JPH0526354B2 - - Google Patents

Info

Publication number
JPH0526354B2
JPH0526354B2 JP58049318A JP4931883A JPH0526354B2 JP H0526354 B2 JPH0526354 B2 JP H0526354B2 JP 58049318 A JP58049318 A JP 58049318A JP 4931883 A JP4931883 A JP 4931883A JP H0526354 B2 JPH0526354 B2 JP H0526354B2
Authority
JP
Japan
Prior art keywords
amorphous
crystalline
semiconductor
cell
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58049318A
Other languages
Japanese (ja)
Other versions
JPS59175170A (en
Inventor
Yoshihiro Hamakawa
Hiroaki Okamoto
Koji Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP58049318A priority Critical patent/JPS59175170A/en
Priority to US06/528,988 priority patent/US4496788A/en
Priority to DE8383112159T priority patent/DE3379565D1/en
Priority to EP83112159A priority patent/EP0113434B2/en
Publication of JPS59175170A publication Critical patent/JPS59175170A/en
Publication of JPH0526354B2 publication Critical patent/JPH0526354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 技術分野 本発明は、単結晶または多結晶半導体(以下、
結晶系半導体という)上にアモルフアスまたは微
結晶半導体(以下、アモルフアス系半導体とい
う)を堆積してPNヘテロ接合を形成した結晶系
単位セル、複数個直列に積層するかまたは前記結
晶系セルとアモルフアス系半導体のPIN接合から
成るアモルフアス系単位セルとを複数個直列に積
層したタンデム型太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to single crystal or polycrystalline semiconductors (hereinafter referred to as
A crystalline unit cell in which a PN heterojunction is formed by depositing an amorphous or microcrystalline semiconductor (hereinafter referred to as an amorphous semiconductor) on top of a crystalline semiconductor (hereinafter referred to as a crystalline semiconductor); This invention relates to a tandem solar cell in which a plurality of amorphous unit cells made of semiconductor PIN junctions are stacked in series.

従来技術 従来、半導体材料を使用した太陽電池を中心と
した光起電力素子には、Si、GaAs、CdS、CdTe
等のP型およびN型の単結晶または多結晶の結晶
系半導体のみを利用した結晶系光起電力素子のほ
かに、N型、I型、P型の各アモルフアス半導体
のシリコン層を堆積したアモルフアス系光起電力
素子が市販されている。前者の素子は光電変換効
率が大きいが、その製法が高温プロセスを含むた
めに、コストが高いという問題があつた。そこ
で、コストの低下を図るために、アモルフアスシ
リコンと結晶シリコンとから成るヘテロ接合を有
する単一の光起電力素子が開発されている。しか
し、この素子は低コスト価が実現できるものの、
変換効率の点では、従来の結晶系素子と同程度で
あり、未だ充分な値を示すまで至つていない。
Conventional technology Conventionally, photovoltaic elements mainly used in solar cells using semiconductor materials include Si, GaAs, CdS, and CdTe.
In addition to crystalline photovoltaic devices that utilize only P-type and N-type single-crystal or polycrystalline semiconductors such as photovoltaic devices are commercially available. The former device has a high photoelectric conversion efficiency, but its manufacturing method involves a high-temperature process, resulting in a high cost. Therefore, in order to reduce costs, a single photovoltaic element having a heterojunction made of amorphous silicon and crystalline silicon has been developed. However, although this element can achieve low cost,
In terms of conversion efficiency, it is on the same level as conventional crystalline elements, and has not yet reached a sufficient value.

一方、後者の素子はグロー放電分解法(GD
法)という低温プロセスで作成でき、単結晶シリ
コンの300μmに比べて僅か0.5μmの厚さまで薄膜
化できるために、安価に製造できるという利点が
ある反面、入射光の各波長に対するアモルフアス
シリコン太陽電池のキヤリア収集効率曲線が囲む
面積は、単結晶シリコン太陽電池のキヤリア収集
効率曲線が囲む面積のほぼ半分程度であるので、
アモルフアスシリコン太陽電池の変換効率は、単
結晶シリコン太陽電池のそれよりも低い欠点があ
る。すなわち、単結晶シリコン太陽電池のキヤリ
ア収集効率曲線が比較的長波長の光まで広がつて
いるのに対して、アモルフアスシリコン太陽電池
のキヤリア収集効率曲線は、比較的短波長の光に
偏つている。したがつて、実用化しているアモル
フアスシリコン太陽電池は、結晶系半導体太陽電
池と同程度に、入射光を有効に利用することがで
きないために、その変換効率は8〜9%の低い値
になつている。
On the other hand, the latter device uses the glow discharge decomposition method (GD
It can be produced using a low-temperature process known as the method (method), and can be made thinner to a thickness of only 0.5 μm compared to 300 μm for single crystal silicon, so it has the advantage of being cheaper to manufacture. The area covered by the carrier collection efficiency curve of is approximately half of the area covered by the carrier collection efficiency curve of a single crystal silicon solar cell, so
The conversion efficiency of amorphous silicon solar cells is lower than that of single crystal silicon solar cells. In other words, while the carrier collection efficiency curve of single-crystal silicon solar cells extends to light with relatively long wavelengths, the carrier collection efficiency curve of amorphous silicon solar cells is biased towards light with relatively short wavelengths. There is. Therefore, the amorphous silicon solar cells that are in practical use cannot utilize incident light as effectively as crystalline semiconductor solar cells, so their conversion efficiency is as low as 8 to 9%. It's summery.

