JPH04130671A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH04130671A
JPH04130671A JP2252354A JP25235490A JPH04130671A JP H04130671 A JPH04130671 A JP H04130671A JP 2252354 A JP2252354 A JP 2252354A JP 25235490 A JP25235490 A JP 25235490A JP H04130671 A JPH04130671 A JP H04130671A
Authority
JP
Japan
Prior art keywords
single crystal
crystal semiconductor
photovoltaic device
semiconductor
intrinsic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2252354A
Other languages
Japanese (ja)
Other versions
JPH0795603B2 (en
Inventor
Shigeru Noguchi
能口 繁
Hiroshi Iwata
岩多 浩志
Keiichi Sano
佐野 景一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2252354A priority Critical patent/JPH0795603B2/en
Priority to US07/757,250 priority patent/US5213628A/en
Publication of JPH04130671A publication Critical patent/JPH04130671A/en
Publication of JPH0795603B2 publication Critical patent/JPH0795603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce interfacial level by providing an intrinsic non-single crystal semiconductor having a film thickness of 250Angstrom or less between both semiconductors in a photovoltaic device which is formed by sequentially stacking a single crystal semiconductor and non-single crystal semiconductor which have mutually opposed conductivity types. CONSTITUTION:It becomes possible that recoupling of light generating carrier is reduced and the number of light generating carriers which can be extracted to the outside of a photovoltaic device can be increased by providing an intrinsic non-single crystal semiconductor 2 having a film thickness of 250Angstrom or less between an N-type single crystal semiconductor 1 and a P-type non-single crystal semiconductor 3. Namely, many localized levels exist in a band gap of a conductive non-single crystal semiconductor and these localized levels promote generation of interfacial level in the case of forming semiconductor junction. Therefore, elimination of light generating carrier by recoupling can be suppressed by providing an intrinsic non-single crystal semiconductor 2 having good film quality between a single crystal semiconductor 1 and a non-single crystal semiconductor 3.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、太陽電池や光センサ等の光起電力装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to photovoltaic devices such as solar cells and optical sensors.

(ロ) 従来の技術 一般に、光起電力装置は、発電層として用いられる半導
体の種類により、単結晶系、非単結晶系さらには多結晶
系などに分類される この中で、ここ数年、活発な研究開発がなされたのが、
非単結晶系からなる光起電力装置である。その理由とし
て、従来の単結晶系のものど比較して、非単結晶系は大
面積の形成が容易であり、かつその製造工程に要するエ
ネルギーが小さくてすむことなどから低コスト化が期待
できたためである。
(b) Conventional technology In general, photovoltaic devices are classified into single crystal systems, non-single crystal systems, and polycrystal systems, depending on the type of semiconductor used as the power generation layer. Active research and development has been carried out on
This is a photovoltaic device made of a non-single crystal system. The reason for this is that compared to conventional single-crystal systems, non-single-crystal systems are easier to form over large areas, and the manufacturing process requires less energy, so lower costs can be expected. This is because of this.

然し乍ら、これまで多くの研究成果を得たにも拘らず、
その性能面では今だ単結晶系の光起電力装置には及んで
いない。
However, despite the many research results obtained so far,
In terms of performance, it still cannot match single-crystal photovoltaic devices.

そこで、近年、光起電力装置の開発の新たな試みとして
、非単結晶系半導体と多結晶系半導体とを適当に組み合
わせて半導体接合を形成させることにより、それぞれの
物性が持つ長所を活かすことで、より高い光電変換効率
を得る研究が進められている。
Therefore, in recent years, a new attempt in the development of photovoltaic devices has been made by appropriately combining non-single-crystalline semiconductors and polycrystalline semiconductors to form semiconductor junctions, making use of the advantages of the physical properties of each. Research is underway to obtain higher photoelectric conversion efficiency.

