JPH02306670A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH02306670A
JPH02306670A JP1127372A JP12737289A JPH02306670A JP H02306670 A JPH02306670 A JP H02306670A JP 1127372 A JP1127372 A JP 1127372A JP 12737289 A JP12737289 A JP 12737289A JP H02306670 A JPH02306670 A JP H02306670A
Authority
JP
Japan
Prior art keywords
layer
type
light
wavelength side
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1127372A
Other languages
Japanese (ja)
Inventor
Masaaki Kameda
亀田 正明
Takao Matsuyama
隆夫 松山
Isao Ogura
功 小椋
Kenichiro Wakizaka
健一郎 脇坂
Tsugufumi Matsuoka
松岡 継文
Shinya Tsuda
津田 信哉
Takashi Shibuya
澁谷 尚
Michitoshi Onishi
大西 三千年
Yasuo Kishi
岸 靖雄
Shoichi Nakano
中野 昭一
Yukinori Kuwano
桑野 幸徳
Seiji Ohara
大原 省爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1127372A priority Critical patent/JPH02306670A/en
Publication of JPH02306670A publication Critical patent/JPH02306670A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To extend light sensitivity to the side of a long wavelength and to improve characteristics by providing a first layer made of N-type or P-type polycrystalline semiconductor, and a second layer made of P-type or N-type amorphous semiconductor via hetero junction to the first layer. CONSTITUTION:A first layer 2 made of N-type or P-type polycrystalline semiconductor, and a second layer 3 made of a P-type or N-type amorphous semiconductor via hetero junction to the first layer are provided. That is, since the polycrystalline silicon has light sensitivity to longer wavelength side than that of the amorphous semiconductor, the light of the short wavelength side is mainly absorbed by the layer 3, and the light of the long wavelength side is mainly absorbed by the layer 2. Thus, the light sensitivity of a device can be extended to the long wavelength side, thereby increasing a photocurrent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池などの光起電力装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to photovoltaic devices such as solar cells.

〔従来の技術〕[Conventional technology]

従来、太陽電池などの光起電力装置は、主としてアモル
ファスシリコン(以下a−3iという)を母材としてお
り、その構成は例えば特公昭61−115854号公報
()101L 31104)に記載されているように。
Conventionally, photovoltaic devices such as solar cells have mainly used amorphous silicon (hereinafter referred to as a-3i) as a base material, and the structure thereof is, for example, as described in Japanese Patent Publication No. 115854/1983 (101L 31104). To.

ガラス等の透光性基板上に透明電極、a−3iからなる
p、i、n層及び金属蒸着膜等からなる裏°面′dlL
極が順次積層されている。このとき、光はp層備即ち透
光性基板から入射する。
A transparent electrode is formed on a transparent substrate such as glass, p, i, and n layers made of a-3i, and a back surface made of a metal vapor-deposited film, etc.
The poles are stacked one after the other. At this time, light enters from the p layer, that is, the transparent substrate.

また、他にアモルファスシリコンカーパイ)−カらなる
p層にa−3i:Hからなるi層及びnmを)順次積層
することなども考えられている。
Another idea is to sequentially stack an i-layer made of a-3i:H and a p-layer made of amorphous silicon (nm) on an a-3i:H p-layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のようなa−5ift母材とするpin構造の光起
電力装置の場合、感応波長はせいぜい800nmまでで
あり、それ以上長波長側にはほとんど感度を有しないた
め、光起電力装置の特性の向上を図ることができないと
いう問題、へがある。
In the case of a conventional pin-structured photovoltaic device using an a-5ift base material, the sensitive wavelength is at most 800 nm, and there is almost no sensitivity to longer wavelengths, so the characteristics of the photovoltaic device There is a problem that it is not possible to improve the quality of the products.

また、a−5iを母材とするn層は高抵抗で、電極さし
てそのまま使用することができないため、このn層上に
裏面電極を形成する必要がある。
Further, since the n-layer made of a-5i as a base material has a high resistance and cannot be used as an electrode as it is, it is necessary to form a back electrode on this n-layer.