そこで、最近、広いスペクトルを持つ太陽光に
対して、ある範囲の波長幅ごとにキヤリア収集効
率の最大値をもたせて波長分割した単位セルを積
層した多層単位セル構造のa−Si太陽電池につい
ても研究されている。アモルフアス半導体は、製
造時における供給ガスの種類またはその混合比を
加えることによつて、各波長に対するキヤリア収
集効率を左右する光学的禁止帯幅を変化させるこ
とができる。短波長用のアモルフアス半導体とし
ては、水素化アモルフアス炭化シリコンa−
SiC:H、水素化アモルフアス窒化シリコンa−
SiN:H、長波長用としては、水素化アモルフア
スシリコンゲルマニウムa−SiGe:H、水素化
アモルフアスシリコンすずa−SiSn:H等が使
用されている。しかし、これらの多層単位セル構
造のアモルフアス太陽電池であつても、前述した
ように、アモルフアス半導体が、本質的に、結晶
系半導体に比べて長波長用の光を、充分に吸収す
ることができない欠点を充分に補うことができな
いという問題がある。
Therefore, recently, a-Si solar cells with a multilayer unit cell structure in which wavelength-divided unit cells are laminated to have the maximum value of carrier collection efficiency for each wavelength range for sunlight with a wide spectrum have been developed. being researched. In the case of amorphous semiconductors, the optical band gap, which influences the carrier collection efficiency for each wavelength, can be changed by changing the type of gas supplied or the mixing ratio thereof during manufacture. Hydrogenated amorphous silicon carbide a-
SiC: H, hydrogenated amorphous silicon nitride a-
SiN:H, and for long wavelengths, hydrogenated amorphous silicon germanium a-SiGe:H, hydrogenated amorphous silicon tin a-SiSn:H, etc. are used. However, even in these amorphous solar cells with a multilayer unit cell structure, as mentioned above, amorphous semiconductors are essentially unable to absorb long wavelength light as well as crystalline semiconductors. There is a problem in that the drawbacks cannot be sufficiently compensated for.

この問題を解決するために、アモルフアス半導
体と結晶系半導体との組合せにより、光の有効利
用をさらに進める技術開発が行われている。とこ
ろが、前述した結晶系光起電力素子の単位セルと
アモルフアス光起電力素子の単位セルとを単に積
層しただけでは、両単位素子の起電力が両単位素
子の界面部に形成されるPN接合の内部電位によ
つて相殺され、有効なスタツク形起電力素子とし
て動作しないために、両単位素子の界面部で何ら
かの方法により、各単位素子で発生した光電流と
なる多数キヤリア同士を再結合させ、キヤリア交
換させることにより、両単位素子界面のPN内部
起電力効果をキヤンセルする必要がある。例え
ば、このキヤリア交換再結合の機能を果させる目
的で、わざわざ透明導電膜と呼ばれているインジ
ウム・すず(ITO)などの酸化物を使用している
例がある。この場合、酸化物の透明導電膜上にア
モルフアスシリコンの光起電力素子を作成するこ
とになり、このとき透明導電膜の成分が拡散し
て、この素子を劣化させ、結果として素子の変換
効率を低下させる原因となつていた。また、素子
作成の途中で、透明導電膜を形成するために、次
のアモルフアス半導体を形成する手段とは別の手
段、すなわち電子ビーム蒸着法またはスプレイ法
などを必要とするために、設備費およびランニン
グコストの点で不利である。そこで、透明導電膜
を用いることなく、良好なキヤリア交換再結合機
能を有する光起電力素子が望まれている。
In order to solve this problem, technological developments are underway to further advance the effective use of light by combining amorphous semiconductors and crystalline semiconductors. However, if the unit cell of the crystalline photovoltaic device and the unit cell of the amorphous photovoltaic device described above are simply stacked, the electromotive force of both unit devices will be reduced by the PN junction formed at the interface between the two unit devices. Since they are canceled by the internal potential and do not operate as an effective stacked electromotive force element, the multiple carriers that become the photocurrent generated in each unit element are recombined by some method at the interface between both unit elements. By exchanging carriers, it is necessary to cancel the PN internal electromotive force effect at the interface between both unit elements. For example, there are cases where oxides such as indium-tin (ITO), which are called transparent conductive films, are purposely used to perform this carrier exchange and recombination function. In this case, an amorphous silicon photovoltaic device is created on a transparent conductive oxide film, and at this time, the components of the transparent conductive film diffuse and deteriorate the device, resulting in the conversion efficiency of the device. was causing a decline in In addition, in order to form a transparent conductive film during device fabrication, a method other than the method for forming the next amorphous semiconductor, such as electron beam evaporation or spraying, is required, which increases equipment costs and This is disadvantageous in terms of running costs. Therefore, a photovoltaic element is desired that has a good carrier exchange and recombination function without using a transparent conductive film.

発明の目的 本発明は、結晶系半導体上に、アモルフアス系
半導体を低温プロセス、例えば、グロー放電分解
法(GD法)の場合は200〜300℃で堆積させて
PN接合またはPIN接合を形成することにより、
製作技術、製造設備等の面から太陽電池の製造コ
ストの低減化を図り、さらにアモルフアス系材料
の特徴を生かしたタンデム製造にすることによ
り、より高効率化を図ることができる太陽電池を
提供することを目的としている。
Purpose of the Invention The present invention involves depositing an amorphous semiconductor on a crystalline semiconductor using a low-temperature process, for example, at 200 to 300°C in the case of a glow discharge decomposition method (GD method).
By forming a PN junction or a PIN junction,
To provide solar cells that can achieve higher efficiency by reducing the manufacturing cost of solar cells in terms of manufacturing technology, manufacturing equipment, etc., and by using tandem manufacturing that takes advantage of the characteristics of amorphous materials. The purpose is to

実施例 以下、図示の実施例を参照して本発明を詳細に
説明する。
Embodiments The present invention will now be described in detail with reference to illustrated embodiments.

第1図Aは、本発明の第1の実施例の構成図で
あつて、結晶系半導体としてウエハを使用した場
合の太陽電池を示す。同図において、2はP型結
晶系半導体、例えばP型多結晶シリコンのウエハ
(薄板)、1はP型多結晶シリコンのウエハの裏面
にアルミニウムを蒸着させた電極、3はP型多結
晶シリコンのウエハ2上にグロー放電分解法
(GD法)により堆積させたN型薄膜半導体、例
えばN型微結晶シリコンの薄膜、4はN型微結晶
シリコンの薄膜上に形成した酸化インジウムと酸
化錫との化合物(ITO)の透明導電膜、5は透明
導電膜上に形成したくし状電極である。
FIG. 1A is a block diagram of a first embodiment of the present invention, showing a solar cell in which a wafer is used as the crystalline semiconductor. In the figure, 2 is a wafer (thin plate) of P-type crystalline semiconductor, for example, P-type polycrystalline silicon, 1 is an electrode made of aluminum deposited on the back side of the P-type polycrystalline silicon wafer, and 3 is P-type polycrystalline silicon. N-type thin film semiconductor, for example, a thin film of N-type microcrystalline silicon, deposited by glow discharge decomposition method (GD method) on a wafer 2, 4, indium oxide and tin oxide formed on a thin film of N-type microcrystalline silicon. 5 is a comb-shaped electrode formed on the transparent conductive film of the compound (ITO).

上記のN型微結晶シリコンは、光学的にはアモ
ルフアス系半導体と同様の特性を有し、かつ電気
的には結晶系半導体と同様の特性を有している。
このN型微結晶シリコンの形成温度は200〜300℃
で従来の結晶系半導体のPN接合形成温度1000℃
にくらべて著しく低温であり、かつPN接合形成
のための処理時間も数分程度であり、従来の結晶
系半導体のPN接合形成時間よりも短時間になつ
ているので、太陽電池の製造コストをさげること
ができる。
The above N-type microcrystalline silicon has optical properties similar to those of an amorphous semiconductor, and electrical properties similar to those of a crystalline semiconductor.
The formation temperature of this N-type microcrystalline silicon is 200 to 300℃
The conventional crystalline semiconductor PN junction formation temperature is 1000℃.
The processing time for forming a PN junction is only a few minutes, which is shorter than the time required to form a PN junction in conventional crystalline semiconductors. Can be lowered.

この第1の実施例では、P型多結晶シリコンの
ウエハとN型微結晶シリコンとがヘテロ接合HJ
されて1単位の太陽電池の単位セルを構成してお
り、またP型多結晶シリコン上に堆積されるN型
半導体が薄膜の微結晶シリコンであるために、グ
ロー放電分解法のように低温プロセスで、PN接
合を形成させることができるので、太陽電池の製
造コストの低減を図ることができる。上記グロー
放電分解法は、成長させようとする薄膜の構成原
子の化合物をプラズマ状態にし、化学的に活性な
イオンやラジカルに分解させることによつて低温
で薄膜を成長させる方法である。
In this first embodiment, a wafer of P-type polycrystalline silicon and a wafer of N-type microcrystalline silicon form a heterojunction HJ.
Since the N-type semiconductor deposited on the P-type polycrystalline silicon is a thin film of microcrystalline silicon, low-temperature processes such as glow discharge decomposition are not possible. Since a PN junction can be formed in this way, it is possible to reduce the manufacturing cost of the solar cell. The above-mentioned glow discharge decomposition method is a method of growing a thin film at a low temperature by bringing a compound of atoms constituting the thin film to be grown into a plasma state and decomposing it into chemically active ions and radicals.

第1図Bは、第1図Aの太陽電池のエネルキー
バンド図である。同図において、N型微結晶シリ
コンのエネルギーギヤツプEgaは約1.8[eV]であ
り、P型多結晶シリコンのエネルギーギヤツプ
Egcの約1.1[eV]にくらべて大きくなつているの
で、PN接合がヘテロ接合HJになつており、窓効
果すなわち太陽光の短波長側の光損失を低減させ
ることができる。なお、同図において、Ecは伝
導帯下限の準位、Efはフエルミー準位、Evは価
電子帯上限の準位を示す。
FIG. 1B is an energy band diagram of the solar cell of FIG. 1A. In the same figure, the energy gap Ega of N-type microcrystalline silicon is approximately 1.8 [eV], and the energy gap Ega of P-type polycrystalline silicon is approximately 1.8 [eV].
Since it is larger than about 1.1 [eV] of Egc, the PN junction becomes a heterojunction HJ, which can reduce the window effect, that is, optical loss on the short wavelength side of sunlight. In the figure, Ec indicates the lower limit of the conduction band, Ef indicates the Fermi level, and Ev indicates the upper limit of the valence band.

第2図は、第1図Aの太陽電池のI−V特性の
実測値を示す線図である。同図において、横軸
は、第1図Aの太陽電池の出力電圧Vout[V]を
示し、縦軸は、太陽電池の出力電流Iout[mA/
cm2を示す。同図のI−V特性から求めた第1図A
の太陽電池の変換効率は、約11[%]であつて、
同じウエハを使用し、熱拡散法、イオン注入法等
の高温プロセスによつてPN接合を形成した太陽
電池と同程度の効率を得ることができる。したが
つて、本発明のヘテロ接合太陽電池およびその製
造方法によれば、従来の高温プロセスで製作した
太陽電池と略同等の効率を維持させながら、しか
も太陽電池の製造コストの低減を図ることができ
る。
FIG. 2 is a diagram showing actually measured values of the IV characteristics of the solar cell shown in FIG. 1A. In the figure, the horizontal axis shows the output voltage Vout [V] of the solar cell in FIG. 1A, and the vertical axis shows the output current Iout [mA/
Indicates cm2 . Figure 1 A obtained from the IV characteristics in the same figure
The conversion efficiency of the solar cell is about 11%,
Using the same wafer, it is possible to obtain the same efficiency as a solar cell in which a PN junction is formed by a high-temperature process such as thermal diffusion or ion implantation. Therefore, according to the heterojunction solar cell and the manufacturing method thereof of the present invention, it is possible to maintain substantially the same efficiency as a solar cell manufactured using a conventional high-temperature process while reducing the manufacturing cost of the solar cell. can.

なお、第1図Aの第1の実施例においては、結
晶系半導体がP型、アモルフアス系半導体がN型
であつたが、逆に結晶系半導体がN型、アモルフ
アス系半導体がP型であつてもよく、また符号2
の結晶系半導体としては、単結晶または多結晶の
Si、GaAs、Geなどであつてもよく、さらに符号
3のアモルフアス系半導体としては、水素化また
はフツ素化された微結晶またはアルモルフアスの
炭化シリコン、窒化シリコン、シリコンゲルマニ
ウムなどであつてもよい。
In the first embodiment shown in FIG. 1A, the crystalline semiconductor is P type and the amorphous semiconductor is N type; however, conversely, the crystalline semiconductor is N type and the amorphous semiconductor is P type. may also be the code 2
Crystalline semiconductors include single crystal or polycrystalline semiconductors.
It may be Si, GaAs, Ge, etc. Furthermore, the amorphous semiconductor 3 may be hydrogenated or fluorinated microcrystalline or amorphous silicon carbide, silicon nitride, silicon germanium, etc.

また、アモルフアス系半導体の形成方法として
は、前述したGD法の他に、 真空内で物質を加熱し、これを蒸発させ、そ
の蒸発物を他の物質の表面に被着させて膜を形
成する真空蒸着法、 グロー放電でガスイオンの衝突によつて被着
材料を放出させ、他の物質表面上に膜を形成す
るスパツタリング法、 真空蒸着法において蒸発物をイオン化して、
他の物質の表面に被着させて膜を形成するイオ
ンプレーテイング法、 反応室内であらかじめ加熱させた基板上に形
成膜のための元素を含んだ混合反応ガスを送り
込み、光を照射させながら、基板上の熱化学反
応を利用して膜を形成するフオトCVD法 などの低温プロセスを用いることができる。
In addition to the GD method mentioned above, methods for forming amorphous semiconductors include heating a substance in a vacuum, evaporating it, and depositing the evaporated substance on the surface of another substance to form a film. Vacuum evaporation method, sputtering method in which the deposited material is released by collision of gas ions with glow discharge to form a film on the surface of another material, and vacuum evaporation method in which the evaporated material is ionized.
Ion plating is a method in which a film is formed by depositing it on the surface of another substance. A mixed reaction gas containing the elements for forming the film is fed onto a substrate that has been preheated in a reaction chamber, and is irradiated with light. A low-temperature process such as photo-CVD, which forms a film using a thermochemical reaction on a substrate, can be used.

第3図は、本発明の第2の実施例の構成図であ
つて、結晶系半導体として薄膜を使用した場合を
示す。同図において、6は金属、ガラス、セラミ
ツクなどの無機質固体の薄板状またはポリイミド
などの有機質固体のフイルム状の基板である。
1′は基板6上に形成されたオーミツク電極、
2′はオーミツク電極上に気相成長法(CVD)、
有機金属を原料とした熱分解法(MOCVD)、分
子線エピタキシー法(MBE)、スパツタリング
法、イオンプレーテイング法などで堆積させた結
晶系半導体の薄膜である。3はこの薄膜2′上に、
第1図Aと同様の低温プロセスにより堆積させた
N型アモルフアスまたはN型微結晶シリコンの薄
膜であり、4および5は第1図Aの実施例と同様
の透明導電膜およびくし状電極である。
FIG. 3 is a block diagram of a second embodiment of the present invention, in which a thin film is used as the crystalline semiconductor. In the figure, reference numeral 6 denotes a thin plate-like substrate made of an inorganic solid such as metal, glass, or ceramic, or a film-like substrate made of an organic solid such as polyimide.
1' is an ohmic electrode formed on the substrate 6;
2' is vapor phase deposition (CVD) on the ohmic electrode,
It is a thin film of crystalline semiconductor deposited by methods such as metal-organic thermal decomposition (MOCVD), molecular beam epitaxy (MBE), sputtering, and ion plating. 3 is on this thin film 2',
This is a thin film of N-type amorphous or N-type microcrystalline silicon deposited by the same low-temperature process as in FIG. 1A, and 4 and 5 are transparent conductive films and comb-shaped electrodes similar to the embodiment in FIG. 1A. .

上記の実施例において、基板6として導電性材
料を使用して電極と兼用させれば、特に、オーミ
ツク電極1′を別個に形成する必要はない。また、
この第2の実施例においては、結晶系半導体をも
薄膜化することにより、第1の実施例よりもさら
に製造コストの低減化を図るとともに、CVD法、
MOCVD法などの技術により、大面積化するこ
とができる。
In the above embodiment, if a conductive material is used as the substrate 6 and it also serves as an electrode, there is no particular need to form the ohmic electrode 1' separately. Also,
In this second embodiment, by also making the crystalline semiconductor thinner, manufacturing costs are further reduced than in the first embodiment, and the CVD method and
Using techniques such as MOCVD, it is possible to increase the area.

第4図Aは、本発明の第3の実施例の構成図で
あつて、第1図Aと同様の結晶系半導体2とアモ
ルフアス系半導体3とがヘテロ接合HJされたPN
接合により成るエネルギーギヤツプがEgc1の結
晶系単位セルC1に、さらに結晶系半導体8とア
モルフアス系半導体9とがヘテロ接合HJされた
PN接合により成るエネルギーギヤツプがEgc2
(Egc2>Egc1)の結晶系単位セルC2を、結晶
系半導体8と同種に価電制御されたアモルフアス
系半導体7を介して積層したタンデム型太陽電池
である。
FIG. 4A is a block diagram of a third embodiment of the present invention, in which a crystalline semiconductor 2 and an amorphous semiconductor 3 similar to those in FIG. 1A are formed into a heterojunction HJ.
The energy gap formed by the junction is formed in the crystalline unit cell C1 of Egc1, and furthermore, the crystalline semiconductor 8 and the amorphous semiconductor 9 form a heterojunction HJ.
The energy gap formed by the PN junction is Egc2
This is a tandem solar cell in which crystalline unit cells C2 (Egc2>Egc1) are stacked via an amorphous semiconductor 7 whose valence is controlled to be the same as the crystalline semiconductor 8.

同図において、符号1ないし5は、第1図Aと
同様であり、7はアモルフアス系N型薄膜半導体
3上に堆積されたアモルフアス系P型薄膜半導体
であり、8は半導体7上にさらに堆積された結晶
系P型薄膜半導体であり、9は半導体8上にさら
に堆積されたアモルフアス系N型薄膜半導体であ
つて、これらの結晶系半導体8とアモルフアス系
半導体9とがヘテロ接合HJされた結晶系単位セ
ルC2を形成している。
In the figure, numerals 1 to 5 are the same as those in FIG. 9 is an amorphous N-type thin film semiconductor further deposited on the semiconductor 8, and 9 is a crystal in which the crystalline semiconductor 8 and the amorphous semiconductor 9 are heterojunction HJ. A system unit cell C2 is formed.

タンデム構造とするためには、結晶系単位セル
C1とC2との界面の接合をオートミツク接合に
する必要があるので、本発明のように結晶系単位
セルC1とC2との間にアモルフアス系半導体7
を設けることにより、アモルフアス系半導体3と
7とは良好なオーミツク接合OJを形成する。
In order to form a tandem structure, it is necessary to form an automic junction at the interface between the crystalline unit cells C1 and C2. Therefore, as in the present invention, an amorphous semiconductor 7
By providing this, the amorphous semiconductors 3 and 7 form a good ohmic junction OJ.

第4図Bは、第4図Aの太陽電池の光照射時の
エネルギーバンド図を示す。光照射により結晶系
単位セルC1で生成した電子eと単位セルC2で
生成した正孔hとが、接合近傍の禁止帯中の局在
準位Esを介して再結合することにより、再接合
電流が流れて良好なオーミツク接合となつてい
る。すなわち本発明の第3の実施例は、アモルフ
アス系半導体を接合部に使用することにより、ア
モルフアス系半導体の禁止帯中の局在準位が多い
という一般的には欠点と言える性質を逆に生かし
て、アモルフアス系半導体のPN接合によつて、
オーミツク接合を容易に得ていることに特徴があ
る。
FIG. 4B shows an energy band diagram of the solar cell of FIG. 4A when irradiated with light. The electrons e generated in the crystalline unit cell C1 and the holes h generated in the unit cell C2 by light irradiation recombine through the localized level Es in the forbidden band near the junction, resulting in a rejunction current. flows, resulting in a good ohmic connection. In other words, in the third embodiment of the present invention, by using an amorphous semiconductor in the junction part, the property of the amorphous semiconductor, which is generally considered to have a disadvantage of having many localized levels in the forbidden band, can be taken advantage of. By using the PN junction of amorphous semiconductor,
The feature is that ohmic junctions are easily obtained.

この第3の実施例においては、太陽光の短波長
側の光を、上記のエネルギーギヤツプのより大き
い結晶系単位セルC2により吸収させ、さらにそ
れを通過した長波長側の光を、下部のエネルギー
ギヤツプのより小さい結晶系単位セルC1により
吸収させることができるので、第1およい第2の
実施例の太陽電池の製造コストの低減に加えて、
高効率の太陽電池を得ることができる。
In this third embodiment, the light on the short wavelength side of sunlight is absorbed by the crystalline unit cell C2 with the larger energy gap, and the light on the long wavelength side that has passed through it is absorbed by the lower part of the unit cell C2. Since the energy can be absorbed by the crystalline unit cell C1 with a smaller energy gap, in addition to reducing the manufacturing cost of the solar cells of the first and second embodiments,
Highly efficient solar cells can be obtained.

第5図は、本発明の第4の実施例の構成図であ
つて、第1図Aに示す結晶系半導体とアモルフア
ス系半導体とがヘテロ接合HJされたPN接合によ
り成るエネルギーギヤツプがEgcである結晶系単
位セルCに、さらにGD法により、2単位のアモ
ルフアス系PIN接合のアモルフアス系単位セルA
1およびA2を積層したタンデム型太陽電池であ
る。
FIG. 5 is a block diagram of a fourth embodiment of the present invention, in which an energy gap formed by a PN junction in which a crystalline semiconductor and an amorphous semiconductor shown in FIG. 1A are formed into a heterojunction HJ is Egc. In addition to the crystalline unit cell C, by the GD method, an amorphous unit cell A with two units of amorphous PIN junction is formed.
This is a tandem solar cell in which solar cells A1 and A2 are stacked.

同図において、符号1′,2′,3′ないし6は
第3図と同様であり、第3図のアモルフアス系半
導体3と透明導電膜4との間に、P型、I型およ
びN型のアモルフアス系半導体11ないし13か
ら構成されるエネルギーギヤツプがEga1(Ega
1>Egc)であるアモルフアス系単位セルA1
と、14ないし16から構成されるエネルギーギ
ヤツプがEga2(Ega2>Ega1)であるアモル
フアス系単位セルA2とが挿入されている。結晶
系単位セルCとアモルフアス系単位セルA1との
接合部を形成する半導体3と11の界面は、第3
の実施例と同様な理由で良好なオートミツク接合
OJとなつている。
In the figure, numerals 1', 2', 3' to 6 are the same as those in FIG. 3, and between the amorphous semiconductor 3 and the transparent conductive film 4 in FIG. The energy gap composed of the amorphous semiconductors 11 to 13 is Ega1 (Ega
1>Egc) amorphous unit cell A1
and an amorphous unit cell A2 consisting of 14 to 16 and having an energy gap of Ega2 (Ega2>Ega1). The interface between the semiconductors 3 and 11 forming the junction between the crystalline unit cell C and the amorphous unit cell A1 is the third
A good automatic connection is achieved for the same reason as in the example of
It has become O.J.

この第4の実施例においては、太陽光の短波長
側の光を上部のPIN接合のアモルフアス系単位セ
ルA2およびA1により吸収させ、さらに長波長
側の光を、下部のヘテロ接合されたPN接合の結
晶系単位セルCにより吸収させることができるの
で、第1または第2の実施例の太陽電池の製造コ
ストの低減に加えて、高効率の太陽電池を得るこ
とができる。
In this fourth embodiment, light on the shorter wavelength side of sunlight is absorbed by the amorphous unit cells A2 and A1 of the upper PIN junction, and light on the longer wavelength side is absorbed by the lower heterojunction PN junction. Since it can be absorbed by the crystalline unit cell C, in addition to reducing the manufacturing cost of the solar cell of the first or second embodiment, a highly efficient solar cell can be obtained.

第6図は、本発明の第5の実施例の構成図であ
つて、第4図に示すアモルフアス系半導体9の上
に、さらにGD法により第5図と同様に、2単位
のアモルフアス系PIN接合の単位セルA1および
A2を積層したタンデム型太陽電池である。同図
において符号1ないし5および7ないし9は第4
図と同様であり、また符号11ないし16は第5
図の場合と同様である。
FIG. 6 is a block diagram of a fifth embodiment of the present invention, in which two units of amorphous PIN are added on top of the amorphous semiconductor 9 shown in FIG. 4 by the GD method in the same manner as in FIG. This is a tandem solar cell in which junction unit cells A1 and A2 are stacked. In the figure, the numbers 1 to 5 and 7 to 9 are the fourth
It is the same as the figure, and numerals 11 to 16 are the fifth
This is the same as the case shown in the figure.

この第5の実施例においては、太陽光の短波長
側の光から長波長側の光に対して、順次に、エネ
ルギーギヤツプがEga2であるPIN接合のアモル
フアス系単位セルA2、Ega1(Ega2>Ega1)
であるPIN接合のアモルフアス系単位セルA1,
Egc2(Ega1>Egc2)であるPN接合の結晶系
単位セルC2およびEgc1(Egc2>Egc1)で
あるPN接合の結晶系単位セルC1によつて吸収
させることができるので、第1または第2の実施
例の太陽電池の製造コストの低減に加えて、高効
率の太陽電池を得ることができる。
In this fifth embodiment, amorphous unit cells A2, Ega1 (Ega2 >Ega1)
PIN junction amorphous unit cell A1,
Since it can be absorbed by the crystalline unit cell C2 of the PN junction where Egc2 (Ega1>Egc2) and the crystalline unit cell C1 of the PN junction where Egc1 (Egc2>Egc1), the first or second implementation In addition to reducing the manufacturing cost of the example solar cells, highly efficient solar cells can be obtained.