(ハ)発明が解決しようとする課題 然し乍ら、通常前記各結晶系の半導体を単に接触させる
だけでは、良好な半導体接合を形成することはできない
。例えば、互いに逆導電型の単結晶半導体と非単結晶半
導体とを直接接触させ、pn接合を形成したとしても、
光起電力装置として十分な光電変換効率を得ることはで
きない。
(c) Problems to be Solved by the Invention However, it is generally not possible to form a good semiconductor junction simply by bringing the semiconductors of each of the crystal systems into contact with each other. For example, even if a single crystal semiconductor and a non-single crystal semiconductor of opposite conductivity types are brought into direct contact with each other to form a pn junction,
It is not possible to obtain sufficient photoelectric conversion efficiency as a photovoltaic device.

これは、光照射により発生した半導体中の光生成キャリ
アの多くが前記pn接合界面での再結合により失われて
しまい、前記光生成キャリアを外部に取り出せないため
である。
This is because most of the photogenerated carriers in the semiconductor generated by light irradiation are lost due to recombination at the pn junction interface, and the photogenerated carriers cannot be extracted to the outside.

かかる再結合の原因は、前記非単結晶半導体の局在準位
によるものと考えられる。
The cause of such recombination is thought to be due to localized levels of the non-single crystal semiconductor.

即ち、非単結晶半導体では、一般に導電型決定不純物を
ドーピングすることにより、その膜質は著しく劣化する
。この影響はバンドギャップ内の局在準位の増加として
現れる。そして、前記局在準位は、前記pn接合界面に
界面準位を生成するように働き掛け、結果として前記光
キャリアを再結合させることになる。
That is, in general, in a non-single crystal semiconductor, the film quality is significantly deteriorated by doping with a conductivity type determining impurity. This effect appears as an increase in localized levels within the bandgap. Then, the localized level acts to generate an interface level at the pn junction interface, and as a result, the photocarriers are recombined.

本発明の目的とするところは、かかる事情に鑑み前記接
合界面における光生成キャリアの再結合を低減する光起
電力装置を提供することにある。
In view of the above circumstances, an object of the present invention is to provide a photovoltaic device that reduces recombination of photogenerated carriers at the junction interface.

(ニ)課題を解決するための手段 本発明光起電力装置の特徴とするところは、互いに逆導
電型の関係を有する単結晶半導体と非単結晶半導体とが
積層されてなる光起電力装置に於て、前記両半導体間に
、250Å以下の膜厚を有する真性非単結晶半導体を介
在させたことにある。
(d) Means for Solving the Problems The photovoltaic device of the present invention is characterized by a photovoltaic device in which a single-crystal semiconductor and a non-single-crystal semiconductor having opposite conductivity types are laminated. In this case, an intrinsic non-single crystal semiconductor having a film thickness of 250 Å or less is interposed between the two semiconductors.

(ホ)作用 逆導電型の関係を有する前記単結晶半導体と前記非単結
晶半導体との間に250Å以下の膜厚を有する真性非単
結晶半導体を介在させることにより、光生成キャリアの
再結合が減少し、光起電力装置の外部に取り出しうる光
生成キャリア数を増加させることが可能となる。
(e) By interposing an intrinsic non-single-crystal semiconductor having a film thickness of 250 Å or less between the single-crystal semiconductor and the non-single-crystal semiconductor that have a relationship of opposite conductivity types, recombination of photogenerated carriers is prevented. It becomes possible to increase the number of photogenerated carriers that can be taken out of the photovoltaic device.

即ち、前述の如く導電性非単結晶半導体には、そのバン
ドギャップ中に多数の局在準位が存在し、該局在準位は
、半導体接合を形成した場合界面準位を生成するように
働き掛ける。
That is, as mentioned above, a conductive non-single crystal semiconductor has many localized levels within its bandgap, and these localized levels generate interface levels when a semiconductor junction is formed. Encourage.