本発明は、前記の点に留意してなされたものであり、光
感度を長波長側に拡強し、特性の向上を図ると共に、従
来のような裏面電極を不要にすることを目的とする。
The present invention has been made with the above points in mind, and aims to enhance photosensitivity toward longer wavelengths, improve characteristics, and eliminate the need for the conventional back electrode.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために2本発明ではn捜又はp型の
多結晶半導体からなる第1の層と、前記第lの層にヘテ
ロ接合されたp型又はn型のアモルファス半導体からな
る第2の層とを備えている。
In order to achieve the above object, the present invention includes a first layer made of an n-type or p-type polycrystalline semiconductor, and a second layer made of a p-type or n-type amorphous semiconductor heterojunctioned to the l-th layer. It has a layer of

〔作 用〕[For production]

以上のような構成において、多結晶半導体がアモルファ
ス半導体よシも長波長側まで光感度を有しているため、
短波長側の光は主として第2の層で吸収され、長波長側
の光は主として第1の層で吸収され、従来よりも光起電
力装置の光感度が長波長側に拡張される。
In the above configuration, polycrystalline semiconductors have photosensitivity to longer wavelengths than amorphous semiconductors, so
Light on the short wavelength side is mainly absorbed in the second layer, and light on the long wavelength side is mainly absorbed in the first layer, so that the photosensitivity of the photovoltaic device is extended to the long wavelength side compared to the conventional one.

また、多結晶半導体が低抵抗であるため、第1の層を光
電流取出用の電極として用いることが可能になり、従来
のように裏面電極を設ける必要がない。
Furthermore, since the polycrystalline semiconductor has low resistance, the first layer can be used as an electrode for extracting photocurrent, and there is no need to provide a back electrode as in the conventional case.

〔実施例〕〔Example〕

実施例について図面を参照して説明す・る。 Examples will be described with reference to the drawings.

第1図において、(1)はガラス等η為らなる透光性基
板、(2)は基板(1)上に形成されたn型の多結晶半
導体である多結晶シリコン(以下poly−8iという
)からなる第1の層、(3)は第1の層(2)にヘテロ
接合されたp型のアモルファス半導体であるa−5i:
Hからなる第2の層、(4)はショットキ接合用電極で
あり、金(Au)或いはITO(Indium Tin
 0xcide)からなり、 Auの場合には基板(1
)側から、ITOの場合にはこの電IM(4)側から光
が入射する。
In Figure 1, (1) is a transparent substrate made of η such as glass, and (2) is polycrystalline silicon (hereinafter referred to as poly-8i), which is an n-type polycrystalline semiconductor formed on the substrate (1). ), (3) is a p-type amorphous semiconductor heterojunctioned to the first layer (2) a-5i:
The second layer (4) made of H is an electrode for Schottky junction, and is made of gold (Au) or ITO (Indium Tin).
In the case of Au, the substrate (1
) side, or in the case of ITO, from this electric IM (4) side.

なお、(5)は第1の層(2)及び電極(4)に設けら
れたリード接続部である。
Note that (5) is a lead connection portion provided on the first layer (2) and the electrode (4).

このとき、第1の層(2)はプラズマCVD法により基
板(1)上に形成したn型a−8iから固相成長させる
ことによって形成する。
At this time, the first layer (2) is formed by solid phase growth from n-type a-8i formed on the substrate (1) by plasma CVD.

ところで、 poly−8iの第1のN(2)の固相成
長温度とシート抵抗及び移動度との関係を調べたところ
、それぞれ第2図及び第3図に示すようになり、第2図
から、固相成長温度800℃でシート抵抗は約40Ω/
口と最小になり、第3図から、内相成長温度700℃で
移動度は約40 CI/I/v−sと最大となる。
By the way, when we investigated the relationship between the solid phase growth temperature of the first N(2) of poly-8i, the sheet resistance, and the mobility, the results were shown in Figures 2 and 3, respectively, and from Figure 2, , the sheet resistance is approximately 40Ω/at a solid phase growth temperature of 800°C.
From FIG. 3, the mobility reaches a maximum of about 40 CI/I/v-s at an internal phase growth temperature of 700°C.

従って、第1の層(2)の固相成長温度の最適範囲は7
00〜800℃と言えるが、第1の層(2)の光吸収を
有効に利用して発電層として活用するには、移動度が最
大となる700℃で固相成長させるのがよく。
Therefore, the optimal range of solid phase growth temperature for the first layer (2) is 7
00 to 800°C, but in order to effectively utilize the light absorption of the first layer (2) and utilize it as a power generation layer, solid phase growth is preferably performed at 700°C, where the mobility is maximum.

充電流取出用電極としてシート抵抗を小さくするには8
00℃で固相成長させるのがよい。
To reduce the sheet resistance as a charge flow extraction electrode 8
It is preferable to perform solid phase growth at 00°C.

また、第1の層(2)の形成を2回に分け、基板(1)
に近い側を800℃で固相成長させ、その上層 を70
0℃で固相成長させることにより、第1の層(2)を発
電層及び電極として効果的に活用することが可能となる
In addition, the formation of the first layer (2) is divided into two steps, and the first layer (2) is formed on the substrate (1).
The side closest to
By performing solid phase growth at 0° C., it becomes possible to effectively utilize the first layer (2) as a power generation layer and an electrode.

つぎに、n型poly−8iとa−5i:hとの光吸収
係数の測定を行ったところ第4図に示すようになり。
Next, the optical absorption coefficients of n-type poly-8i and a-5i:h were measured, and the results were as shown in FIG.

同図中の実線はn型poly−3i 、破線はa−3i
:Hを示し、同図から800〜IQQQ nmの長波長
側では、n型poly−5i (D光吸収係数がa−5
i:Hより1桁以上大きくなっており、このことから8
00 nmまでの短波長側の光は主としてp型a−3i
:Hからなる第2の層(3)によって吸収され、gQQ
nmより長波長側の光は主としてn型poly −S 
iからなる第1の層(2)によって吸収されることがわ
かる。
The solid line in the figure is n-type poly-3i, and the broken line is a-3i.
:H, and from the same figure, on the long wavelength side of 800 to IQQQ nm, n-type poly-5i (D light absorption coefficient is a-5
i: is more than one digit larger than H, and from this, 8
Light on the short wavelength side up to 00 nm is mainly p-type a-3i.
Absorbed by the second layer (3) consisting of :H, gQQ
Light with wavelengths longer than nm is mainly n-type poly-S
It can be seen that it is absorbed by the first layer (2) consisting of i.

さらに、第1図に示す構成の光起電力装置Iと従来の透
明電極/ pin層/層面裏面電極構造起電力装置■の
収集効率の測定比較を行ったところ、第5図に示すよう
になった。
Furthermore, we compared the collection efficiency of the photovoltaic device I with the configuration shown in Figure 1 and the conventional transparent electrode/pin layer/layer back electrode structure photovoltaic device ■, and the results were as shown in Figure 5. Ta.

なお、第1の層(2)の固相成長条件は700 ’C、
100時間、ドーピング量はPHa/SiH4〜8X1
0−2 であり、このときの膜厚は10μm、シート抵
抗は20Ω/口。
Note that the solid phase growth conditions for the first layer (2) are 700'C,
100 hours, doping amount is PHa/SiH4~8X1
0-2, the film thickness at this time was 10 μm, and the sheet resistance was 20 Ω/hole.

移動度は100cd/V−s  である。The mobility is 100 cd/Vs.

そして、第5図中の実線は光起電力装置1.破線は光起
電力装置■を示しており、同図から、光起電力装置lは
800 nm以上の長波長側において高い収集効率を有
していることがわかり、光電流が従来よりも大きくなり
、光起電力装置の特性を大幅に向上することが可能にな
る。
The solid line in FIG. 5 indicates the photovoltaic device 1. The broken line indicates the photovoltaic device ■, and from the same figure, it can be seen that the photovoltaic device I has a high collection efficiency on the long wavelength side of 800 nm or more, and the photocurrent is larger than the conventional one. , it becomes possible to significantly improve the characteristics of the photovoltaic device.

なお、前記実施例ではn型poly−3iとp型a−3
i:Hのへテロ接合の場合について説明したが、p型p
oly−3iとn型a−3i:Hのへテロ捩合としても
よいのは勿論である。
In addition, in the above embodiment, n-type poly-3i and p-type a-3
The case of i:H heterojunction was explained, but p-type p
Of course, it may be a heterozygous combination of oly-3i and n-type a-3i:H.

また、多結晶及びアモルファス半導体として前記したS
iに限るものではない。
In addition, the above-mentioned S as a polycrystalline and amorphous semiconductor
It is not limited to i.

〔発明の効果〕〔Effect of the invention〕

本発明は1以上説明したように構成されているため、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it achieves the effects described below.

短波長側の光は主としてアモルファス半導体からなる第
2の層で吸収され、長波長側の光は主として多結晶半導
体からなる第1の層で吸収される念め、従来よりも装置
の光感度を長波長側に拡張することができ、光電流を従
来より飛躍的に大、きくすることが可能になり、効率の
極めて高い光起電力装置を得ることができる。
Light at shorter wavelengths is mainly absorbed by the second layer made of an amorphous semiconductor, and light at longer wavelengths is mainly absorbed by the first layer made of polycrystalline semiconductors, so the light sensitivity of the device has been lowered than before. It can be extended to longer wavelengths, the photocurrent can be made dramatically larger and louder than before, and a photovoltaic device with extremely high efficiency can be obtained.

