JPS609178A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS609178A
JPS609178A JP58115963A JP11596383A JPS609178A JP S609178 A JPS609178 A JP S609178A JP 58115963 A JP58115963 A JP 58115963A JP 11596383 A JP11596383 A JP 11596383A JP S609178 A JPS609178 A JP S609178A
Authority
JP
Japan
Prior art keywords
layer
junctions
photovoltaic device
type
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58115963A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nozaki
野崎 秀俊
Takaaki Kamimura
孝明 上村
Tamotsu Hatayama
畑山 保
Tadashi Utagawa
忠 歌川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58115963A priority Critical patent/JPS609178A/en
Publication of JPS609178A publication Critical patent/JPS609178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve conversion efficiency by forming at least one layer in a P type layer and an N type layer forming a P-N junction as the connecting section of a unit photovoltaic cell into a crystallite semiconductor layer. CONSTITUTION:Unit photovoltaic cells using amorphous semiconductor layers with P-I- N type junctions are laminated on a conductive substrate 21 in succession, and the P-N junctions as the connecting sections of the unit photovoltaic cells in a photovoltaic device, on the surface thereof a conductive layer is formed, are shaped in crystallite semiconductor layers. Consequently, when the crystallite semiconductor layers are used as the P-N junctions, junctions, rectification factors thereof are smaller than any P-N junctions by an amorphous semiconductor and recombination currents in junction surfaces thereof are large, are obtained. Accordingly, the short-circuiting photocurrents JSC of the photovoltaic device can be increased. When forming the P-N junctions, optical forbidden band width also extends over 1.7eV or more and the quantity of beams being absorbed is reduced sufficiently in a P type layer even when the film thickness of the P type layer and an N type layer is selected properly within a range of 50Angstrom or more in which the junctions of the unit cells can be formed appropriately because an impurity need not be doped in high concentration. High release voltage can be obtained by said effect, and conversion efficiency is improved.

Description

【発明の詳細な説明】 [発明の属する技術分野コ 本発明は太陽電池や光検出器などの光起電力装置如関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to photovoltaic devices such as solar cells and photodetectors.

〔従来技術とその問題点] シラン(8’iH+)やフロルシリコン(SiF4)す
E (D 化合物ガスをグロー放電分解して得られる非
晶質半導体は、禁止帯幅中の平均局在準位密度が131
76m”以下と小さくなるために、P型、N型の不純物
制御が可能となることが近年確認され、それ以来低コス
ト、量産性に優れた太陽電池材料として非晶質半導体が
注目されてきた。
[Prior art and its problems] Amorphous semiconductors obtained by glow discharge decomposition of silane (8'iH+) and fluorosilicon (SiF4) compound gas have an average localized level in the forbidden band width. Density is 131
In recent years, it has been confirmed that amorphous semiconductors can be made small to 76m" or less, making it possible to control P-type and N-type impurities. Since then, amorphous semiconductors have attracted attention as solar cell materials that are low-cost and easy to mass-produce. .

グロー放電分解法を用いた非晶質半導体形成法の利点の
ひとつは、グロー放電雰囲気中に導入されるガスの種類
を変えるだけで、P型、I型およびN型の非晶質半導体
層を任意の順で容易かつ連続的に所望の数だけ形成でき
ることである。
One of the advantages of the amorphous semiconductor formation method using the glow discharge decomposition method is that P-type, I-type, and N-type amorphous semiconductor layers can be formed by simply changing the type of gas introduced into the glow discharge atmosphere. A desired number of layers can be formed easily and continuously in any order.

この利点を利用して、P型、■型およびN型の非晶質シ
リコン層よシ構成される単位光起電力セルを複数個積層
させることにょシ、すなわちpin/pin/p・・・
n/pin構造の多層薄膜を形成することによシ、単独
で高電圧の出方を発生する光起電力装置が提案された(
特開昭55−125680 )。
Taking advantage of this advantage, it is possible to stack a plurality of unit photovoltaic cells composed of P-type, ■-type, and N-type amorphous silicon layers, that is, pin/pin/p...
A photovoltaic device that independently generates a high voltage by forming a multilayer thin film with an n/pin structure has been proposed (
JP-A-55-125680).

