 true JP2846704B2 (en) 1999-01-13

Family

ID=13895872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086766A Expired - Fee Related JP2846704B2 (en) 1990-03-30 1990-03-30 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2846704B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120048371A1 (en) * 2010-08-25 2012-03-01 Wonseok Choi Solar cell and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299677A (en) * 1992-04-24 1993-11-12 Fuji Electric Co Ltd Solar battery and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120048371A1 (en) * 2010-08-25 2012-03-01 Wonseok Choi Solar cell and method for manufacturing the same
US9985162B2 (en) * 2010-08-25 2018-05-29 Lg Electronics Inc. Solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
JPH03284881A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
Fischer et al. Low-cost solar cells based on large-area unconventional silicon
JPH04245683A (en) Manufacture of solar cell
JP3158027B2 (en) Solar cell and method of manufacturing the same
JP2846704B2 (en) Photoelectric conversion element
JPH0864851A (en) Photovoltaic element and fabrication thereof
Slaoui et al. Crystalline silicon thin films: A promising approach for photovoltaics?
JP3197673B2 (en) Photovoltaic device
JPH10275922A (en) Optoelectric conversion device
JP4614655B2 (en) Method for manufacturing photovoltaic device
JP3197674B2 (en) Photovoltaic device
JPS62209871A (en) Manufacture of photovoltaic device
JP2872930B2 (en) Method for manufacturing photovoltaic element
JPH09181343A (en) Photoelectric conversion device
JP3623642B2 (en) Method for manufacturing photoelectric conversion device
Wagner et al. 15.9% efficiency for Si thin film concentrator solar cell grown by LPE
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JP3652056B2 (en) Method for manufacturing photoelectric conversion device
JP3094730B2 (en) Solar cell element
JP2002343991A (en) Non-single crystal solar battery
JP3766248B2 (en) Manufacturing method of solar cell module
JPH02306670A (en) Photovoltaic device
JP2911291B2 (en) Method for manufacturing semiconductor device
JP3474891B2 (en) Method for manufacturing photovoltaic device
JPS5929476A (en) Semiconductor device and method of producing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees