JP2846397B2 - Copper alloy for connectors and terminals - Google Patents

Copper alloy for connectors and terminals

Info

Publication number
JP2846397B2
JP2846397B2 JP6352490A JP6352490A JP2846397B2 JP 2846397 B2 JP2846397 B2 JP 2846397B2 JP 6352490 A JP6352490 A JP 6352490A JP 6352490 A JP6352490 A JP 6352490A JP 2846397 B2 JP2846397 B2 JP 2846397B2
Authority
JP
Japan
Prior art keywords
copper alloy
connectors
terminals
alloys
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6352490A
Other languages
Japanese (ja)
Other versions
JPH03264630A (en
Inventor
清仁 石田
泰二 西沢
亮介 貝沼
真人 浅井
雄一 鈴木
守 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6352490A priority Critical patent/JP2846397B2/en
Publication of JPH03264630A publication Critical patent/JPH03264630A/en
Application granted granted Critical
Publication of JP2846397B2 publication Critical patent/JP2846397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた加工性を持ちながら、尚且つ高い強
度と高信頼性を有し、コネクター,端子材,ばね材及び
リードフレーム材等の電子電気機器用材として適した銅
合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has excellent workability, and also has high strength and high reliability, such as connectors, terminal materials, spring materials, and lead frame materials. The present invention relates to a copper alloy suitable as a material for electronic and electrical equipment.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

近年の電子電気産業における軽薄短小化は、そこで使
われる機器の小型化・軽量化を促し、それに伴い、その
構成部品の小型化・軽量化・高性能化が一段と望まれて
いる。この要求に対して、構成部品の基板を成す構造材
や、コネクター,リードフレーム材等も、小型・軽量化
の為に薄肉化が望まれ、従ってより高い強度を有する材
料が必要となってきていた。
In recent years, the reduction in size and weight of the electronic and electrical industry has promoted the reduction in size and weight of devices used therein, and accordingly, there has been a demand for further reduction in the size, weight and performance of components. In response to this demand, it is desired to reduce the thickness of the structural material constituting the component substrate, the connector, the lead frame material, etc. in order to reduce the size and weight, and accordingly, a material having higher strength is required. Was.

それに対して、従来は「Cu−Be」「Cu−Ti」等の析出
硬化型合金や「Cu−Ni−Sn」等のスピノーダル分解型合
金が使用されてきていたが、これらの合金では共通して
高温での熱処理とその後に行われる時効処理が不可欠で
あり、この工程は材料の特性を高める働きをするが、一
方特性の変動要因となるものであり、その制御の方法が
容易ではなくその為に、設備の導入や工程数の増加を招
き価格高騰の一因となっている。
In contrast, precipitation hardening alloys such as "Cu-Be" and "Cu-Ti" and spinodal decomposition alloys such as "Cu-Ni-Sn" have been used, but these alloys are common. However, heat treatment at a high temperature and subsequent aging treatment are indispensable, and this step serves to enhance the properties of the material, but on the other hand, it is a factor of fluctuating the properties, and the control method is not easy, so As a result, the introduction of equipment and an increase in the number of processes have been caused, which has contributed to a rise in prices.

更に、小型・軽量化と相まって使用環境がより厳しく
なりそれに対応する信頼性が高い事が要求されてきてい
るが、上記合金の中にはSn合金めっきとの密着性の熱的
経時劣化が著しく使用に耐えない物も出てきている。
又、エレクトロマイグレーション現象により電気短絡等
が頻発し、信頼性をなくす事も考えられてきている。
Furthermore, the use environment has become more severe in conjunction with the reduction in size and weight, and there has been a demand for higher reliability.However, among the above alloys, the thermal aging degradation of the adhesion with Sn alloy plating is remarkable. Some things are not usable.
Also, it has been considered that electrical short-circuiting or the like frequently occurs due to the electromigration phenomenon, and the reliability is lost.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、「Cu−Be」「Cu−Ti」等の析出硬化型合金
や「Cu−Ni−Sn」等のスピノーダル分解型合金が共通し
て抱えている製造性の難しさを解消し、低廉に且つ容易
に製造が可能で、且つ同等以上の優れた強度や延性や加
工性を併せもつと同時に、めっき密着性の経時劣化やエ
レクトロマイグレーション等を抑制する働きを示す高性
能銅合金を開発したものである。
The present invention solves the difficulty of manufacturability commonly encountered by spinodal decomposition type alloys such as precipitation hardening alloys such as `` Cu-Be '' and `` Cu-Ti '' and `` Cu-Ni-Sn '', Developed a high-performance copper alloy that can be manufactured easily at low cost, has excellent strength, ductility, and workability equal to or better than that, and also has the function of suppressing the deterioration of plating adhesion with time and electromigration. It was done.