これは、上記光起電力装置を構成する単位光起電力セル
の接合部であるP−N接合において、接合面での再結合
電流が非常に大きく、接合の整流特性が悪いことを利用
するものである。各単位光起電力セルに光が入射すると
、生成された電子−正孔対は内蔵電界により分離され、
それぞれ反対方向に移動してP−N接合面で再結合し、
その再結合電流が隣接する単位光起電力セル間を流れる
唯一の電流を形成すると々になる。
This takes advantage of the fact that in the P-N junction, which is the junction of the unit photovoltaic cells that make up the photovoltaic device, the recombination current at the junction surface is extremely large and the rectification characteristics of the junction are poor. It is. When light enters each unit photovoltaic cell, the generated electron-hole pairs are separated by the built-in electric field,
They move in opposite directions and recombine at the P-N junction,
The recombination current often forms the only current flowing between adjacent unit photovoltaic cells.

従って、上記光起電力装置の等何回路は第1図のように
書くととができる。
Therefore, the equivalent circuit of the photovoltaic device described above can be written as shown in FIG.

第1図において、11 、12 、13は直流電流源、
14゜15 、16はダイオード、17 、18 、1
9は抵抗である。
In FIG. 1, 11, 12, 13 are DC current sources,
14゜15, 16 are diodes, 17, 18, 1
9 is resistance.

この結果、開放電圧VOCは直列接続効果により各単位
セルの開放電圧の和になるが、一方短絡光電流Jscは
1個々の単位セルが発生する短絡光電流の中での最小値
によって制約されることになる。
As a result, the open-circuit voltage VOC becomes the sum of the open-circuit voltages of each unit cell due to the series connection effect, while the short-circuit photocurrent Jsc is constrained by the minimum value among the short-circuit photocurrents generated by each unit cell. It turns out.

更にP−N接合面における再結合過程の支配度が小さい
ほど、すなわち接合の整流特性が良好なほど、再結合電
流が小さくなるので、短絡光電流Jscが損失する結果
となる。
Furthermore, the smaller the degree of dominance of the recombination process at the P-N junction surface, that is, the better the rectification characteristics of the junction, the smaller the recombination current becomes, resulting in a loss of the short-circuit photocurrent Jsc.

しかしながら、従来の上記光起電力装置においては、P
−N接合が非晶質半導体層(特に非晶質シリコン層)の
みによって形成されており、その場合整流比は印加電圧
±1vで約1桁以上あるために、各単位セール内部で発
生した短絡光電流を十分に再結合電流に変換し得ていな
いという欠点があったθ またこの欠点を補う方法として、非常に高濃度(ドーパ
ント濃度>1at5J)にドーピングされだP −N 
接合を用いて再結合電流を増やすことも可能であるが、
その場合、特にP型層の光学的禁止帯幅が1.7e■以
下とせまくなシ、そこでの光吸収量が増加するので、入
射光に対して裏面側に位置する単位セルに到達する質量
が少くなり結果的に光短絡電流が減少してしまう。一方
P1型層の膜厚を薄< (201〜50X)すれば、そ
こでの光吸収量を減することもできるが、そうすると単
位セルの接合が適切に形成されず、結果として開放電圧
VOCを下げることになってしまうという問題が起こる
However, in the conventional photovoltaic device, P
-N junction is formed only by an amorphous semiconductor layer (particularly an amorphous silicon layer), and in that case, the rectification ratio is about one order of magnitude or more at an applied voltage of ±1V, so short circuits occur inside each unit sale. There was a drawback that the photocurrent could not be sufficiently converted into a recombination current θ.Also, as a way to compensate for this drawback, P-N was doped at a very high concentration (dopant concentration > 1at5J).
Although it is possible to increase the recombination current using junctions,
In that case, the optical bandgap width of the P-type layer must be narrow, especially less than 1.7e■, and the amount of light absorbed there increases, so the mass reaching the unit cell located on the back side with respect to the incident light As a result, the optical short circuit current decreases. On the other hand, if the thickness of the P1 type layer is made thin < (201~50X), the amount of light absorbed there can be reduced, but in this case, the junction of the unit cell will not be formed properly, and as a result, the open circuit voltage VOC will be lowered. The problem arises that something happens.

以上述べたように、従来の上記光起電力装置において、
P−N接合を非晶質半導体層のみKよって形成すると、
上記の問題点により、変換効率の損失が発生するという
欠点があった。
As mentioned above, in the conventional photovoltaic device,
When a P-N junction is formed using K only in the amorphous semiconductor layer,
Due to the above-mentioned problems, there is a drawback that a loss in conversion efficiency occurs.

[発明の目的] 従って、本発明は、高電圧を出力し得る多層薄膜光起電
力装置において、変換効率を従来よりも向上させること
を目的とする。
[Object of the Invention] Therefore, an object of the present invention is to improve the conversion efficiency in a multilayer thin film photovoltaic device capable of outputting high voltage compared to the conventional one.

[発明の概要] 本発明は、単位光起電力セルの接続部であるP−N接合
を形成するP型層とN型層のうち少くとも1層を微結晶
半導体層とするように構成したものである。
[Summary of the Invention] The present invention is configured such that at least one layer of a P-type layer and an N-type layer forming a P-N junction, which is a connecting portion of a unit photovoltaic cell, is a microcrystalline semiconductor layer. It is something.

[発明の効果] 非晶質半導体の活性化エネルギー△EはP型。[Effect of the invention] The activation energy △E of an amorphous semiconductor is P type.

N型とも非常に高濃度ドーピング(ドーパント濃度)1
at%)を行っても約0.2eV程度であるが、−万機
結晶半導体は、粒径数10X〜数Ioo Xの微結晶が
非晶質ネットワーク中に存在するために、極度にドーピ
ング効率が高く、高濃度ドーピングを行わなくとも容易
に△Eを約Q、leV以下にすることができる。
Both N type and very high concentration doping (dopant concentration) 1
At%), the doping efficiency is about 0.2 eV, but the doping efficiency is extremely low in -Machicrystalline semiconductors because microcrystals with a grain size of several 10X to several IooX exist in the amorphous network. is high, and ΔE can be easily reduced to about Q, leV or less without high-concentration doping.

従ってP−N接合に微結晶半導体層を用いれば非晶質半
導体によるいかなるP−N接合よりも整流比が小さく、
かつ接合面での再結合篭筒が大きい接合が得られる。
Therefore, if a microcrystalline semiconductor layer is used for the P-N junction, the rectification ratio will be smaller than any P-N junction made of an amorphous semiconductor.
In addition, a joint with a large recombination basket at the joint surface can be obtained.

従って、本発明の構成により、光起電力装置の短絡光電
流Jscを増加させることができる。
Therefore, with the configuration of the present invention, the short-circuit photocurrent Jsc of the photovoltaic device can be increased.

まだP−N接合を形成する際に、高濃度ドーピングを行
う必要がないので光学的禁止帯幅も1.7eV以上であ
シP型層およびN型層の膜厚を単位セルの接合を適切に
形成し得るに足る501以上の範囲で適当に選んでもP
型層においての光吸収量は十分小さい。この効果によっ
て従来よりも更に高い開放電圧を得ることができる。
When forming a P-N junction, it is not necessary to do high concentration doping, so the optical bandgap must be 1.7 eV or more. Even if you choose appropriately within the range of 501 or more that is sufficient to form
The amount of light absorbed in the mold layer is sufficiently small. This effect makes it possible to obtain a higher open circuit voltage than in the past.

すなわち、以上の効果により従来よりも変換効率の向上
が実現される。
That is, due to the above effects, an improvement in conversion efficiency is realized compared to the conventional method.

[発明の実施例] 以下に本発明の一実施例を説明する。[Embodiments of the invention] An embodiment of the present invention will be described below.

真空容器内に導入する原料ガスは2チ〜100チSiH
4/H2、2500p9mB2H6/H2、2500p
pm PH3/H2であり、ドーピン・グ層を形成する
ときは、B2H6/81H4= 0.1〜2%、PH3
/S 1H4=0.1〜3チとなるようにこれらのガス
混合比を調節した。真空の反応容器内に原料ガスを導入
したのち、ガス圧力は0.3〜5Torr、印加高周波
パワーは13.56MHz o周波数で5〜200 W
 、基板温度は200〜350°Cに調整し、薄膜形成
を行った。このとき、膜の成長速度は、p型、n型層の
場合1000X−10000X7hr、i型層の場合2
000A〜15000X/hrであった。
The raw material gas introduced into the vacuum container is 2 to 100 SiH.
4/H2, 2500p9mB2H6/H2, 2500p
pm PH3/H2, and when forming a doping layer, B2H6/81H4 = 0.1-2%, PH3
The mixing ratio of these gases was adjusted so that /S 1H4 = 0.1 to 3. After introducing the raw material gas into a vacuum reaction vessel, the gas pressure was 0.3 to 5 Torr, and the applied high frequency power was 5 to 200 W at a frequency of 13.56 MHz.
The substrate temperature was adjusted to 200 to 350°C to form a thin film. At this time, the growth rate of the film is 1000X-10000X7hr for p-type and n-type layers, and 2x for i-type layer.
000A to 15000X/hr.

従って光起電力装置を構成する各層の膜厚は形成時間を
調節して任意にかつ容易に設定することができる。
Therefore, the thickness of each layer constituting the photovoltaic device can be arbitrarily and easily set by adjusting the formation time.

微結晶半導体膜、本実施例では微結晶シリコン膜である
が、これの形成条件は、上記条件のうちガス圧力は1〜
5Torrの高ガス圧力、印加高周波パワーは50〜2
00Wの高パワー、そしてシランガス(S 1H4)の
水素希釈度は2%〜10チの比較的大きい領域であった
。まだ、これらの条件で形成した膜が微結晶半導体膜で
あることは、X線回折像により容易に確認できた。
The microcrystalline semiconductor film, which is a microcrystalline silicon film in this example, is formed under the following conditions:
High gas pressure of 5 Torr, applied high frequency power is 50~2
The power was as high as 00 W, and the hydrogen dilution of silane gas (S 1H4) was in a relatively large range of 2% to 10%. However, it was easily confirmed by the X-ray diffraction image that the film formed under these conditions was a microcrystalline semiconductor film.

第2図は、−例として単位セル数が3個である場合の光
起電力装置の断面図である。第2図にはPN接合を構成
するP型、N型層が各層とも微結晶シリコン膜である例
を示しだが、一方だけ微結晶シリコン膜であっても、こ
れに近いかあるいは同等の効果が得られる。
FIG. 2 is a sectional view of a photovoltaic device in which the number of unit cells is three, for example. Figure 2 shows an example in which the P-type and N-type layers constituting the PN junction are both microcrystalline silicon films, but even if only one is a microcrystalline silicon film, similar or equivalent effects can be obtained. can get.

第2図において、21はステンレス基! 、32.35
 。
In Figure 2, 21 is a stainless steel base! , 32.35
.

羽は非晶質シリコンi型2層、33 、 :36 、3
9は微結晶シリコンn型層、31は非晶質シリコンP型
層、34゜37は微結晶シリコンP型層であり、31 
、32 、33で22の第1.34 、35 、36で
乙の第2、そして37 、38 、39で冴の第3のP
IN型単位光起電力セルを構成しており、5はITOな
どの表面の導電層膜である。
Wings are amorphous silicon i-type 2 layers, 33, :36,3
9 is a microcrystalline silicon n-type layer, 31 is an amorphous silicon P-type layer, 34°37 is a microcrystalline silicon P-type layer, 31
, 32, 33 are the 1st P of 22. Otsu's 2nd P is 34, 35, 36, and Sae's 3rd P is 37, 38, 39.
It constitutes an IN-type unit photovoltaic cell, and 5 is a conductive layer film on the surface such as ITO.

太陽光などの入射光は25から照射される□勿論、単位
セルの構造は、第2図とは反対にNIP型でも本発明は
有効である。
Incident light such as sunlight is irradiated from 25. □Of course, the present invention is also effective even if the unit cell structure is an NIP type, contrary to that shown in FIG.

第2図では、単位セル数n = 3の場合を示したが、
これ以外に同様な構成でn=1.2,4.5のものを形
成した。これら、5通りのサンプルにおいては、P型、
N型層に微結晶シリコン層を用い、膜厚は各層とも単位
セルの接合が不充分にならないように、また微結晶層の
効果により、PN接合部での光吸収が小さいことを考え
て、60〜120Xとした。
Figure 2 shows the case where the number of unit cells is n = 3, but
Other than this, similar structures were formed with n=1.2 and 4.5. In these five samples, P type,
A microcrystalline silicon layer is used as the N-type layer, and the thickness of each layer is set so that the unit cell junction is not insufficient, and the effect of the microcrystalline layer is to minimize light absorption at the PN junction. It was set to 60-120X.

i型層は非晶質シリコン層を用いておシ、その膜厚は各
単位セル内で発生する光電流が等しくかつ最大になるよ
うに決め、入射光側から深くなるにつれて厚くなるよう
に設計したが、それらは100〜10000 Aの範囲
内とした。
The i-type layer is an amorphous silicon layer, and its thickness is determined so that the photocurrent generated in each unit cell is equal and maximum, and is designed to become thicker as it goes deeper from the incident light side. However, they were within the range of 100 to 10,000 A.

一方比較のために、1層を全く同一にして、PN接合を
非晶質シリコンで形成した光起電力装置もn=1.2,
3,4.5の5通シのものを形成した。
On the other hand, for comparison, there is also a photovoltaic device in which one layer is exactly the same and the PN junction is formed of amorphous silicon, n=1.2.
Five sets of 3, 4.5 were formed.

このとき再結合電流を大きくするために、高濃度ドーピ
ングをしたP+N+接合を形成したが、P+型層での光
吸収を減するために同層の膜厚を20〜50 Kと薄く
し、またn型層の膜厚は60〜100Xとした。
At this time, in order to increase the recombination current, a heavily doped P+N+ junction was formed, but in order to reduce light absorption in the P+ type layer, the thickness of the same layer was reduced to 20 to 50 K, and The thickness of the n-type layer was 60 to 100X.

第3図は、以上の実験結果をまとめだものであシ、PN
接合や微結晶シリコンで形成した場合(実線)と、非晶
質シリコンで形成した場合(破線)のA M −1,1
00mw/m照射下の変換効率を比較したものである。
Figure 3 summarizes the above experimental results.
A M −1,1 when formed using bonding or microcrystalline silicon (solid line) and when formed using amorphous silicon (broken line)
This is a comparison of conversion efficiency under irradiation of 00 mw/m.

第3図では、横軸に単位セル数、縦軸に変換効率を任意
単位で表しだものであるO 第3図より、PN接合を微結晶半導体層(この場合シリ
コン層)を用いて構成したことによりJsc 、 Vo
cとも大きくなるので変換効率を確実に向上させること
が明瞭にわかる。
In Figure 3, the horizontal axis represents the number of unit cells and the vertical axis represents the conversion efficiency in arbitrary units. By Jsc, Vo
It can be clearly seen that the conversion efficiency is certainly improved since both c and c become larger.

[発明の他の実施例] 単位光起電力セルの接合部であるPN接合を微結晶シリ
コン層(以下微結晶であることをμCと記す)で形成す
る他に、pc−8ic 、 1tc−8i(3e 、 
μc−81GeC、μC−Geまたはttc−GeC膜
などを単独であるいは絹み合わせて用いて形成しても、
本発明は有効である。又、例えば層34 、37をμc
−8iCで、33 、36をμc−8i:H−としてP
N接合をヘテロ接合としてもよい。この様にすれば、格
子定数差により接合部に界面準位が多く生じ再結合電流
が犬きくなり Jscを一層増加させる事ができる。勿
論、μc−8iGe/μc−8i:H等信の組み合わせ
でヘテロ接合を実現してもよい。
[Other embodiments of the invention] In addition to forming a PN junction, which is a junction of a unit photovoltaic cell, with a microcrystalline silicon layer (hereinafter microcrystalline is referred to as μC), pc-8ic, 1tc-8i (3e,
Even if it is formed using μc-81GeC, μC-Ge or ttc-GeC film alone or in combination,
The present invention is effective. Also, for example, the layers 34 and 37 may be
-8iC, P with 33 and 36 as μc-8i:H-
The N junction may be a heterojunction. If this is done, many interface states will be generated at the junction due to the difference in lattice constant, and the recombination current will become stronger, making it possible to further increase Jsc. Of course, a heterojunction may be realized by a combination of μc-8iGe/μc-8i:H or the like.

4配位元素のゲルマニウムGeを膜中に含有させるため
には、導入ガス中にゲルマンガス(GeH4)を混合さ
せ、また炭素Cを含有させるためにはCH4などの炭化
水素ガスを混合させれば良い。
In order to contain germanium Ge, a four-coordinate element, in the film, germane gas (GeH4) is mixed in the introduced gas, and in order to contain carbon C, a hydrocarbon gas such as CH4 is mixed. good.

以上の実施例では、i型層を非晶質シリコン層で形成し
た例を示したが、同層よりも光学的禁止帯幅がせまく長
波長光をより有効に吸収できる材料、例えば非晶質シリ
コン・ゲルマニウム層を1型層に用いれば、更に効率の
向上が図シれる。この場合、入射光側から深くなるにつ
れてi型層の光学的禁止帯幅が狭くなるように構成すれ
ば良い。
In the above embodiments, an example was shown in which the i-type layer was formed of an amorphous silicon layer. If a silicon germanium layer is used as the type 1 layer, the efficiency can be further improved. In this case, the structure may be such that the optical forbidden band width of the i-type layer becomes narrower as the depth increases from the incident light side.

また、PN接合を単層のP型層とN型層によシ構成する
以外に、例えばP型層を非晶質半導体層と微結晶半導体
層の組み合せで形成しても、N層と接続するP型層が微
結晶層であれば、かまわない。
In addition to forming a PN junction with a single P-type layer and an N-type layer, it is also possible to form a P-type layer with a combination of an amorphous semiconductor layer and a microcrystalline semiconductor layer and connect it to the N layer. There is no problem as long as the P-type layer to be used is a microcrystalline layer.

このことはN型層についても同様である。なお、基板が
ステンレス基板の場合について実施例を示したが、基板
としてはこの他ITOなどの導間導電膜を被着させたガ
ラス板または有機フィルムを用いても良いのはいうまで
もない。
This also applies to the N-type layer. Although the embodiments have been described with reference to the case where the substrate is a stainless steel substrate, it goes without saying that a glass plate or an organic film coated with an interconductive film such as ITO may also be used as the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光起電力装置の等価回路図、第2図は本発明の
光起電力装置の一例を示す断面図、第3図は本発明の光
起電力装置特性を従来例と比較した特性図である。 図において、 11 、12 、13・・・直流電流源、14 、15
 、16・・・ダイオード、17 、18 、19・・
・抵抗、 21・・・基板、22 、23 、24・・
単位光起電力セル、5・・・導電層。 代理人 弁理士 則 近 憲 佑 (他1名)
Fig. 1 is an equivalent circuit diagram of a photovoltaic device, Fig. 2 is a sectional view showing an example of the photovoltaic device of the present invention, and Fig. 3 is a comparison of characteristics of the photovoltaic device of the present invention with conventional examples. It is a diagram. In the figure, 11, 12, 13... DC current sources, 14, 15
, 16...diode, 17, 18, 19...
・Resistance, 21... Board, 22, 23, 24...
Unit photovoltaic cell, 5... conductive layer. Agent Patent attorney Kensuke Chika (1 other person)

Claims (1)

【特許請求の範囲】 (])PIN型接合を有する非晶質半導体層を用いた単
位光起電力セルを導電性基板上に複数個順次積層し、そ
の表面に導電層を設けた光起電力装置において、上記単
位光起電力セルの接続部であるP−N接合を形成するP
型層とN型層のうち少くとも1層が微結晶半導体層であ
ることを特徴とする光起電力装置。 (2)非晶質半導体層を構成する4配位元素がシリコン
、ゲルマニウム、錫、鉛および炭素のうち少くとも1種
類を含んでいることを特徴とする特許(3)微結晶半導
体層を構成する4配位元素がシリコンであることを特徴
とする前記特許請求の範囲第1項記載の光起電力装置。 第1項記載の光起電力装置。 (5)微結晶半導体層を構成する4配位元素がシリコン
とゲルマニウムであることを特徴とする前記特許請求の
範囲第1項記載の光起電力装置。 (6)微結晶半導体層を構成する4配位元素がシリコン
とゲルマニウムと炭素であることを特徴とする前記特許
請求の範囲第1項記載の光起電力装置。 (力微結晶半導体層を構成する4配位元素がゲルマニウ
ムであることを特徴とする前記特許請求の範囲第1項記
載の光起電力装置。 (8)微結晶半導体層を構成する4配位元素がゲルマニ
ウムと炭素であることを特徴とする前記特許請求の範囲
第1項記載の光起電力装置。 (9)P型層とN型層を微結晶半導体層によシ構成し、
そのPN接合をペテロ接合とした事を特徴とする前記特
許請求の範囲第1項記載の光起電力装置0
[Claims] (]) A photovoltaic device in which a plurality of unit photovoltaic cells using an amorphous semiconductor layer having a PIN type junction are sequentially stacked on a conductive substrate, and a conductive layer is provided on the surface of the unit photovoltaic cells. In the device, a
A photovoltaic device characterized in that at least one of the type layer and the N-type layer is a microcrystalline semiconductor layer. (2) A patent characterized in that the four-coordinated element constituting the amorphous semiconductor layer contains at least one of silicon, germanium, tin, lead, and carbon. (3) Constituting a microcrystalline semiconductor layer 2. The photovoltaic device according to claim 1, wherein the four-coordinated element is silicon. The photovoltaic device according to item 1. (5) The photovoltaic device according to claim 1, wherein the four-coordinate elements constituting the microcrystalline semiconductor layer are silicon and germanium. (6) The photovoltaic device according to claim 1, wherein the four-coordinated elements constituting the microcrystalline semiconductor layer are silicon, germanium, and carbon. (Photovoltaic device according to claim 1, characterized in that the 4-coordination element constituting the microcrystalline semiconductor layer is germanium. (8) The 4-coordination element constituting the microcrystalline semiconductor layer The photovoltaic device according to claim 1, characterized in that the elements are germanium and carbon. (9) The P-type layer and the N-type layer are constituted by a microcrystalline semiconductor layer,
The photovoltaic device 0 according to claim 1, characterized in that the PN junction is a Peter junction.
JP58115963A 1983-06-29 1983-06-29 Photovoltaic device Pending JPS609178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115963A JPS609178A (en) 1983-06-29 1983-06-29 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115963A JPS609178A (en) 1983-06-29 1983-06-29 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS609178A true JPS609178A (en) 1985-01-18