発明の効果 以上のように、本発明の太陽電池によれば、単
結晶または多結晶の結晶系半導体上に、アモルフ
アスまたは微結晶のアモルフアス系半導体を、グ
ロー放電分解法(GD法)などの低温プロセスに
よつて堆積させてPN接合またはPIN接合を形成
しているので、接合形成温度が著しく低温となる
と共に、接合形成および処理時間も短時間となる
ために、製造設備の簡略化、製作時間の短縮化な
どにより、製造プロセス全体の設備費及びランニ
ングコストの低減を図ることができ、しかもアモ
ルフアス系単位セルが入射光のうちの短波長側の
光を吸収し、さらに結晶系単位セルが長波長側の
光を吸収し、単一の光起電力素子によつて広範囲
の光を有効に利用することができる上に、タンデ
ム型素子を構成するために必要な単位セル同士の
界面が、アモルフアス系半導体のPN層により界
面に光学的に透明なオーミツク接合が形成される
ために、異種な単位セル同士の界面部に内部起電
力が発生することなく、タンデム型素子を良好に
動作させることができ、上記の効果とが相俟つ
て、高効率化が図られることができ産業上の実益
が大である。
Effects of the Invention As described above, according to the solar cell of the present invention, an amorphous or microcrystalline amorphous semiconductor is deposited on a single crystal or polycrystalline semiconductor using a low-temperature method such as a glow discharge decomposition method (GD method). Since the PN junction or PIN junction is formed by deposition by a process, the junction formation temperature is extremely low, and the junction formation and processing time are shortened, simplifying the manufacturing equipment and manufacturing time. It is possible to reduce the equipment costs and running costs of the entire manufacturing process by shortening the time.Moreover, the amorphous unit cell absorbs the short wavelength side of the incident light, and the crystalline unit cell absorbs the short wavelength side of the incident light. In addition to absorbing light on the wavelength side and making it possible to effectively utilize a wide range of light with a single photovoltaic element, the interface between unit cells necessary to construct a tandem element is made of amorphous amorphous. Since an optically transparent ohmic junction is formed at the interface by the PN layer of the system semiconductor, internal electromotive force is not generated at the interface between different types of unit cells, making it possible for the tandem device to operate well. In combination with the above-mentioned effects, high efficiency can be achieved, which is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AおよびBは、それぞれ本発明の太陽電
池の第1の実施例の構成図およびエネルギーバン
ド図、第2図は第1図に示される太陽電池の−
特性(横軸に太陽電池の出力電圧Vout[V]、
縦軸に太陽電池の出力電流Iout[mA/cm2])を示
す線図、第3図は、本発明の太陽電池の第2の実
施例の構成図、第4図AおよびBは、それぞれ本
発明の第3の実施例の構成図およびエネルギーバ
ンド図、第5図および第6図は、それぞれ本発明
の太陽電池の第4および第5の実施例の構成図で
ある。 1,1′……電極、2,2′,8……結晶系半導
体、3,7,11ないし16……アモルフアス系
半導体、4……透明導電膜、5……くし状電極、
C,C1,C2……PN接合の単位セル、A,A
1,A2……PIN接合の単位セル、Ega,Ega
1,Ega2……アモルフアス系半導体のエネルギ
ーギヤツプ、Egc,Egc1,Egc2……結晶系半
導体のエネルギーギヤツプ、HJ……結晶系半導
体とアモルフアス系半導体とのヘテロ接合部、
OJ……単位セル間のオーミツク接合部。
FIGS. 1A and 1B are a block diagram and an energy band diagram, respectively, of a first embodiment of the solar cell of the present invention, and FIG. 2 is a diagram of the solar cell shown in FIG. 1.
Characteristics (the horizontal axis is the output voltage Vout [V] of the solar cell,
The vertical axis is a diagram showing the output current Iout [mA/cm 2 ]) of the solar cell, FIG. 3 is a block diagram of the second embodiment of the solar cell of the present invention, and FIG. 4 A and B are respectively The block diagram and energy band diagram of the third embodiment of the present invention, and FIGS. 5 and 6 are block diagrams of the fourth and fifth embodiments of the solar cell of the present invention, respectively. 1, 1'... Electrode, 2, 2', 8... Crystal semiconductor, 3, 7, 11 to 16... Amorphous semiconductor, 4... Transparent conductive film, 5... Comb-shaped electrode,
C, C1, C2...Unit cell of PN junction, A, A
1, A2...Unit cell of PIN junction, Ega, Ega
1, Ega2... Energy gap of amorphous semiconductor, Egc, Egc1, Egc2... Energy gap of crystalline semiconductor, HJ... Heterojunction between crystalline semiconductor and amorphous semiconductor,
OJ: Ohmic junction between unit cells.

Claims (1)

