JPS59175170A - Hetero junction solar battery and manufacture thereof - Google Patents

Hetero junction solar battery and manufacture thereof

Info

Publication number
JPS59175170A
JPS59175170A JP58049318A JP4931883A JPS59175170A JP S59175170 A JPS59175170 A JP S59175170A JP 58049318 A JP58049318 A JP 58049318A JP 4931883 A JP4931883 A JP 4931883A JP S59175170 A JPS59175170 A JP S59175170A
Authority
JP
Japan
Prior art keywords
semiconductor
amorphous
crystalline
solar cell
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58049318A
Other languages
Japanese (ja)
Other versions
JPH0526354B2 (en
Inventor
Yoshihiro Hamakawa
濱川 圭弘
Hiroaki Okamoto
博明 岡本
Koji Okuda
浩司 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Osaka Transformer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka Transformer Co Ltd filed Critical Daihen Corp
Priority to JP58049318A priority Critical patent/JPS59175170A/en
Priority to US06/528,988 priority patent/US4496788A/en
Priority to DE8383112159T priority patent/DE3379565D1/en
Priority to EP83112159A priority patent/EP0113434B2/en
Publication of JPS59175170A publication Critical patent/JPS59175170A/en
Publication of JPH0526354B2 publication Critical patent/JPH0526354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive to reduce the manufacturing cost by forming a P-N junction by depositing an amorphous semiconductor on a crystalline semiconductor in a low temperature process. CONSTITUTION:An electrode 1 is formed by evaporating aluminum on the back surface of a P type polycrystalline Si wafer 2, an N type thin film semiconductor 3 and a clear conductive film 4 made of the compound of Ind oxide with Sn oxide are formed on the wafer 2 by glow discharge decomposition, and then a comb electrode 5 is formed on said film 4. Said wafer 2 and said semiconductor 3 are put in hetero junction and thus constitute the unit cell of the solar battery. Since the P-N junction can be formed in the low temperature process such as a glow discharge decomposition method by changing the N type semiconductor 3 into a thin film microcrystalline Si, the reduction of the manufacturing cost can be contrived.

Description

【発明の詳細な説明】 技術分野 本発明は、単結晶または多結晶半導体(以下、シ   
  結晶系半導体という)上にアモルファスまたは微結
晶半導体(以下、アモルファス系半導体という)を堆積
してPN接合を形成したベテロ接合太陽電池およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to single crystal or polycrystalline semiconductors (hereinafter referred to as silicon).
The present invention relates to a veterojunction solar cell in which a PN junction is formed by depositing an amorphous or microcrystalline semiconductor (hereinafter referred to as an amorphous semiconductor) on a crystalline semiconductor, and a method for manufacturing the same.

従来技術 従来、結晶系半導体を使用した太陽電池においては、P
N接合は一般に熱拡散法またはイオン注入法により形成
されている。前者の熱拡散法は、添加すべき不純物を含
んだ雰囲気中に結晶系半導体装置き、1000℃程度の
高温に維持することにより、不純物を半導体内に拡散さ
せる方法である。また後者のイオン注入法は添加すべき
不純物をイオン化させ、高電界でイオンを加速して結晶
系半導体中に打込む方法である。このイオン注入法は、
イオンを打ち込む際に結晶構造が大きく乱れるために、
イオン注入後に、1000’C程度の高温でアニール(
焼鈍)する必要がある。以上のように、これらのPN接
合の形成方法は、いずれも高温プロセスを含んでおり、
高度の設備と製造上の高度な管理とが必要であって、太
陽電池の製造コストが高くなり、また高温処理中に、周
辺から半導体に不要な不純物が混入して太陽電池の効率
を低下させる要因となっていた。
Prior Art Conventionally, in solar cells using crystalline semiconductors, P
N junctions are generally formed by thermal diffusion or ion implantation. The former thermal diffusion method is a method in which a crystalline semiconductor device is placed in an atmosphere containing impurities to be added, and the impurities are diffused into the semiconductor by maintaining the device at a high temperature of about 1000°C. The latter ion implantation method is a method of ionizing the impurity to be added, accelerating the ions with a high electric field, and implanting them into a crystalline semiconductor. This ion implantation method is
Because the crystal structure is greatly disturbed when ions are implanted,
After ion implantation, annealing (
annealing). As mentioned above, all of these PN junction formation methods include high-temperature processes,
Advanced equipment and advanced manufacturing management are required, which increases the manufacturing cost of solar cells, and during high-temperature processing, unnecessary impurities get mixed into the semiconductor from the surrounding area, reducing the efficiency of solar cells. This was a contributing factor.

3− 発明の目的 本発明は、結晶系半導体上に、アモルファス系半導体を
低温プロセス、例えば、グロー放電分解法(GD法)の
場合は200〜300℃で堆積させてPN接合を形成す
ることにより、製作技術、製造設備等の面から太陽電池
の製造コストの低減化を図り、ざらにアモルファス系材
料の特徴を生かしたタンデム構造にすることにより、よ
り高効率化を図ることができる太陽電池およびその製造
方法を提供することを目的としている。
3- Purpose of the invention The present invention forms a PN junction by depositing an amorphous semiconductor on a crystalline semiconductor at a low temperature process, for example, at 200 to 300°C in the case of glow discharge decomposition method (GD method). , we aim to reduce the manufacturing cost of solar cells in terms of manufacturing technology, manufacturing equipment, etc., and create solar cells that can achieve higher efficiency by creating a tandem structure that takes advantage of the characteristics of roughly amorphous materials. The purpose of this invention is to provide a manufacturing method for the same.