Family

ID=14675467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115963A Pending JPS609178A (en) 1983-06-29 1983-06-29 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS609178A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172380A (en) * 1985-01-28 1986-08-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62101081A (en) * 1985-10-28 1987-05-11 Sumitomo Electric Ind Ltd Tandem structure solar battery
JPS6317567A (en) * 1986-07-09 1988-01-25 Mitsubishi Electric Corp Photovoltaic element
JPS63120476A (en) * 1986-11-10 1988-05-24 Sanyo Electric Co Ltd Photovolatic device
JPS63275188A (en) * 1987-05-07 1988-11-11 Fuji Electric Co Ltd Photovoltaic device
US4805006A (en) * 1987-03-25 1989-02-14 Matsushita Electric Works, Ltd. Light receiving element
JPH01118497A (en) * 1987-07-13 1989-05-10 Oki Electric Ind Co Ltd Ic card with solar cell
US4875944A (en) * 1987-09-17 1989-10-24 Fuji Electric Corporate Research And Development, Ltd. Amorphous photoelectric converting device
US8130336B2 (en) 2007-06-11 2012-03-06 Sharp Kabushiki Kaisha Backlight apparatus, display apparatus and television receiver

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172380A (en) * 1985-01-28 1986-08-04 Semiconductor Energy Lab Co Ltd Semiconductor device
JPS62101081A (en) * 1985-10-28 1987-05-11 Sumitomo Electric Ind Ltd Tandem structure solar battery
JPS6317567A (en) * 1986-07-09 1988-01-25 Mitsubishi Electric Corp Photovoltaic element
JPS63120476A (en) * 1986-11-10 1988-05-24 Sanyo Electric Co Ltd Photovolatic device
JPH073876B2 (en) * 1986-11-10 1995-01-18 三洋電機株式会社 Photovoltaic device
US4805006A (en) * 1987-03-25 1989-02-14 Matsushita Electric Works, Ltd. Light receiving element
JPS63275188A (en) * 1987-05-07 1988-11-11 Fuji Electric Co Ltd Photovoltaic device
JPH01118497A (en) * 1987-07-13 1989-05-10 Oki Electric Ind Co Ltd Ic card with solar cell
US4875944A (en) * 1987-09-17 1989-10-24 Fuji Electric Corporate Research And Development, Ltd. Amorphous photoelectric converting device
US8130336B2 (en) 2007-06-11 2012-03-06 Sharp Kabushiki Kaisha Backlight apparatus, display apparatus and television receiver

Similar Documents

Publication Publication Date Title
US4255211A (en) Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
US7122733B2 (en) Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6300557B1 (en) Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
CA2340997C (en) Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US4332974A (en) Multilayer photovoltaic cell
US5376185A (en) Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US9853176B2 (en) Nitride-based multi-junction solar cell modules and methods for making the same
US5342453A (en) Heterojunction solar cell
US5223043A (en) Current-matched high-efficiency, multijunction monolithic solar cells
US6239354B1 (en) Electrical isolation of component cells in monolithically interconnected modules
US8435825B2 (en) Methods for fabrication of nanowall solar cells and optoelectronic devices
CA1222043A (en) Solar cells and photodetectors
US7309832B2 (en) Multi-junction solar cell device
US20060162767A1 (en) Multi-junction, monolithic solar cell with active silicon substrate
US20050081910A1 (en) High efficiency tandem solar cells on silicon substrates using ultra thin germanium buffer layers
CN103107226A (en) High efficiency multijunction solar cells
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
JPS58139478A (en) Amorphous solar battery
WO2004017425A1 (en) Multi-junction, monolithic solar cell with active silicon substrate
JPS609178A (en) Photovoltaic device
EP0248953A1 (en) Tandem photovoltaic devices
Krühler Amorphous thin-film solar cells
JPS6225275B2 (en)
JPS636882A (en) Photocell of tandem structure
US4725559A (en) Process for the fabrication of a gallium arsenide grating solar cell