また、多結晶半導体が低抵抗であるため、第1の層を光
市流取出用の電極として用いることが可能になり2従来
のように裏面電極を設ける必要がなく、コストを低減す
ることができ、しかも信頼性の向上を図ることができる
In addition, since polycrystalline semiconductors have low resistance, it is possible to use the first layer as an electrode for extracting light commercially.2 There is no need to provide a back electrode as in the conventional method, and costs can be reduced. Moreover, reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は1本発明の光起電力装置の1実施例を示し、第1
図は断面図、第2図及び第3図はそれぞれ第1の層の固
相成長温度とシート抵抗及び移動度との関係図、第4図
は光吸収係数スペクトルを示す図、第5図は収集効率ス
ペクトルを示す図である。 (2)・・第1の層、(3)・・・第2の層。
The drawings show one embodiment of the photovoltaic device of the present invention, and the first
The figure is a cross-sectional view, Figures 2 and 3 are relationship diagrams of the solid phase growth temperature, sheet resistance, and mobility of the first layer, respectively, Figure 4 is a diagram showing the optical absorption coefficient spectrum, and Figure 5 is a diagram showing the relationship between the solid phase growth temperature and sheet resistance and mobility of the first layer. It is a figure showing a collection efficiency spectrum. (2)...first layer, (3)...second layer.

Claims (1)

【特許請求の範囲】[Claims] (1)n型又はp型の多結晶半導体からなる第1の層と
、前記第1の層にヘテロ接合されたp型又はn型のアモ
ルファス半導体からなる第2の層とを備えたことを特徴
とする光起電力装置。
(1) A first layer made of an n-type or p-type polycrystalline semiconductor, and a second layer made of a p-type or n-type amorphous semiconductor heterojunctioned to the first layer. Features of photovoltaic device.
JP1127372A 1989-05-20 1989-05-20 Photovoltaic device Pending JPH02306670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1127372A JPH02306670A (en) 1989-05-20 1989-05-20 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127372A JPH02306670A (en) 1989-05-20 1989-05-20 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPH02306670A true JPH02306670A (en) 1990-12-20

Family

ID=14958349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127372A Pending JPH02306670A (en) 1989-05-20 1989-05-20 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH02306670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518609A (en) * 2007-02-08 2010-05-27 ウーシー・サンテック・パワー・カンパニー・リミテッド Hybrid silicon solar cell and method of manufacturing the hybrid silicon solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5681981A (en) * 1979-09-21 1981-07-04 Messerschmitt Boelkow Blohm Semiconductor forming element for converting light to electric energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5681981A (en) * 1979-09-21 1981-07-04 Messerschmitt Boelkow Blohm Semiconductor forming element for converting light to electric energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518609A (en) * 2007-02-08 2010-05-27 ウーシー・サンテック・パワー・カンパニー・リミテッド Hybrid silicon solar cell and method of manufacturing the hybrid silicon solar cell

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
US4496788A (en) Photovoltaic device
US6548751B2 (en) Thin film flexible solar cell
US20190131472A1 (en) Solar cell
JPH04130671A (en) Photovoltaic device
Kimball et al. Mg doping and alloying in Zn 3 P 2 heterojunction solar cells
JPH05102504A (en) Photovoltaic element
JP4243046B2 (en) Photovoltaic element
JPH02306670A (en) Photovoltaic device
JPH1012903A (en) Photoelectric transducer
JPH0424878B2 (en)
JP2846704B2 (en) Photoelectric conversion element
JP3197673B2 (en) Photovoltaic device
JPS62209871A (en) Manufacture of photovoltaic device
JP3197674B2 (en) Photovoltaic device
JPH09181343A (en) Photoelectric conversion device
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP4253966B2 (en) Amorphous thin film solar cell
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JP4124309B2 (en) Photovoltaic device manufacturing method
JP3143392B2 (en) Stacked solar cell
JP2869178B2 (en) Photovoltaic device
JPS618979A (en) Manufacture of photovoltaic device
JP2884171B2 (en) Amorphous solar cell
JP3016950B2 (en) Method for manufacturing photovoltaic device