実施例 以下、図示の実施例を参照して本発明の詳細な説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to illustrated embodiments.

第1図(A)は、本発明の第1の実施例の構成図であっ
て、結晶系半導体としてウェハを使用した場合の太陽電
池を示す。同図において、2はP型結晶系半導体、例え
ばP型子結晶シリコンのウェハ(薄板)、1はP型子結
晶シリコンのウェハの裏面にアルミニウムを蒸着させた
電極、3はP型子結晶シリコンのウェハ2上にグロー放
電分解4− 法(GD法)により堆積させたN型薄膜半導体、例えば
N型微結晶シリコンの薄膜、4はN型微結晶シリコンの
薄膜上に形成した酸化インジウムと酸化錫との化合物(
ITO>の透明導電膜、5は透明導電膜上に形成した(
し状電極である。
FIG. 1(A) is a block diagram of a first embodiment of the present invention, showing a solar cell in which a wafer is used as the crystalline semiconductor. In the figure, 2 is a wafer (thin plate) of P-type crystalline semiconductor, for example, P-type child-crystalline silicon, 1 is an electrode made by vapor-depositing aluminum on the back side of the P-type child-crystalline silicon wafer, and 3 is P-type child-crystalline silicon. An N-type thin film semiconductor, for example, a thin film of N-type microcrystalline silicon, is deposited on a wafer 2 by the glow discharge decomposition method (GD method). Compounds with tin (
ITO> transparent conductive film, 5 was formed on the transparent conductive film (
It is a ribbon-shaped electrode.

上記のN型微結晶シリコンは、光学的にはアモルファス
系半導体と同様の特性を有し、かつ電気的には結晶系半
導体と同様の特性を有している。
The above N-type microcrystalline silicon has optical properties similar to those of an amorphous semiconductor, and electrical properties similar to those of a crystalline semiconductor.

このN型微結晶シリコンの形成温度は200〜300℃
で、従来の結晶系半導体のPN接合形成濡温度 000
℃にくらべて著しく低温であり、かつPN接合形成のた
めの処理時間も数分程度であり、従来の結晶系半導体の
PN接合形成時間よりも短時間になっているので、太陽
電池の製造コストをさげることができる。
The formation temperature of this N-type microcrystalline silicon is 200 to 300°C.
The conventional wet temperature for forming a PN junction in a crystalline semiconductor is 000
℃, and the processing time to form a PN junction is only a few minutes, which is shorter than the time required to form a PN junction in conventional crystalline semiconductors, reducing the manufacturing cost of solar cells. can be lowered.

この第1の実施例では、P型子結晶シリコンのウェハと
N型微結晶シリコンとがヘテロ接合トIJされて1単位
の太陽電池の単位セルを構成しており、またP型子結晶
シリコン上に堆積されるN型半導体が薄膜の微結晶シリ
コンであるために、グロー放電分解法のような低温プロ
セスで、PN接合を形成させることができるので、太陽
電池の製造コス1−の低減を図ることができる。上記グ
ロー放電分解法は、成長させようとする薄膜の構成原子
の化合物をプラズマ状態にし、化学的に活性なイオンや
ラジカルに分解させることによって低温で′7iIJ膜
を成長させる方法である。
In this first embodiment, a wafer of P-type subcrystalline silicon and N-type microcrystalline silicon are heterojunction-IJed to constitute a unit cell of one solar cell, and a wafer of P-type subcrystalline silicon is Since the N-type semiconductor deposited on the solar cell is a thin film of microcrystalline silicon, a PN junction can be formed using a low-temperature process such as glow discharge decomposition, thereby reducing the manufacturing cost of solar cells. be able to. The above-mentioned glow discharge decomposition method is a method of growing a '7iIJ film at a low temperature by bringing the constituent atoms of the thin film to be grown into a plasma state and decomposing them into chemically active ions and radicals.

第1図(B)は、第1図(A>の太陽電池のエネルギー
バンド図である。同図において、N型微結晶シリコンの
エネルギーギャップEaaは約1゜8 [e V]であ
り、P型多結晶シリコンのエネルギーギャップE(IC
の約1.1[eV]にくらべて大きくなっているので、
PN接合がヘテロ接合HJになっており、窓効果すなわ
ち太陽光の短波長側の光損失を低減させることができる
。なお、同図において、ECは伝導帯下限の準位、ET
はフェルミ−準位、EVは価電子帯上限の単位を示す。
FIG. 1(B) is an energy band diagram of the solar cell shown in FIG. Energy gap E (IC
This is larger than the approximately 1.1 [eV] of
The PN junction is a heterojunction HJ, and the window effect, that is, the optical loss on the short wavelength side of sunlight can be reduced. In the same figure, EC is the lower limit level of the conduction band, ET
is the Fermi level, and EV is the unit of the upper limit of the valence band.