そこで、良好な膜質を有する真性非単結晶半導体を前記
単結晶半導体と前記非単結晶半導体との間に介在させる
ことにより、光生成キャリアの再結合による消滅を抑制
することが可能となる。
Therefore, by interposing an intrinsic non-single-crystal semiconductor having good film quality between the single-crystal semiconductor and the non-single-crystal semiconductor, it becomes possible to suppress the extinction of photogenerated carriers due to recombination.

又、前記真性非単結晶半導体は、前記導電性非単結晶半
導体と比較して、膜質の面で優れているものの、単結晶
半導体と比較した場合、まだ十分ではない。
Further, although the intrinsic non-single crystal semiconductor is superior in terms of film quality compared to the conductive non-single crystal semiconductor, it is still not sufficient when compared to the single crystal semiconductor.

従って、前記導電性非単結晶半導体の膜厚が、あまり厚
くなると、当該光起電力装置の特性の劣化を引き起こす
ことになる。
Therefore, if the film thickness of the conductive non-single crystal semiconductor becomes too thick, the characteristics of the photovoltaic device will deteriorate.

そこで、本発明では、前記真性非単結晶半導体の膜厚を
250Å以下とすることにより、該半導体の膜厚を大き
くした場合に発生する特性劣化を抑制しつつ、前記界面
準位の低減化を実現させている。
Therefore, in the present invention, by setting the film thickness of the intrinsic non-single crystal semiconductor to 250 Å or less, the interface states can be reduced while suppressing the characteristic deterioration that occurs when the film thickness of the semiconductor is increased. We are making it happen.

(へ) 実施例 wi1図は、本発明光起電力装置の一実施例を示す素子
構造図である。
(f) Example wi1 FIG. 1 is an element structure diagram showing an example of the photovoltaic device of the present invention.

(1)はn型単結晶シリコン基板からなる単結晶半導体
、(2)は本発明の特徴である真性非単結晶半導体で、
真性非晶質シリコンからなり、(3)は前記n型単結晶
シリコン基板と逆導電型となる非単結晶半導体でp型非
晶質シリコン、(4)はn型単結晶シリコン基板(1)
とコンタクトするアルミニュウムなどの電極、(5)は
透明導電膜である。
(1) is a single crystal semiconductor made of an n-type single crystal silicon substrate, and (2) is an intrinsic non-single crystal semiconductor that is a feature of the present invention.
(3) is a non-single-crystal semiconductor having a conductivity type opposite to that of the n-type single-crystal silicon substrate, which is p-type amorphous silicon; (4) is an n-type single-crystal silicon substrate (1);
The electrode (5) made of aluminum or the like is in contact with the transparent conductive film.

本実施例光起電力装置の形成方法としては、まず、n型
単結晶シリコン基板(1)をプラズマCVD装置内に設
置し、該装置内を真空排気した後約120℃に加熱する
。次に前記プラズマCVD装置内でグロー放電を発生さ
せ、そのプラズマのエネルギーによりシランなどのシリ
コン化合物ガスを分解し、250Å以下の真性非晶質シ
リコン(2)を前記n型単結晶シリコン基板(1)の−
主面上に形成する。
As a method for forming the photovoltaic device of this embodiment, first, an n-type single crystal silicon substrate (1) is placed in a plasma CVD device, and after the inside of the device is evacuated, it is heated to about 120°C. Next, a glow discharge is generated in the plasma CVD apparatus, and silicon compound gas such as silane is decomposed by the energy of the plasma, and intrinsic amorphous silicon (2) with a thickness of 250 Å or less is converted into the n-type single crystal silicon substrate (1). ) of −
Formed on the main surface.

引き続いて、前記真性非晶質シリコン(2)上に前記単
結晶シリコン基板(1)と逆導電型となるp型非晶質シ
リコン(3)を形成する。実施例では、真性非晶質シリ
コン(2)と同様なプラズマガス分解法によってp型非
晶質シリコン(3)を形成した。
Subsequently, p-type amorphous silicon (3) having a conductivity type opposite to that of the single crystal silicon substrate (1) is formed on the intrinsic amorphous silicon (2). In the example, p-type amorphous silicon (3) was formed by the same plasma gas decomposition method as that used for intrinsic amorphous silicon (2).

反応ガスとしては、ジボランガスを添加された前記シリ
コン化合物ガスを用いた。
As the reaction gas, the silicon compound gas to which diborane gas was added was used.

このp型非晶質シリコン(3)及び前記真性非晶質シリ
コン(2)の形成で採用しているプラズマCVD装置に
よる形成方法は従来周知の技術である。
The method of forming the p-type amorphous silicon (3) and the intrinsic amorphous silicon (2) using a plasma CVD apparatus is a conventionally well-known technique.

次に、光起電力装置の窓側電極として、酸化錫、ITO
膜(Indium Tin 0xide)などの透明導
電膜(5)を形成する。
Next, tin oxide, ITO was used as the window electrode of the photovoltaic device.
A transparent conductive film (5) such as a film (Indium Tin Oxide) is formed.

最後に、n型単結晶シリコン基板(1)の他主面に裏面
電極として金属電極(4)を形成し、光起電力装置が完
成する。
Finally, a metal electrode (4) is formed as a back electrode on the other main surface of the n-type single crystal silicon substrate (1), and the photovoltaic device is completed.

尚、ここで言う真性非晶質シリコンとは、例えば実施例
で説明したようなプラズマガス分解法による形成であれ
ば、導電型決定不純物としてのドーピングガスを全く添
加することなく形成された非晶質シリコン膜を含むこと
は勿論であるが、それ以外に微量のドーピングガスを添
加して形成することにより、実質的に真性型に制御され
た非晶質シリコン膜をも含むものである。
Note that the term "intrinsic amorphous silicon" here refers to amorphous silicon that is formed without adding any doping gas as a conductivity type determining impurity, for example, if it is formed by the plasma gas decomposition method as explained in the example. It goes without saying that it includes a crystalline silicon film, but it also includes an amorphous silicon film that is controlled to be substantially intrinsic by forming it by adding a small amount of doping gas.

非晶質シリコンなどの非単結晶半導体では、般に不純物
を何ら添加することなく形成した場合でも、僅かではあ
るが導電性を顕わすことがあるためで、例えば非晶質シ
リコンの場合、僅かなn型を示す。本発明では、真性非
単結晶半導体として、このような実質的に真性な半導体
をも使用可能とするものである。
This is because non-single-crystal semiconductors such as amorphous silicon generally exhibit a slight amount of conductivity even when formed without adding any impurities. Indicates n-type. In the present invention, such a substantially intrinsic semiconductor can also be used as the intrinsic non-single crystal semiconductor.

第2図は、本実施例における前記真性非晶質シリコン(
2)の膜厚と、当該光起電力装置の発電電圧及び変換効
率との関係を示す特性図である。同図の横軸は真性非晶
質シリコン(2)の膜厚を示し、縦軸はその下部に変換
効率を、またその上部に発電電圧をそれぞれ示す。
FIG. 2 shows the intrinsic amorphous silicon (
2) is a characteristic diagram showing the relationship between the film thickness and the power generation voltage and conversion efficiency of the photovoltaic device. FIG. The horizontal axis of the figure shows the film thickness of the intrinsic amorphous silicon (2), the vertical axis shows the conversion efficiency at the bottom, and the generated voltage at the top.

同図で示す膜厚がゼロの状態とは、実施例光起電力装置
の構造の内、真性非晶質シリコン(2)を介在させるこ
となく、n型単結晶シリコン基板(1)とp型非晶質シ
リコン(3)とを直接接触させて、所謂pn接合とした
場合を意味している。
The state in which the film thickness is zero shown in the same figure means that, in the structure of the photovoltaic device of the example, an n-type single crystal silicon substrate (1) and a p-type single crystal silicon substrate (1) are formed without intervening intrinsic amorphous silicon (2). This means a case where the amorphous silicon (3) is brought into direct contact to form a so-called pn junction.

同図に示されるように、いずれの膜厚においても、前記
「ゼロの状態」と比較して、発電電圧が向上している。
As shown in the figure, at any film thickness, the generated voltage is improved compared to the "zero state".

さらに、真性非晶質シリコン(2)の膜厚を250Å以
下とすることにより、前記発電電圧の向上に加えて、光
電変換効率も向上している。特にその膜厚を100Å以
下の薄膜とすることにより、前記光電変換効率の最大値
を得ることができる。
Further, by setting the film thickness of the intrinsic amorphous silicon (2) to 250 Å or less, in addition to improving the power generation voltage, photoelectric conversion efficiency is also improved. In particular, by setting the film thickness to a thin film of 100 Å or less, the maximum value of the photoelectric conversion efficiency can be obtained.

一方、250Å以上の膜厚による場合では、その値が漸
減している。これは、本発明における真性非晶質シリコ
ン(2)が、界面準位の低減を主な機能とし、該非晶質
シリコン(2)自体の層中で発生する光キャリアはほと
んど変換効率に寄与せずむしろ該非晶質シリコンの厚膜
化は前記光電変換効率の低下を引き起こすことによるた
めである。
On the other hand, in the case of a film thickness of 250 Å or more, the value gradually decreases. This is because the intrinsic amorphous silicon (2) in the present invention has the main function of reducing the interface state, and the photocarriers generated in the layer of the amorphous silicon (2) itself hardly contribute to the conversion efficiency. Rather, this is because increasing the thickness of the amorphous silicon causes a decrease in the photoelectric conversion efficiency.

尚、本発明で採用する真性非晶質シリコン(2)の膜厚
の下限値としては、通常のプラズマCVD装置やスパッ
タ装置あるいは、常圧CVD装置などによる形成で制御
可能な数人まで、本発明の効果を呈するものであるが、
その膜厚の制御容易性から、20Å以上が好適である。
Note that the lower limit of the film thickness of the intrinsic amorphous silicon (2) employed in the present invention is as follows: Although it exhibits the effect of the invention,
From the viewpoint of ease of controlling the film thickness, a thickness of 20 Å or more is preferable.

本発明で使用する真性非晶質シリコンをp型半導体とn
型半導体との間に介在させることは、非晶質シリコンの
みからなる光起電力装置のp層。
The intrinsic amorphous silicon used in the present invention is a p-type semiconductor and an n-type semiconductor.
Interposed between the photovoltaic device and the type semiconductor is the p-layer of the photovoltaic device, which is made only of amorphous silicon.

i層及びn層を順次積層した所謂pin接合構造と類似
するものと想起される。
It is thought that this structure is similar to a so-called pin junction structure in which an i-layer and an n-layer are sequentially laminated.

然し乍ら、本発明の光起電力装置では、単結晶系や非単
結晶系といった異なる結晶状態の半導体間に真性非単結
晶半導体装置するという構成上の特徴を有すること、さ
らには、前述した如く前記真性非単結晶半導体内の光生
成キャリアは、光電変換効率に寄与しないものであり、
その膜厚から見ても、むしろ前記真性非単結晶半導体を
光生成キャリアが生じない程度にまで薄膜化することに
大きな特徴がある。
However, the photovoltaic device of the present invention has a structural feature of forming an intrinsic non-single-crystal semiconductor device between semiconductors in different crystal states such as single-crystalline and non-single-crystalline semiconductors. Photogenerated carriers in intrinsic non-single crystal semiconductors do not contribute to photoelectric conversion efficiency;
In terms of the film thickness, the major feature is that the intrinsic non-single crystal semiconductor is made thin to the extent that no photogenerated carriers are generated.

従って、従来の非晶質シリコンのみから成る光起電力装
置における前記pin構造とは、全くその目的、構成、
効果を異にするものである。
Therefore, the pin structure in the conventional photovoltaic device made only of amorphous silicon is completely different from its purpose, structure,
They have different effects.