即ち本発明合金の一つは、Mn5〜60wt%、Al2〜20wt%
及びZn0.2〜14wt%を含み、残部Cuと不可避的不純物か
らなることを特徴とするものである。
That is, one of the alloys of the present invention is Mn 5 to 60 wt%, Al 2 to 20 wt%
And Zn in an amount of 0.2 to 14 wt%, the balance being Cu and unavoidable impurities.

また本発明合金の他の一つは、Zn0.3〜14wt%と、第
1図に示すCu−Mn−Al三元状態図においてMn及びAlを
(Mn,Al)=(5wt%,15wt%),(40wt%,10wt%),
(5wt%,2.5wt%)(48wt%,2.5wt%)の4点で囲まれ
る範囲内の量を含み、残部Cuと不可避的不純物からなる
ことを特徴とするものである。
Another one of the alloys of the present invention is Zn 0.3 to 14 wt%, and Mn and Al are (Mn, Al) = (5 wt%, 15 wt%) in the Cu--Mn--Al ternary phase diagram shown in FIG. ), (40wt%, 10wt%),
(5 wt%, 2.5 wt%) (48 wt%, 2.5 wt%), including the amount within the range surrounded by the four points, the balance being Cu and inevitable impurities.

さらに本発明合金の他の一つは、Zn0.3〜14wt%と、
第1図に示すCu−Mn−Al三元状態図においてMn及びAlを
(Mn,Al)=(5wt%,15wt%),(40wt%,10wt%),
(5wt%,2.5wt%)(48wt%,2.5wt%)の4点で囲まれ
る範囲内の量を含み、さらに各々0.1〜3.5wt%のCo,Ni,
Si,Sn,Cdの内のいずれか1種もしくは2種以上、及び/
又は各々0.001〜0.5wt%のMg,P,Be,Sb,Cr,As,Zr,B,Y,La
の内のいずれか1種もしくは2種以上を総計で0.001〜
7.0wt%含み、残部Cuと不可避的不純物からなることを
特徴とするものである。
Furthermore, another one of the alloys of the present invention is Zn 0.3 to 14 wt%,
In the Cu-Mn-Al ternary phase diagram shown in FIG. 1, Mn and Al are (Mn, Al) = (5 wt%, 15 wt%), (40 wt%, 10 wt%),
(5 wt%, 2.5 wt%) (48 wt%, 2.5 wt%), including the amount within the range enclosed by the four points, and 0.1 to 3.5 wt% of Co, Ni,
One or more of Si, Sn, Cd, and / or
Or 0.001 to 0.5 wt% of Mg, P, Be, Sb, Cr, As, Zr, B, Y, La
0.001 or more of any one or more of them
It is characterized by containing 7.0 wt%, the balance being Cu and unavoidable impurities.

尚、本発明に係る銅合金は、液体化処理や時効処理等
の熱処理をしなくても、充分満足すべき特性が得られる
ものである。
In addition, the copper alloy according to the present invention can obtain sufficiently satisfactory characteristics without heat treatment such as liquefaction treatment and aging treatment.

〔作 用〕(Operation)

本発明の高力合銅合金を構成する合金成分の添加理由
とその組成範囲の限定理由について以下に述べる。
The reasons for adding the alloy components constituting the high-strength composite copper alloy of the present invention and the reasons for limiting the composition range will be described below.

先ず、本発明の主成分である、Mn及びAl元素は共添し
て含有する事により、その組織をβ相(fcc)を主体と
し、α相(bcc)や他の不確定相が混在する状態にす
る。そしてこの組織状態においては、理由は未だ解明さ
れていないが、極めて優れた加工性を示し、同時に高い
強度も併せて示すのに対して、上記の規定範囲未満では
その効果が弱く特に満足すべき強度を得る事が難しい。
逆に上記の範囲を越えての含有は難加工性を示すγ相が
生成し、本発明の特徴とする優れた加工性を低下させて
しまう為に、含有範囲を限定したものである。
First, Mn and Al elements, which are the main components of the present invention, are co-added and contained, so that the structure is mainly composed of β phase (fcc) and α phase (bcc) and other uncertain phases are mixed. State. And, in this structure state, although the reason has not been elucidated yet, it shows extremely excellent workability and at the same time shows high strength, but if it is less than the specified range, its effect is weak and it should be particularly satisfied It is difficult to get strength.
Conversely, if the content exceeds the above range, a γ phase showing difficult processability is generated, and the excellent processability characteristic of the present invention is reduced, so the content range is limited.

次にZnの含有については、厳密な理由は判らないが、
Znはめっき元素やMn,Al,他の副成分のめっき界面での拡
散・濃縮を抑制する働きを示し、それにより「めっき材
−基材界面」に脆性相が性されるのを妨げる。更に、Zn
元素は上記効果の外部に対する影響として、銅合金元素
やめっき元素の外への拡散成長(マイグレーション現
象)を抑える働きも持っている。そして前者の界面拡散
の抑制効果についてはZn含有量が0.3%を越えると顕著
に見られ、最大2%も含有していると充分である。後者
のマイグレーション現象に対する効果範囲としてはZn含
有量が1.0%を越えると徐々に効果が見られるが、3.0%
以上含有している事がマイグレーションの改善には望ま
しい。これに対して、14%を越えての含有は組織を変化
させ、熱間加工性を低下させる原因となる為に限定した
ものである。
Next, regarding the content of Zn, although the exact reason is not known,
Zn acts to suppress the diffusion and concentration of plating elements, Mn, Al, and other sub-components at the plating interface, thereby preventing the formation of a brittle phase at the “plating material-substrate interface”. Furthermore, Zn
The element also has a function of suppressing the diffusion growth (migration phenomenon) of the copper alloy element and the plating element to the outside as an influence of the above effect on the outside. The former effect of suppressing interfacial diffusion is remarkable when the Zn content exceeds 0.3%, and it is sufficient when the Zn content is at most 2%. The effect range for the latter migration phenomenon is gradually seen when the Zn content exceeds 1.0%.
The above content is desirable for improving migration. On the other hand, if the content exceeds 14%, the structure is changed and the hot workability is reduced, so that the content is limited.

副成分に関しては、本発明の特徴とする優れた加工性
を低下させずに、より高い強度を有する事を可能にする
もので、Co,Sn,Mg,Si,Vは特にその効果が大きい。又、
P,Be,Sb,Cr,As,Zr,B,Y,Laは熱間圧延や燃鈍間の熱履歴
による結晶粒の粗大化を防ぎ、コネクター材に必要とさ
れる曲げ部の表面性状を高める働きを示す。これらの副
成分の上記の規定範囲を越えての添加は、得られる強度
に対して、逆に特徴とする加工性を損なうと共に、溶解
・鋳造性を著しく低下させてしまい低廉に且つ容易に製
造出来なくなってしまう為に限定したものである。
Regarding the subcomponent, it is possible to have higher strength without deteriorating the excellent workability characteristic of the present invention, and Co, Sn, Mg, Si, and V are particularly effective. or,
P, Be, Sb, Cr, As, Zr, B, Y, La prevent coarsening of crystal grains due to heat history during hot rolling and annealing, and reduce the surface properties of the bent part required for connector materials. Demonstrate the work of raising. Addition of these sub-components beyond the above-specified ranges, on the other hand, impairs the workability, which is a characteristic of the strength obtained, and significantly lowers the melting and casting properties, resulting in low cost and easy production. It is limited because it will not be possible.

〔実施例〕〔Example〕

以下に本発明をその実施例を用いて説明する。 Hereinafter, the present invention will be described with reference to examples.

第1表に示す組成の合金を溶解し、厚さ30mmの鋳塊に
鋳造し、850℃,1時間の加熱保持後直ちにその温度から
熱間圧延を開始し、厚さ10mmの熱延材を得、その表面を
面削して厚さ5mmの板材を作製した。次にこれに冷間圧
延を加えて厚さ1mmとし、500℃2時間の焼純を施した後
に20%の冷間圧延して0.8mmの板材を得、供試材No.1〜N
o.16を得た。そしてこの作製した供試材を用いて、第1
表に示した各特性を測定した。
An alloy having the composition shown in Table 1 was melted, cast into a 30 mm thick ingot, and immediately after hot holding at 850 ° C. for one hour, hot rolling was started from that temperature, and a hot rolled material having a thickness of 10 mm was obtained. Then, the surface was chamfered to produce a plate material having a thickness of 5 mm. Next, this was subjected to cold rolling to a thickness of 1 mm, subjected to sintering at 500 ° C. for 2 hours, and then cold rolled to 20% to obtain a 0.8 mm sheet material.
o.16 was obtained. Then, using this test material,
Each characteristic shown in the table was measured.

引張強度及び0.2%耐力については、JIS−Z2241に準
拠して行った。
About tensile strength and 0.2% proof stress, it performed based on JIS-Z2241.

熱間加工性については、この供試材を作製した熱間圧
延条件で熱間圧延した時の熱延時の割れの有無で以て判
定し、全く割れなかったものを「○」、材料の側面(通
常コバ面とよぶ)のみが割れたものを「△」、圧延まで
割れを生じたものを「×」とした。
The hot workability was determined based on the presence or absence of cracks during hot rolling when hot rolling was performed under the hot rolling conditions under which this test material was prepared. (Normally referred to as the edge surface) was evaluated as “△” when it was broken, and “×” when cracked until rolling.

Snめっき密着性の耐熱経時劣化は、電界脱脂と活性化
処理の前処理を施した材料に、0.1μmの下地Cuめっき
をした上に2.0μmのSnめっきをしたものを用い、この
めっき材を180℃に保持された大気高温炉中で400時間経
過させた後に、テープ剥離試験を行い全面的に剥離した
ものを「×」、10%以上剥離したものを「△」、剥離箇
所が10%未満のものを「○」、全く剥離しなかったもの
を「◎」で表した。
The deterioration with time of heat resistance over time of Sn plating adhesion is achieved by using a material that has been subjected to electric field degreasing and pre-treatment of activation treatment, a 0.1 μm underlying Cu plating, and then a 2.0 μm Sn plating. After 400 hours passed in an atmospheric high-temperature furnace maintained at 180 ° C, a tape peeling test was performed, and “X” indicates that the entire surface was peeled, “Δ” indicates that 10% or more was peeled, and 10% of the peeled portion The samples with less than ○ were indicated by “○”, and those that did not peel at all were indicated by “◎”.

耐マイグレーション性については、第2図に示すよう
に10ppmのNaCl溶液中に浸した後に乾燥させた濾紙
(1)上に40×20mmに切断した同一組成の各供試材
(2)をギャップ5mmの間隔で配置し、これを40℃、98R
H中に1時間放置した後に、DC 100Vを4時間印加し、ギ
ャップ間に観察されるCuのマイグレーション長を測定し
てその平均を評価した。短絡したものを「×」、3mm以
上のものを「△」、3〜1.5mmのものを「○」、1.5mm未
満のものを「◎」で表した。
Regarding the migration resistance, as shown in FIG. 2, each test material (2) having the same composition cut into 40 × 20 mm on a filter paper (1) dried after being immersed in a 10 ppm NaCl solution and having a gap of 5 mm was used. At 40 ° C, 98R
After being left in H for 1 hour, DC 100V was applied for 4 hours, the migration length of Cu observed between the gaps was measured, and the average was evaluated. The short-circuited ones are indicated by “x”, those of 3 mm or more are indicated by “△”, those of 3 to 1.5 mm are indicated by “○”, and those of less than 1.5 mm are indicated by “◎”.

曲げ性はJIS−Z2248Vブロック法に準拠して行った。
曲げ角度は90度を採用し、曲げの内側半径と板厚の比が
1.0の所で曲げの外側表面の状態を観察し、平滑なもの
を「○」、シワが見られるものを「△」、割れているも
のを「×」とした。
Flexibility was determined according to the JIS-Z2248V block method.
The bending angle is 90 degrees, and the ratio between the inner radius of bending and the thickness of the plate is
The state of the outer surface of the bend was observed at 1.0, and the smooth surface was evaluated as “○”, the wrinkle was observed as “△”, and the broken surface was evaluated as “×”.

なお従来の「Cu−Be」系合金をNo.17、「Cu−Ni−S
n」系合金をNo.18として、上記と同様に各特性試験を行
ない、その結果を第1表に併記した。
The conventional “Cu-Be” alloy was No. 17, “Cu-Ni-S
Each property test was performed in the same manner as above, with the “n” type alloy being No. 18, and the results are also shown in Table 1.

第1表からも明らかなように、本発明合金No.1〜10
は、従来材No.16〜17に比較して同等の強度を有しつ
つ、熱間加工性や曲げ性や耐マイグレーション性に優れ
ている事が判る。これに対して、Mn,Al量が少なくZnが
含有されていない比較合金No.11では強度が低く又めっ
き密着性が劣っている。Al量やZn量が多過ぎる比較合金
No.12及びNo.13では熱間圧延で割れが酷く供試材が得ら
れなかった。更に、副成分の多い比較合金No.14及びNo.
15では熱間加工性や曲げ性が劣っているのが判る。
As is clear from Table 1, the alloys of the present invention No. 1 to 10
It can be seen that is excellent in hot workability, bendability and migration resistance while having the same strength as that of the conventional materials Nos. 16 to 17. On the other hand, Comparative Alloy No. 11, which has a small amount of Mn and Al and does not contain Zn, has low strength and poor plating adhesion. Comparative alloy with too much Al or Zn
In No. 12 and No. 13, the specimens could not be obtained because the cracks were severe in the hot rolling. Furthermore, comparative alloys No. 14 and No.
15 shows that hot workability and bendability are inferior.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、高い強度・延性を有しつ
つ、優れた曲げ性やめっき性、マイグレーション性等の
信頼性に富んだ材料を低廉且つ容易に製造が可能であ
り、小型・軽量化が要求されているコネクター・端子材
等への使用に最適であり、工業上顕著な効果を奏するも
のである。
As described above, according to the present invention, it is possible to easily and inexpensively and easily manufacture a material having high strength and ductility, and excellent reliability such as excellent bendability, plating property, and migration property. It is most suitable for use in connectors and terminal materials, which are required to be manufactured, and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図はCu−Mn−Al三元状態図の要部説明図、第2図は
耐マイグレーション性を測定する装置の説明図である。 1……濾紙 2……供試材
FIG. 1 is an explanatory view of a main part of a Cu-Mn-Al ternary phase diagram, and FIG. 2 is an explanatory view of an apparatus for measuring migration resistance. 1. Filter paper 2. Test material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 真人 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (72)発明者 鈴木 雄一 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (72)発明者 竹田 守 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 昭56−47535(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 H01R 9/00 - 9/28──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masato Asai 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Yuichi Suzuki 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Inside Electric Industry Co., Ltd. (72) Inventor Mamoru Takeda 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (56) References JP-A-56-47535 (JP, A) (58) Field (Int.Cl. 6 , DB name) C22C 9/00-9/10 H01R 9/00-9/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn5〜60wt%、Al2〜20wt%及びZn0.2〜14w
t%を含み、残部Cuと不可避的不純物からなることを特
徴とするコネクター・端子用銅合金。
1. Mn 5-60 wt%, Al 2-20 wt% and Zn 0.2-14 w
Copper alloy for connectors and terminals, characterized by containing t% and the balance being Cu and unavoidable impurities.
【請求項2】Zn0.3〜14wt%と、第1図に示すCu−Mn−A
l三元状態図において、Mn及びAlを(Mn,Al)=(5wt%,
15wt%),(40wt%,10wt%),(5wt%,2.5wt%)(48
wt%,2.5wt%)の4点で囲まれる範囲内の量を含み、残
部Cuと不可避的不純物からなることを特徴とするコネク
ター・端子用銅合金。
2. The composition according to claim 1, wherein said Zn is 0.3 to 14% by weight and Cu-Mn-A shown in FIG.
l In the ternary phase diagram, Mn and Al are (Mn, Al) = (5 wt%,
(15 wt%), (40 wt%, 10 wt%), (5 wt%, 2.5 wt%) (48
(wt%, 2.5wt%). A copper alloy for connectors and terminals, characterized by the balance of Cu and unavoidable impurities including the amount within the range enclosed by the four points.
【請求項3】Zn0.3〜14wt%と、第1図に示すCu−Mn−A
l三元状態図において、Mn及びAlを(Mn,Al)=(5wt%,
15wt%),(40wt%,10wt%),(5wt%,2.5wt%)(48
wt%,2.5wt%)の4点で囲まれる範囲内の量を含み、さ
らに各々0.1〜3.5wt%のCo,Ni,Si,Sn,Cdの内のいずれか
1種もしくは2種以上、及び/又は各々0.001〜0.5wt%
のMg,P,Be,Sb,Cr,As,Zr,B,Y,Laの内のいずれか1種もし
くは2種以上を総計で0.001〜7.0wt%含み、残部Cuと不
可避的不純物からなることを特徴とするコネクター・端
子用銅合金。
3. The composition according to claim 1, wherein said Zn is 0.3 to 14 wt% and said Cu-Mn-A
l In the ternary phase diagram, Mn and Al are (Mn, Al) = (5 wt%,
(15 wt%), (40 wt%, 10 wt%), (5 wt%, 2.5 wt%) (48
wt%, 2.5 wt%), and each one or more of Co, Ni, Si, Sn, Cd of 0.1 to 3.5 wt%, respectively, and / Or 0.001-0.5wt% each
Of at least one of Mg, P, Be, Sb, Cr, As, Zr, B, Y, and La in a total amount of 0.001 to 7.0 wt%, with the balance being Cu and unavoidable impurities Copper alloy for connectors and terminals.
JP6352490A 1990-03-14 1990-03-14 Copper alloy for connectors and terminals Expired - Lifetime JP2846397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6352490A JP2846397B2 (en) 1990-03-14 1990-03-14 Copper alloy for connectors and terminals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6352490A JP2846397B2 (en) 1990-03-14 1990-03-14 Copper alloy for connectors and terminals