第2図は、第1図(A>の太陽電池のI−V特性の実測
値を示す線図である。同図において、横軸は、第1図(
A)の太陽電池の出力電圧vout[V]を示し、縦軸
は太陽電池の出力電流1 out[m A/cJ]を示
す。同図のI−V特性から求めた第1図(A)の太陽電
池の変換効率は、約11[%]であって、同じウェハを
使用し、熱拡散法、イオン注入法等の高温プロセスによ
ってPN接合を形成した太陽電池と同程度の効率を得る
ことができる。したがって、本発明のへテロ接合太陽電
池およびその製造方法によれば、従来の高温プロセスで
製作した太陽電池と略同等の効率を維持させながら、し
かも太陽電池の製造コストの低減を図ることができる。
FIG. 2 is a diagram showing the measured values of the IV characteristics of the solar cell shown in FIG.
The output voltage vout [V] of the solar cell in A) is shown, and the vertical axis shows the output current 1 out [m A/cJ] of the solar cell. The conversion efficiency of the solar cell shown in Figure 1 (A), determined from the IV characteristics in the same figure, is approximately 11%. Accordingly, it is possible to obtain efficiency comparable to that of a solar cell in which a PN junction is formed. Therefore, according to the heterojunction solar cell and the manufacturing method thereof of the present invention, it is possible to maintain substantially the same efficiency as a solar cell manufactured using a conventional high-temperature process, while reducing the manufacturing cost of the solar cell. .

なお、第1図(A)の第1の実施例においては、結晶系
半導体がP型、アモルファス系半導体がN型であったが
、逆に結晶系半導体がN型、アモルファス系半導体がP
型であってもよく、また符号2の結晶系半導体としては
、単結晶または多結晶のSi 、GaAs、Qeなどで
あってもよく、ざらに符号3のアモルファス系半導体と
しては、水素化またはフッ素化された微結晶またはアモ
ルファスの炭化シリコン、窒化シリコン、シリコンゲ7
− ルマニウムなどであってもよい。
In the first embodiment shown in FIG. 1(A), the crystalline semiconductor is P type and the amorphous semiconductor is N type, but conversely, the crystalline semiconductor is N type and the amorphous semiconductor is P type.
Furthermore, the crystalline semiconductor with reference numeral 2 may be single crystal or polycrystalline Si, GaAs, Qe, etc., and the amorphous semiconductor with reference numeral 3 may be hydrogenated or fluorinated. microcrystalline or amorphous silicon carbide, silicon nitride, silicon gel7
- May be rumanium, etc.

また、アモルファス系半導体の形成方法としては、前述
したGD法の他に、 ■真空内で物質を加熱し、これを蒸発させ、その蒸発物
を伯の物質の表面に被着させて膜を形成する真空蒸着法
、 ■グロー放電でガスイオンの衝突によって被着材料を放
出させ、他の物質表面上に膜を形成するスパッタリング
法、 ■真空蒸着法において蒸発物をイオン化して、他の物質
の表面に被着させて膜を形成するイオンブレーティング
法、 ■反応室内であらかじめ加熱させた基板上に形成膜のた
めの元素を含んだ混合反応ガスを送り込み、光を照剣さ
ぜながら、基板上の熱化学反応を利用して膜を形成する
フォトCVD法 などの低温プロセスを用いることができる。
In addition to the GD method mentioned above, methods for forming amorphous semiconductors include: (1) heating a substance in a vacuum, evaporating it, and depositing the evaporated substance on the surface of the substance to form a film; Vacuum evaporation method, ■ Sputtering method, in which the deposited material is released by the collision of gas ions with glow discharge to form a film on the surface of another material, ■ Vacuum evaporation method, in which the evaporated material is ionized to form a film on the surface of another material. Ion blating method, which forms a film by depositing it on the surface. ■ A mixed reaction gas containing the elements for the film to be formed is fed onto a substrate that has been heated in advance in a reaction chamber, and the substrate is heated while shining light. A low-temperature process such as a photo-CVD method that forms a film using the above thermochemical reaction can be used.

第3図は、本発明の第2の実施例の構成図であって、結
晶系半導体として薄膜を使用した場合を示す。同図にお
いて、6は金属、ガラス、セラミ−8= ツタなどの無機質固体の薄板状またはポリイミドなどの
有機質固体のフィルム状の基板である。1′は基板6上
に形成されたオーミック電極、2′はオーミック電極上
に気相成長法(CVD) 、有機金属を原料とした熱分
解法(MOCVD) 、分子線エピタキシー法(MBE
)、スパッタリング法、イオンブレーティング法などで
1ftlFiさせた結晶系半導体の薄膜である。3はこ
の薄膜2′上に、第1図(A)と同様の低温プロセスに
より堆積させたN型アモルファスまたはN型微結晶シリ
コンの薄膜であり、4′および5は第1図(A)の実施
例と同様の透明導電膜およびくし状電極である。
FIG. 3 is a block diagram of a second embodiment of the present invention, in which a thin film is used as the crystalline semiconductor. In the figure, 6 is a thin plate-like substrate made of an inorganic solid such as metal, glass, or ceramic 8 = ivy, or a film-like substrate made of an organic solid such as polyimide. 1' is an ohmic electrode formed on the substrate 6, and 2' is an ohmic electrode formed on the ohmic electrode by vapor phase epitaxy (CVD), thermal decomposition method using organometallic material (MOCVD), or molecular beam epitaxy (MBE).
), a crystalline semiconductor thin film made to a thickness of 1ftlFi using a sputtering method, an ion blating method, or the like. 3 is a thin film of N-type amorphous or N-type microcrystalline silicon deposited on this thin film 2' by the same low-temperature process as in FIG. 1(A), and 4' and 5 are the same as in FIG. 1(A). These are the same transparent conductive film and comb-shaped electrodes as in the example.