実施例では、単結晶半導体として、n型半導体を使用し
た場合について説明したが、本発明の光起電力装置はこ
れに限るものではなく単結晶半導体をp型とし、非単結
晶半導体をn型としても全く同様な効果を示すことは言
うまでもない。
In the embodiment, the case where an n-type semiconductor is used as the single-crystal semiconductor has been described, but the photovoltaic device of the present invention is not limited to this. Needless to say, it shows exactly the same effect.

(ト) 発明の効果 本発明の光起電力装置によれば、導電性非単結晶半導体
が有する局在準位に起因した界面準位が低減でき、光キ
ャリアの効率的な収集が可能となり変換効率が向上する
(G) Effects of the Invention According to the photovoltaic device of the present invention, the interface level caused by the localized level of the conductive non-single crystal semiconductor can be reduced, and photocarriers can be efficiently collected and converted. Increased efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光起電力装置の素子構造を説明するため
の素子構造断面図、第2図は前記素子構造における真性
非単結晶半導体の膜厚と発電電圧及び変換効率との関係
を示す特性図である。
FIG. 1 is a cross-sectional view of the device structure for explaining the device structure of the photovoltaic device of the present invention, and FIG. 2 shows the relationship between the film thickness of the intrinsic non-single crystal semiconductor, the generated voltage, and the conversion efficiency in the device structure. It is a characteristic diagram.

Claims (1)

【特許請求の範囲】[Claims] (1)互いに逆導電型の関係を有する単結晶半導体と非
単結晶半導体とが順次積層されてなる光起電力装置に於
て、前記両半導体間に、250Å以下の膜厚を有する真
性非単結晶半導体を介在させたことを特徴とする光起電
力装置。
(1) In a photovoltaic device in which a single crystal semiconductor and a non-single crystal semiconductor having mutually opposite conductivity types are sequentially stacked, an intrinsic non-single crystal semiconductor having a film thickness of 250 Å or less is formed between the two semiconductors. A photovoltaic device characterized by interposing a crystalline semiconductor.
JP2252354A 1990-09-20 1990-09-20 Photovoltaic device Expired - Lifetime JPH0795603B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2252354A JPH0795603B2 (en) 1990-09-20 1990-09-20 Photovoltaic device
US07/757,250 US5213628A (en) 1990-09-20 1991-09-10 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252354A JPH0795603B2 (en) 1990-09-20 1990-09-20 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPH04130671A true JPH04130671A (en) 1992-05-01
JPH0795603B2 JPH0795603B2 (en) 1995-10-11