Publications (2)

Publication Number Publication Date
JPH03264630A JPH03264630A (en) 1991-11-25
JP2846397B2 true JP2846397B2 (en) 1999-01-13

Family

ID=13231696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6352490A Expired - Lifetime JP2846397B2 (en) 1990-03-14 1990-03-14 Copper alloy for connectors and terminals

Country Status (1)

Country Link
JP (1) JP2846397B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911419A1 (en) * 1997-10-21 1999-04-28 Ykk Corporation Nickel-free copper alloy
DE102020002524A1 (en) 2020-04-25 2021-10-28 Wieland-Werke Aktiengesellschaft Manganese and aluminum-containing copper-zinc alloy

Also Published As

Publication number Publication date
JPH03264630A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
JP3520034B2 (en) Copper alloy materials for electronic and electrical equipment parts
JP4809602B2 (en) Copper alloy
JP3520046B2 (en) High strength copper alloy
JP3824884B2 (en) Copper alloy material for terminals or connectors
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPH0819499B2 (en) Copper alloy for flexible printing
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP3275377B2 (en) Cu alloy sheet with fine structure for electric and electronic parts
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JPH08940B2 (en) Copper alloy for flexible printing
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP2846397B2 (en) Copper alloy for connectors and terminals
JPH04311544A (en) Electrically conductive material
JP3459520B2 (en) Copper alloy for lead frame
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JP3445432B2 (en) Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling
JPH0534409B2 (en)
JP2918961B2 (en) High-strength copper alloy with high workability
JPH07109016B2 (en) Copper alloy for flexible printing
JPH04231433A (en) Electrifying material
JPH1081927A (en) Terminal-connector material made of cu alloy
JP2682577B2 (en) Manufacturing method of copper alloy for terminals and connectors
JPH0525568A (en) Easy-to-work high strength copper alloy and its production