上記の実施例において、基板6として導電性材料を使用
して電極と兼用させれば、特に、オーミック電極1′を
別個に形成する必要はない。また、この第2の実施例に
おいては、結晶系半導体をも薄膜化することにより、第
1の実施例よりもさらに製造コストの低減化を図るとと
もに、CVD法、MOCVD法などの技術により、大面
積化することができる。
In the above embodiment, if a conductive material is used as the substrate 6 and it also serves as an electrode, there is no particular need to form the ohmic electrode 1' separately. In addition, in this second embodiment, by making the crystalline semiconductor thinner, manufacturing costs are further reduced than in the first embodiment, and by using technologies such as CVD and MOCVD, It can be converted into an area.

第4図(A)は、本発明の第3の実施例の構成図であっ
て、第1図(A)と同様の結晶系半導体2とアモルファ
ス系半導体3とがヘテロ接合HJされたPN接合より成
るエネルギーギャップがEcoalの単位セルC1に、
さらに結晶系半導体8とアモルファス系半導体9とがヘ
テロ接合HJされたPN接合より成るエネルギーギャッ
プがEgC2(EgC2> E(+01 )の単位セル
C2を、結晶系半導体8と同種に訓電制御されたアモル
ファス系半導体7を介して積層したタンデム構造のへテ
ロ接合太陽電池である。
FIG. 4(A) is a block diagram of a third embodiment of the present invention, in which a crystalline semiconductor 2 and an amorphous semiconductor 3 similar to FIG. 1(A) are formed into a PN junction in which a heterojunction HJ is formed. In the unit cell C1 of Ecoal, an energy gap consisting of
Further, the unit cell C2, which is composed of a PN junction in which the crystalline semiconductor 8 and the amorphous semiconductor 9 are formed into a heterojunction HJ and has an energy gap of EgC2 (EgC2>E(+01)), is subjected to the same power distribution control as the crystalline semiconductor 8. This is a heterojunction solar cell with a tandem structure in which layers are stacked with an amorphous semiconductor 7 in between.

同図において、符号1ないし5は、第1図(A)と同様
であり、7はアモルファス系N型薄膜半導体3上にjf
f積されたアモルファス系P型薄膜半導体であり、8は
半導体7上にさらに堆積された結晶系P型薄膜半導体で
あり、9は半導体8上にさらに堆積されたアモルファス
系N型薄膜半導体であって、これらの結晶系半導体8と
アモルファス系半導体9とがヘテロ接合HJされた単位
セルC2を形成している。
In the figure, numerals 1 to 5 are the same as those in FIG. 1(A), and 7 is a jf
8 is a crystalline P-type thin film semiconductor further deposited on the semiconductor 7, and 9 is an amorphous N-type thin film semiconductor further deposited on the semiconductor 8. Thus, the crystalline semiconductor 8 and the amorphous semiconductor 9 form a unit cell C2 in which a heterojunction HJ is formed.

タンデム構造とするためには、単位レルC1どC2との
界面の接合をオーミック接合にする必要があるので、本
発明のように単位セルC1とC2との間にアモルファス
系半導体7を設けることにより、アモルファス系半導体
3と7とは良好なオーミック接合OJを形成する。
In order to form a tandem structure, it is necessary to make an ohmic junction at the interface between the unit cells C1 and C2, so by providing the amorphous semiconductor 7 between the unit cells C1 and C2 as in the present invention, , the amorphous semiconductors 3 and 7 form a good ohmic junction OJ.

第4図(B)は、第4図(A)の太陽電池の光照射時の
エネルギーバンド図を示す。光照射により単位セルC1
で生成した電子eと単位レルC2で生成した正孔りとが
、接合近傍の禁止帯中の局在準位ESを介して再結合す
ることにより、再結合電流が流れて良好なオーミック接
合となっている。すなわち本発明の第3の実施例は、ア
モルファス系半導体を接合部に使用することにより、ア
モルファス系半導体の禁止帯中の局在準位が多いという
一般的には欠点と言える性質を逆に生かして、アモルフ
ァス系半導体のPN接合によって、オーミック接合を容
易に得ていることに特徴がある。
FIG. 4(B) shows an energy band diagram of the solar cell of FIG. 4(A) when irradiated with light. Unit cell C1 by light irradiation
When the electrons e generated in and the holes generated in the unit layer C2 recombine via the localized level ES in the forbidden band near the junction, a recombination current flows and a good ohmic junction is formed. It has become. In other words, in the third embodiment of the present invention, by using an amorphous semiconductor in the junction part, the property of the amorphous semiconductor, which is generally considered to have a drawback of having many localized levels in the forbidden band, can be taken advantage of. The feature is that an ohmic junction is easily obtained by a PN junction of an amorphous semiconductor.

この第3の実施例においては、太陽光の短波長11− 側の光を、上部のエネルギーギャップのより大きい単位
セルC2により吸収させ、さらにそれを通過した長波長
側の光を、下部のエネルギーギャップのより小さい単位
セルC1により吸収させることができるので、第1およ
び第2の実施例の太陽電池の製造コストの低減に加えて
、高効率の太陽電池を得ることができる。
In this third embodiment, light on the shorter wavelength 11- side of sunlight is absorbed by the upper unit cell C2 with a larger energy gap, and furthermore, light on the longer wavelength side that has passed through it is absorbed by the lower energy gap. Since the energy can be absorbed by the unit cell C1 having a smaller gap, it is possible to reduce the manufacturing cost of the solar cells of the first and second embodiments and to obtain a highly efficient solar cell.

第5図は、本発明の第4の実施例の構成図であZ   
  っで、第1図(A)に示す結晶系半導体とアモルフ
ァス系半導体とがヘテロ接合HJされたPN接合より成
るエネルギーギャップがEgCである単位セルCに、さ
らにGD法により、2単位のアモルファス系PIN接合
の単位セルA1およびA2を積層したタンデム構造のへ
テロ接合太陽電池である。
FIG. 5 is a configuration diagram of a fourth embodiment of the present invention.
Then, by the GD method, two units of amorphous semiconductor are added to the unit cell C, which is made up of a PN junction in which a crystalline semiconductor and an amorphous semiconductor are heterojunction HJ shown in FIG. 1(A) and has an energy gap of EgC. This is a heterojunction solar cell with a tandem structure in which PIN junction unit cells A1 and A2 are stacked.

// 同図において、符号1.2.3ないし6は第3図と同様
であり、第3図のアモルファス系半導体3と透明導電膜
4との間に、P型、I型およびN型のアモルファス系半
導体11ないし13から構成されるエネルギーギャップ
がE Gal  (E (Ial12− >Egc)である単位セルA1と、14ないし16から
構成されるエネルギーギャップがEgC2(Egc2 
>Egal )である単位セルA2とが挿入されている
。単位セルCと単位セルA1との接合部を形成する半導
体3と11、および単位セルA1と単位セルA2との接
合部を形成する半導体13と14とは、いずれも第3の
実施例と同様な理由で良好なオーミック接合OJとなっ
ている。
// In the same figure, numerals 1.2.3 to 6 are the same as in FIG. 3, and between the amorphous semiconductor 3 and the transparent conductive film 4 in FIG. A unit cell A1 consisting of amorphous semiconductors 11 to 13 has an energy gap of E Gal (E (Ial12- >Egc)), and a unit cell A1 consisting of amorphous semiconductors 11 to 13 has an energy gap of EgC2 (Egc2).
>Egal) is inserted. Semiconductors 3 and 11 forming the junction between unit cell C and unit cell A1, and semiconductors 13 and 14 forming the junction between unit cell A1 and unit cell A2 are the same as in the third embodiment. For these reasons, it is a good ohmic junction OJ.

この第4の実施例においては、太陽光の短波長側の光を
上部のPIN接合の単位セルA2およびA1により吸収
させ、さらに長波長側の光を下部のへテロ接合されたP
N接合の単位セルCにより吸収させることができるので
、第1または第2の実施例の太陽電池の製造コスl〜の
低減に加えて、高効率の太陽電池を得ることができる。
In this fourth embodiment, light on the shorter wavelength side of sunlight is absorbed by unit cells A2 and A1 of the upper PIN junction, and light on the longer wavelength side is absorbed by unit cells A2 and A1 of the lower heterojunction.
Since it can be absorbed by the N-junction unit cell C, in addition to reducing the manufacturing cost l~ of the solar cell of the first or second embodiment, a highly efficient solar cell can be obtained.

第6図は、本発明の第5の実施例の構成図であって、第
4図に示すアモルファス系半導体9の上に、さらにGD
法により第5図と同様に、2単位のアモルファス系PT
N接合の単位セルA1およびA2を積層したタンデム構
造のへテロ接合太陽電池である。同図において符号1な
いし5および7ないし9は第4図と同様であり、また符
号11ないし16は第5図の場合と同様である。
FIG. 6 is a block diagram of a fifth embodiment of the present invention, in which a GD layer is further added on the amorphous semiconductor 9 shown in FIG.
As shown in Figure 5, 2 units of amorphous PT
This is a heterojunction solar cell with a tandem structure in which N-junction unit cells A1 and A2 are stacked. In this figure, numerals 1 to 5 and 7 to 9 are the same as in FIG. 4, and numerals 11 to 16 are the same as in FIG. 5.