Family

ID=17236125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252354A Expired - Lifetime JPH0795603B2 (en) 1990-09-20 1990-09-20 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH0795603B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401336A (en) * 1992-12-09 1995-03-28 Sanyo Electric Co., Ltd. Photovoltaic device
US5589008A (en) * 1993-10-11 1996-12-31 Universite De Neuchatel Photovoltaic cell and method for fabrication of said cell
US6878921B2 (en) 2001-11-29 2005-04-12 Sanyo Electric Co., Ltd. Photovoltaic device and manufacturing method thereof
US7164150B2 (en) 2002-03-05 2007-01-16 Sanyo Electric Co., Ltd. Photovoltaic device and manufacturing method thereof
US7199395B2 (en) 2003-09-24 2007-04-03 Sanyo Electric Co., Ltd. Photovoltaic cell and method of fabricating the same
JP2010129872A (en) * 2008-11-28 2010-06-10 Kyocera Corp Solar battery element
JP2010537423A (en) * 2007-12-18 2010-12-02 エルジー エレクトロニクス インコーポレイティド Heterogeneous junction silicon solar cell and manufacturing method thereof
US8772770B2 (en) 2012-02-17 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. P-type semiconductor material and semiconductor device
US8987738B2 (en) 2011-10-05 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9012769B2 (en) 2011-05-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9093601B2 (en) 2011-02-21 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9112086B2 (en) 2011-11-10 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9159939B2 (en) 2011-07-21 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9437768B2 (en) 2011-09-30 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9472711B2 (en) 2012-03-29 2016-10-18 Mitsubishi Electric Corporation Photovoltaic element and method of manufacturing the same, and solar battery module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613779A (en) * 1979-07-16 1981-02-10 Shunpei Yamazaki Photoelectric converter and its preparation
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element
JPS59175170A (en) * 1983-03-24 1984-10-03 Yoshihiro Hamakawa Hetero junction solar battery and manufacture thereof
JPH01140675A (en) * 1987-11-26 1989-06-01 Sony Corp Photoelectric transducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613779A (en) * 1979-07-16 1981-02-10 Shunpei Yamazaki Photoelectric converter and its preparation
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element
JPS59175170A (en) * 1983-03-24 1984-10-03 Yoshihiro Hamakawa Hetero junction solar battery and manufacture thereof
JPH01140675A (en) * 1987-11-26 1989-06-01 Sony Corp Photoelectric transducer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401336A (en) * 1992-12-09 1995-03-28 Sanyo Electric Co., Ltd. Photovoltaic device
US5589008A (en) * 1993-10-11 1996-12-31 Universite De Neuchatel Photovoltaic cell and method for fabrication of said cell
US6878921B2 (en) 2001-11-29 2005-04-12 Sanyo Electric Co., Ltd. Photovoltaic device and manufacturing method thereof
US7164150B2 (en) 2002-03-05 2007-01-16 Sanyo Electric Co., Ltd. Photovoltaic device and manufacturing method thereof
US7199395B2 (en) 2003-09-24 2007-04-03 Sanyo Electric Co., Ltd. Photovoltaic cell and method of fabricating the same
JP2010537423A (en) * 2007-12-18 2010-12-02 エルジー エレクトロニクス インコーポレイティド Heterogeneous junction silicon solar cell and manufacturing method thereof
JP2010129872A (en) * 2008-11-28 2010-06-10 Kyocera Corp Solar battery element
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9093601B2 (en) 2011-02-21 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9012769B2 (en) 2011-05-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9159939B2 (en) 2011-07-21 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9437768B2 (en) 2011-09-30 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US8987738B2 (en) 2011-10-05 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9761749B2 (en) 2011-10-05 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9112086B2 (en) 2011-11-10 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9159793B2 (en) 2012-02-17 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. P-type semiconductor material and semiconductor device
US8772770B2 (en) 2012-02-17 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. P-type semiconductor material and semiconductor device
US9472711B2 (en) 2012-03-29 2016-10-18 Mitsubishi Electric Corporation Photovoltaic element and method of manufacturing the same, and solar battery module

Also Published As

Publication number Publication date
JPH0795603B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US8872020B2 (en) Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
JP2740284B2 (en) Photovoltaic element
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JPH04130671A (en) Photovoltaic device
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
JP2001267598A (en) Laminated solar cell
KR100927428B1 (en) Solar cell and manufacturing method
JP2719036B2 (en) Amorphous photoelectric conversion device and method of manufacturing the same
JPS62234379A (en) Semiconductor device
Shi et al. Survey of material options and issues for thin film silicon solar cells
JP2614561B2 (en) Photovoltaic element
JPS6334632B2 (en)
JPH0526354B2 (en)
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JP2002016271A (en) Thin-film photoelectric conversion element
JP3197674B2 (en) Photovoltaic device
JPS62209871A (en) Manufacture of photovoltaic device
JP3197673B2 (en) Photovoltaic device
JP2841335B2 (en) Method for manufacturing photovoltaic device
JPH04199750A (en) Photovoltaic device
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPH0685291A (en) Semiconductor device and its manufacture
JP3291435B2 (en) Photovoltaic element
JP2001203374A (en) Amorphous thin film solar cell and its manufacturing method
JP2006073833A (en) Solar battery cell and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 15

EXPY Cancellation because of completion of term