【特許請求の範囲】 1 単結晶または多結晶の結晶系半導体とアモル
フアスまたは微結晶のアモルフアス系半導体とを
PNヘテロ接合した結晶系単位セルを、結晶系半
導体と同種に価電制御されたアモルフアス系半導
体を介して、複数個直列に積層し、前記各結晶系
単位セル界面部にある2つのアモルフアス系半導
体により、各結晶系単位セル間に光学的に透明な
オーミツク接合を形成したタンデム型太陽電池。 2 前記結晶系半導体のうち、入射光側と反対の
最外側の半導体がウエハである特許請求の範囲第
1項に記載のタンデム型太陽電池。 3 前記結晶系半導体が、薄膜半導体である特許
請求の範囲第1項に記載のタンデム型太陽電池。 4 単結晶または多結晶の結晶系半導体とアモル
フアスまたは微結晶のアモルフアス系半導体とを
PNヘテロ接合した結晶系単位セルを、結晶系半
導体と同種に価電制御されたアモルフアス系半導
体を介して、複数個直列に積層し、前記各結晶系
単位セル界面部にある2つのアモルフアス系半導
体により、各結晶系単位セル間に光学的に透明な
オーミツク接合を形成することにより、結晶系タ
ンデム型セルを形成し、さらにアモルフアスまた
は微結晶半導体よりなるPIN接合したアモルフア
ス系単位セルを1単位以上直列に積層することに
より形成したアモルフアス系セルを前記結晶系タ
ンデム型セル上に積層し、前記結晶系タンデム型
セルとアモルフアス系セルの界面部で接する2つ
のアモルフアス系半導体により光学的に透明なオ
ーミツク接合を形成したタンデム型太陽電池。 5 前記結晶系半導体のうち、入射光側と反対の
最外側の半導体がウエハである特許請求の範囲第
4項に記載のタンデム型太陽電池。 6 前記結晶系半導体が、薄膜半導体である特許
請求の範囲第4項に記載のタンデム型太陽電池。
[Claims] 1. A single-crystal or polycrystalline crystalline semiconductor and an amorphous or microcrystalline amorphous semiconductor.
A plurality of PN heterojunction crystalline unit cells are stacked in series via an amorphous semiconductor whose valence is controlled to be the same as that of the crystalline semiconductor, and two amorphous semiconductors are stacked at the interface of each crystalline unit cell. This is a tandem solar cell that forms an optically transparent ohmic junction between each crystalline unit cell. 2. The tandem solar cell according to claim 1, wherein among the crystalline semiconductors, the outermost semiconductor opposite to the incident light side is a wafer. 3. The tandem solar cell according to claim 1, wherein the crystalline semiconductor is a thin film semiconductor. 4 Single crystal or polycrystalline crystalline semiconductor and amorphous or microcrystalline amorphous semiconductor
A plurality of PN heterojunction crystalline unit cells are stacked in series via an amorphous semiconductor whose valence is controlled to be the same as that of the crystalline semiconductor, and two amorphous semiconductors are stacked at the interface of each crystalline unit cell. By forming an optically transparent ohmic junction between each crystalline unit cell, a crystalline tandem cell is formed, and one or more units of PIN-junctioned amorphous unit cells made of amorphous or microcrystalline semiconductor are formed. An optically transparent ohmic is formed by stacking an amorphous cell formed by stacking in series on the crystalline tandem cell, and two amorphous semiconductors contacting each other at the interface between the crystalline tandem cell and the amorphous cell. Tandem solar cell with junction formed. 5. The tandem solar cell according to claim 4, wherein among the crystalline semiconductors, the outermost semiconductor opposite to the incident light side is a wafer. 6. The tandem solar cell according to claim 4, wherein the crystalline semiconductor is a thin film semiconductor.
JP58049318A 1982-12-29 1983-03-24 Hetero junction solar battery and manufacture thereof Granted JPS59175170A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58049318A JPS59175170A (en) 1983-03-24 1983-03-24 Hetero junction solar battery and manufacture thereof
US06/528,988 US4496788A (en) 1982-12-29 1983-09-02 Photovoltaic device
DE8383112159T DE3379565D1 (en) 1982-12-29 1983-12-02 Photovoltaic device
EP83112159A EP0113434B2 (en) 1982-12-29 1983-12-02 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58049318A JPS59175170A (en) 1983-03-24 1983-03-24 Hetero junction solar battery and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59175170A JPS59175170A (en) 1984-10-03
JPH0526354B2 true JPH0526354B2 (en) 1993-04-15

Family

ID=12827612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049318A Granted JPS59175170A (en) 1982-12-29 1983-03-24 Hetero junction solar battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59175170A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180952U (en) * 1987-05-13 1988-11-22
JP2738557B2 (en) * 1989-03-10 1998-04-08 三菱電機株式会社 Multilayer solar cell
JPH0795603B2 (en) * 1990-09-20 1995-10-11 三洋電機株式会社 Photovoltaic device
JPH05299677A (en) * 1992-04-24 1993-11-12 Fuji Electric Co Ltd Solar battery and its manufacture
JP3271990B2 (en) 1997-03-21 2002-04-08 三洋電機株式会社 Photovoltaic device and method for manufacturing the same
CN101675527A (en) * 2007-04-09 2010-03-17 加利福尼亚大学董事会 Low resistance tunnel junctions for high efficiency tandem solar cells
US7947523B2 (en) 2008-04-25 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
US7951656B2 (en) 2008-06-06 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5868503B2 (en) 2012-06-13 2016-02-24 三菱電機株式会社 Solar cell and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713185A (en) * 1980-06-26 1982-01-23 Asahi Chem Ind Co Ltd Photoelectrolysis device
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element
JPS57124482A (en) * 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633888A (en) * 1979-08-29 1981-04-04 Seiko Epson Corp Solar battery
JPS5713185A (en) * 1980-06-26 1982-01-23 Asahi Chem Ind Co Ltd Photoelectrolysis device
JPS5760875A (en) * 1980-09-25 1982-04-13 Sharp Corp Photoelectric conversion element
JPS57124482A (en) * 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Solar cell

Also Published As

Publication number Publication date
JPS59175170A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
EP0113434B1 (en) Photovoltaic device
US10707368B2 (en) Solar cell having a plurality of absorbers connected to one another by means of charge-carrier-selective contacts
US4433202A (en) Thin film solar cell
US4476346A (en) Photovoltaic device
JP2999280B2 (en) Photovoltaic element
KR20080033955A (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
CN102804392A (en) Semiconductor optical detector structure
US4600801A (en) Fluorinated, p-doped microcrystalline silicon semiconductor alloy material
JPH04230082A (en) Chalcopyrite solar battery
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4781765A (en) Photovoltaic device
US4710786A (en) Wide band gap semiconductor alloy material
KR20180045587A (en) Solar cell and meaufacturing method of solar cell
JPH04130671A (en) Photovoltaic device
JPH0526354B2 (en)
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JP2001028452A (en) Photoelectric conversion device
KR101484620B1 (en) Silicon solar cell
JPS609178A (en) Photovoltaic device
JPH0424878B2 (en)
US20080308144A1 (en) Integrated thin-layer photovoltaic module
JPH11103080A (en) Solar cell
JPS636882A (en) Photocell of tandem structure
US5959239A (en) Thermovoltaic semiconductor device including a plasma filter