この第5の実施例においては、太陽光の短波長側の光か
ら長波長側の光に対して、順次に、エネルギーギャップ
がE ga2であるPTN接合の単位セルA2、Eqa
l  (Egc2 >Eoal )であるPIN接合の
単位セルA 1 、Egc2  (Eoal > Eg
c2 )であるPN接合の単位はルC2およびEOCl
(Egc2〉E (Icl )であるPN接合の単位セ
ルC1によって吸収させることができるので、第1また
は第2の実施例の太陽電池の製造コストの低減に加えて
、高効率の太陽電池を得ることができる。
In this fifth embodiment, from light on the short wavelength side of sunlight to light on the long wavelength side, the unit cell A2 of the PTN junction with an energy gap of Ega2, Eqa
Unit cell A 1 of PIN junction where l (Egc2 > Eoal ), Egc2 (Eoal > Eg
c2), the unit of the PN junction is LeC2 and EOCl
(Egc2>E (Icl)) can be absorbed by the PN junction unit cell C1, so in addition to reducing the manufacturing cost of the solar cell of the first or second embodiment, a highly efficient solar cell can be obtained. be able to.

発明の効果 以上のように、本発明の太陽電池によれば、単結晶また
は多結晶の結晶系半導体上に、アモルファスまたは微結
晶のアモルファス系半導体を、グロー放電分解法(GD
法)などの低温プロセスによって堆積させてPN接合を
形成しているので、PN接合形成温度が著しく低温とな
るとともに、接合形成おにび処理時間も短時間となるた
めに、製造設備の簡略化、製作時間の短縮化などにより
太陽電池の製造コストの低減を図ることができ、しかも
、従来の高温プロセスで製作した太陽電池と同等の効率
を維持させることができ、さらにアモルファス系材料の
特徴を生かしたタンデム構造にすることにより、さらに
高効率化を図ることができ産業上の実益が大である。
Effects of the Invention As described above, according to the solar cell of the present invention, an amorphous or microcrystalline amorphous semiconductor is deposited on a single crystal or polycrystalline semiconductor using the glow discharge decomposition method (GD).
Since the PN junction is formed by deposition using a low-temperature process such as (method), the temperature for forming the PN junction is extremely low, and the processing time for forming the junction is shortened, which simplifies the manufacturing equipment. , it is possible to reduce the manufacturing cost of solar cells by shortening the manufacturing time, etc., and maintain the same efficiency as solar cells manufactured using conventional high-temperature processes. By making use of the tandem structure, it is possible to achieve even higher efficiency, which has great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、A)および(B)は、それぞれ本発明の太陽
電池の第1の実施例の構成図およびエネルギーバンド図
、 第2図は第1図に示される太陽電池のI−V特性(横軸
に太陽電池の出力電圧VOut [V]、縦軸に太陽電
池の出力電流1out  [m A/cn?] )を示
す線図、 第3図は、本発明の太陽電池の第2の実施例の構成図、 第4図(A)および(B)は、それぞれ本発明の第3の
実施例の構成図およびエネルギーバンド15− 図 第5図および第6図は、それぞれ本発明の太陽電池の第
4および第5の実施例の構成図である。 1.1′・・・・・・電極 2.2′、8・・・・・・結晶系半導体3.7.11な
いし16・・・アモルファス系半導体4・・・・・・・
・・透明導電膜 5・・・・・・・・・くし状電極 c、cl、C2・・・PN接合の単位セルA、A1.A
2・・・PIN接合の単位セルEga、Egal 、E
gc2・・・アモルファス系半導体のエネルギーギャッ
プ Egc、 E(IcI 、E(IC2・・・結晶系半導
体のエネルギーギャップ HJ・・・・・・結晶系半導体とアモルファス系半導体
とのベテロ接合部 OJ・・・単位セル間のオーミック接合部代理人 弁理
士   中 井  宏 16− 口面の浄書(内容に変更なし) 第2図 Iouも[mA/Cm2] 0.0   02  0.4    0.6   0.
8   1.0     L2Vout (V) 目、T  OJ  目、■ OJ  OJ  OJ 手続補正書(自発) 昭和58年4月15日 1、事件の表示 昭和58年特許願第49318号 2、発明の名称 ヘテロ接合太陽電池およびその製造方法3、補正する者 事件との関係  特 許 出 願 人 兵庫県用西市南花屋敷三丁目17番4号濱用圭弘 (ほ
か2名) 4、代理人 住 所  〒532  大阪市淀用区田用2丁目1番1
1号5、補正命令の日付    自  発 6、補正の対象     「図  面」7、補正の内容
      別紙のとおり「図面」 の浄書  (1久
3Eりi)(内容に変更なし)
Figures 1 (, A) and (B) are the block diagram and energy band diagram of the first embodiment of the solar cell of the present invention, respectively, and Figure 2 is the IV characteristic of the solar cell shown in Figure 1. (The horizontal axis is the output voltage VOut [V] of the solar cell, and the vertical axis is the output current 1out [mA/cn?] of the solar cell). FIG. FIGS. 4(A) and 4(B) are respectively a block diagram and an energy band 15 diagram of a third embodiment of the present invention. FIGS. 5 and 6 are respectively a block diagram of a third embodiment of the present invention FIG. 4 is a configuration diagram of fourth and fifth embodiments of the battery. 1.1'...electrode 2.2', 8...crystalline semiconductor 3.7.11 to 16...amorphous semiconductor 4...
...Transparent conductive film 5...Comb-shaped electrodes c, cl, C2...PN junction unit cells A, A1. A
2...PIN junction unit cells Ega, Egal, E
gc2... Energy gap of amorphous semiconductor Egc, E(IcI, E(IC2... Energy gap of crystalline semiconductor HJ... Betero junction OJ between crystalline semiconductor and amorphous semiconductor... - Agent for ohmic junction between unit cells Patent attorney Hiroshi Nakai 16- Oral engraving (no change in content) Figure 2 Iou also [mA/Cm2] 0.0 02 0.4 0.6 0.
8 1.0 L2Vout (V) Eye, T OJ Eye, ■ OJ OJ OJ Procedural Amendment (Spontaneous) April 15, 1982 1. Indication of the case 1982 Patent Application No. 49318 2. Name of the invention Hetero Junction solar cell and its manufacturing method 3. Relationship with the amended person case Patent application: 3-17-4 Minamihanayashiki, Yonishi City, Hyogo Prefecture Keihiro Hamayo (and 2 others) 4. Agent address: 532 2-1-1 Tayo, Yodoyo-ku, Osaka City
No. 1 No. 5, Date of amendment order Voluntary issue 6, Subject of amendment ``Drawings'' 7, Contents of amendment As shown in the attached sheet, engraving of ``Drawings'' (1 Kyu 3 Eri) (no change in content)

Claims (1)

【特許請求の範囲】 1 単結晶または多結晶の結晶系半導体とアモルファス
または微結晶のアモルファス系半導体とをPN接合した
単位セルから成るヘテロ接合太陽電池。 2 前記結晶系半導体が、ウェハである特許請求の範囲
第1項に記載のへテロ接合太陽電池。 3 前記結晶系半導体が、薄膜半導体である特許請求の
範囲第1項に記載のへテロ接合太陽電池。 4 単結晶または多結晶の結晶系半導体とアモルファス
または微結晶のアモルファス系半導体とをPN接合した
単位セルを、結晶系半導体と同種に価電制御されたアモ
ルファス系半導体を介して、複数個直列に積層したヘテ
ロ接合太陽電池。 5 前記結晶系半導体のうち、入射光側と反対−1−、
、^r の最外側の半導体がつ■ハである特許請求の範囲第4項
に記載のへテロ接合太陽電池。 6 前記結晶系半導体が、薄膜半導体である特許請求の
範囲第4項に記載のへテロ接合太陽電池。 7 単結晶または多結晶の結晶系半導体とアモルファス
または微結晶のアモルファス系半導体とをPN接合した
中位セルのアモルファス系半導体側に、アモルファスま
たは微結晶半導体よりなるPIN接合した単位セルを1
単位以上直列に積層したヘテロ接合太陽電池。 8 前記結晶系半導体が、ウェハである特許請求の範囲
第7項に記載のへテロ接合太陽電池。 9 前記結晶系半導体が、薄膜半導体である特許請求の
範囲第7項に記載のへテロ接合太陽電池。 10 単結晶または多結晶の結晶系半導体とアモルファ
スまたは微結晶のアモルファス系半導体とをPN接合し
た単位セルを、結晶系半導体と同種に価電制御されたア
モルファス系半導体2− を介して、複数個直列に積層し、さらにアモルファスま
たは微結晶半導体よりなるPIN接合した単位セルを1
単位以上直列に積層したヘテロ接合太陽電池。 11 前記結晶系半導体のうち、大剣光側と反対の最外
側の半導体がウェハである特許請求の範囲第10項に記
載のへテロ接合太陽電池。 12 前記結晶系半導体が、薄膜半導体である特許請求
の範囲第10項に記載のへテロ接合太陽型8!!。 13 単結晶または多結晶の結晶系半導体上に、アモル
ファスまたは微結晶のアモルファス系半導体を低温プロ
セスで堆積させてPN接合を形成したヘテロ接合太陽電
池の製造方法。
[Scope of Claims] 1. A heterojunction solar cell comprising a unit cell in which a single crystalline or polycrystalline semiconductor and an amorphous or microcrystalline amorphous semiconductor are PN-junctioned. 2. The heterojunction solar cell according to claim 1, wherein the crystalline semiconductor is a wafer. 3. The heterojunction solar cell according to claim 1, wherein the crystalline semiconductor is a thin film semiconductor. 4 A plurality of unit cells in which a single crystalline or polycrystalline crystalline semiconductor and an amorphous or microcrystalline amorphous semiconductor are PN-junctioned are connected in series via an amorphous semiconductor whose valence is controlled in the same way as the crystalline semiconductor. Stacked heterojunction solar cells. 5 Among the crystalline semiconductors, -1- opposite to the incident light side,
The heterojunction solar cell according to claim 4, wherein the outermost semiconductor of , ^r is . 6. The heterojunction solar cell according to claim 4, wherein the crystalline semiconductor is a thin film semiconductor. 7 One unit cell made of an amorphous or microcrystalline semiconductor with a PIN junction on the amorphous semiconductor side of an intermediate cell made of a PN junction of a single crystalline or polycrystalline crystalline semiconductor and an amorphous or microcrystalline amorphous semiconductor.
A heterojunction solar cell in which more than one unit is stacked in series. 8. The heterojunction solar cell according to claim 7, wherein the crystalline semiconductor is a wafer. 9. The heterojunction solar cell according to claim 7, wherein the crystalline semiconductor is a thin film semiconductor. 10 A plurality of unit cells in which a single crystalline or polycrystalline crystalline semiconductor and an amorphous or microcrystalline amorphous semiconductor are PN-junctioned are connected via an amorphous semiconductor 2- whose valence is controlled in the same manner as the crystalline semiconductor. One unit cell is stacked in series and further has a PIN junction made of amorphous or microcrystalline semiconductor.
A heterojunction solar cell in which more than one unit is stacked in series. 11. The heterojunction solar cell according to claim 10, wherein among the crystalline semiconductors, the outermost semiconductor opposite to the Daikenko side is a wafer. 12. Heterojunction solar type 8! according to claim 10, wherein the crystalline semiconductor is a thin film semiconductor. ! . 13. A method for manufacturing a heterojunction solar cell in which a PN junction is formed by depositing an amorphous or microcrystalline amorphous semiconductor on a single crystal or polycrystalline semiconductor in a low-temperature process.
JP58049318A 1982-12-29 1983-03-24 Hetero junction solar battery and manufacture thereof Granted JPS59175170A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58049318A JPS59175170A (en) 1983-03-24 1983-03-24 Hetero junction solar battery and manufacture thereof
US06/528,988 US4496788A (en) 1982-12-29 1983-09-02 Photovoltaic device
DE8383112159T DE3379565D1 (en) 1982-12-29 1983-12-02 Photovoltaic device
EP83112159A EP0113434B2 (en) 1982-12-29 1983-12-02 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58049318A JPS59175170A (en) 1983-03-24 1983-03-24 Hetero junction solar battery and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59175170A true JPS59175170A (en) 1984-10-03
JPH0526354B2 JPH0526354B2 (en) 1993-04-15

Family

ID=12827612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049318A Granted JPS59175170A (en) 1982-12-29 1983-03-24 Hetero junction solar battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59175170A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180952U (en) * 1987-05-13 1988-11-22
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell
JPH04130671A (en) * 1990-09-20 1992-05-01 Sanyo Electric Co Ltd Photovoltaic device
US5456764A (en) * 1992-04-24 1995-10-10 Fuji Electric Co., Ltd. Solar cell and a method for the manufacture thereof
WO1998043304A1 (en) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
JP2010534922A (en) * 2007-04-09 2010-11-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Low resistance tunnel junctions for high efficiency tandem solar cells.
US7947523B2 (en) 2008-04-25 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9871152B2 (en) 2012-06-13 2018-01-16 Mitsubishi Electric Corporation Solar cell and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713185A (en) * 1980-06-26 1982-01-23 Asahi Chem Ind Co Ltd Photoelectrolysis device
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element
JPS57124482A (en) * 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713185A (en) * 1980-06-26 1982-01-23 Asahi Chem Ind Co Ltd Photoelectrolysis device
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element
JPS57124482A (en) * 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Solar cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180952U (en) * 1987-05-13 1988-11-22
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell
JPH04130671A (en) * 1990-09-20 1992-05-01 Sanyo Electric Co Ltd Photovoltaic device
US5456764A (en) * 1992-04-24 1995-10-10 Fuji Electric Co., Ltd. Solar cell and a method for the manufacture thereof
WO1998043304A1 (en) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
US6207890B1 (en) 1997-03-21 2001-03-27 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
US6380479B2 (en) 1997-03-21 2002-04-30 Sanyo Electric Co., Ltd. Photovoltaic element and method for manufacture thereof
JP2010534922A (en) * 2007-04-09 2010-11-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Low resistance tunnel junctions for high efficiency tandem solar cells.
US7947523B2 (en) 2008-04-25 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8173496B2 (en) 2008-06-06 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9871152B2 (en) 2012-06-13 2018-01-16 Mitsubishi Electric Corporation Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0526354B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
US4226898A (en) Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
US4217148A (en) Compensated amorphous silicon solar cell
US5700333A (en) Thin-film photoelectric conversion device and a method of manufacturing the same
US4539431A (en) Pulse anneal method for solar cell
US4496788A (en) Photovoltaic device
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
KR860001163B1 (en) Thin solar cell
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
US5098850A (en) Process for producing substrate for selective crystal growth, selective crystal growth process and process for producing solar battery by use of them
US4108684A (en) Large grain thin film polycrystalline P-InP/n-Cds solar cell
CN102804392A (en) Semiconductor optical detector structure
US20060213550A1 (en) Thin-film photoelectric conversion device and a method of manufacturing the same
WO1979000724A1 (en) Amorphous semiconductors equivalent to crystalline semiconductors
JPH08508368A (en) Photovoltaic cells and methods for manufacturing photovoltaic cells
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JP2002208719A (en) Silicon solar cell
EP0175567A2 (en) Semiconductor solar cells
US4710786A (en) Wide band gap semiconductor alloy material
US4954182A (en) Multiple cell photoresponsive amorphous photo voltaic devices including graded band gaps
JPS59175170A (en) Hetero junction solar battery and manufacture thereof
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPH01290267A (en) Manufacture of photoelectric conversion element
US4703336A (en) Photodetection and current control devices
JPH0823114A (en) Solar cell