JP3445432B2 - Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling - Google Patents

Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling

Info

Publication number
JP3445432B2
JP3445432B2 JP03560196A JP3560196A JP3445432B2 JP 3445432 B2 JP3445432 B2 JP 3445432B2 JP 03560196 A JP03560196 A JP 03560196A JP 3560196 A JP3560196 A JP 3560196A JP 3445432 B2 JP3445432 B2 JP 3445432B2
Authority
JP
Japan
Prior art keywords
oxide
copper alloy
plating
resistance
solder wettability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03560196A
Other languages
Japanese (ja)
Other versions
JPH09209062A (en
Inventor
崇夫 平井
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12446351&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3445432(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP03560196A priority Critical patent/JP3445432B2/en
Publication of JPH09209062A publication Critical patent/JPH09209062A/en
Application granted granted Critical
Publication of JP3445432B2 publication Critical patent/JP3445432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半田濡れ性、Agめっ
き耐加熱膨れ性などの表面特性に優れ、かつ機械的、物
理的特性にも優れた銅合金に関し、特に半導体リードフ
レーム、端子、コネクター等の電子機器用部材に適した
銅合金である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having excellent surface properties such as solder wettability and resistance to heat swelling by Ag plating and also excellent mechanical and physical properties, and particularly semiconductor lead frames, terminals and connectors. It is a copper alloy suitable for electronic equipment members such as.

【0002】[0002]

【従来の技術】前述のように、半導体リ−ドフレ−ムや
コネクター等には、強度、耐熱性等の機械的性質、電気
・熱伝導性等の物理的性質に優れ、且つ錫や半田めっき
の耐熱剥離性、半田濡れ性等の表面特性にも優れた銅合
金が要求されている。そして、近年、古くから知られた
高強度・中導電性タイプのCu-Ni-Si系合金が半導体リ−
ドフレ−ムを始めとする電子機器部材に使用されるよう
になってきた。Cu-Ni-Si系合金は、Ni-Si 化合物を析出
物とする析出強化型銅合金で、機械的・物理的性質に優
れているが、半田との濡れ性が悪いという致命的欠点が
あり、又リ−ドフレ−ム等に使用した場合に重要となる
Agめっき耐加熱膨れ性も芳しくないことが知られてい
る。前記Cu-Ni-Si系合金は、通常の析出強化型銅合金と
同様に、鋳塊を熱間及び冷間圧延後、溶体化処理、時効
処理等を施して製造されており、前述の半田濡れ性やAg
めっき耐加熱膨れ性等の表面特性に劣る原因は、溶体化
処理等の加熱処理時に生成する銅の酸化皮膜にあると考
えられていた。このようなことから、Cu-Ni-Si系合金の
半田濡れ性を改善する方法として、熱処理雰囲気を非酸
化性又は還元性雰囲気に極度に制限管理して銅の酸化皮
膜を生成させない方法、又は製造途中で酸化皮膜を研削
或いは溶解して除去する方法が採られてきた。
2. Description of the Related Art As described above, semiconductor lead frames, connectors and the like have excellent mechanical properties such as strength and heat resistance, and physical properties such as electrical and thermal conductivity, and tin or solder plating. There is a demand for a copper alloy having excellent surface characteristics such as heat-resistant peelability and solder wettability. In recent years, Cu-Ni-Si alloys of high strength and medium conductivity type, which have been known for a long time, are used as semiconductor
It has come to be used for electronic equipment members such as dframes. Cu-Ni-Si alloys are precipitation-strengthened copper alloys that use Ni-Si compounds as precipitates and have excellent mechanical and physical properties, but have the fatal drawback of poor wettability with solder. Also, it becomes important when used for lead frames, etc.
It is known that the Ag plating resistance to heat swelling is also poor. The Cu-Ni-Si-based alloy is, similarly to a normal precipitation-strengthened copper alloy, hot and cold rolled ingots, is subjected to solution treatment, aging treatment, etc., is manufactured, Wettability and Ag
It was thought that the cause of poor surface properties such as plating heat swelling resistance was the copper oxide film formed during heat treatment such as solution treatment. From this, as a method of improving the solder wettability of Cu-Ni-Si-based alloy, a method in which the heat treatment atmosphere is extremely limited to a non-oxidizing or reducing atmosphere and a copper oxide film is not formed, or A method has been adopted in which the oxide film is ground or melted and removed during manufacture.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記の熱処理
雰囲気を制限管理する方法はコスト的に不利であり、前
記酸化皮膜を除去する方法では、半田濡れ性やAgめっき
耐加熱膨れ性等の表面特性が充分に改善されなかった。
本発明者等は、酸化皮膜を除去しても表面特性が改善さ
れない原因を調査した。その結果、前記NiとSiは、実際
は、添加した全てが析出するわけではなく、一部はCuマ
トリックス中に固溶した状態で残存し、この固溶Siの一
部が製造工程中の溶体化、時効、焼鈍などの様々な熱処
理によって酸化物となり、これが粗大化して表層に存在
すると、半田濡れ性やAgめっき耐加熱膨れ性等の表面特
性が悪化することを見出した。そして、その改善策とし
てSi酸化物の生成を阻止するか、表層の粗大なSi酸化物
を除去する方法について研究を進め、本発明を完成させ
るに到った。本発明は、機械的・物理的性質が高度に維
持され、表面特性に優れ、又低コストで製造できるCuー
Niー Si系電子機器用銅合金の提供を目的とする。
However, the method of limiting and controlling the heat treatment atmosphere is disadvantageous in terms of cost, and the method of removing the oxide film has a surface such as solder wettability and Ag plating heat swelling resistance. The characteristics were not sufficiently improved.
The present inventors investigated the cause that the surface characteristics are not improved even if the oxide film is removed. As a result, the Ni and Si do not actually precipitate all of the added material, and some remain in the state of solid solution in the Cu matrix, and some of this solid solution Si is solutionized during the manufacturing process. It has been found that when various heat treatments such as aging and annealing become oxides, which become coarse and exist in the surface layer, surface properties such as solder wettability and Ag plating heat swelling resistance deteriorate. Then, as a remedy for this, research has been conducted on a method of preventing the formation of Si oxide or removing the coarse Si oxide on the surface layer, thereby completing the present invention. INDUSTRIAL APPLICABILITY The present invention is a Cu-based alloy that has high mechanical and physical properties, excellent surface characteristics, and can be manufactured at low cost.
The purpose is to provide a Ni-Si based copper alloy for electronic devices.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
0.4〜4.0wt%のNi、 0.1〜1.0wt%のSiを含み、残部がCu
と不可避的不純物からなり、表面から1μmまでの深さ
の表層に存在するSi酸化物の大きさが 0.1μm以下であ
ることを特徴とする半田濡れ性およびAgめっき耐加熱
膨れ性に優れた電子機器用銅合金である
The invention according to claim 1 is
0.4~4.0Wt% of Ni, comprises 0.1-1.0% of Si, the balance being Cu
And the inevitable impurities, and the size of the Si oxide existing in the surface layer with a depth of 1 μm from the surface is 0.1 μm or less. Solder wettability and Ag plating heat resistance.
It is a copper alloy for electronic devices with excellent swelling properties .

【0005】請求項2記載の発明は、 0.4〜4.0wt%のN
i、 0.1〜1.0wt%のSiを含み、金属Siよりも酸化物とし
て安定な元素を含み、残部がCuと不可避的不純物からな
り、表面から1μmまでの深さの表層に存在するSi酸化
物の大きさが 0.1μm以下であることを特徴とする半田
濡れ性およびAgめっき耐加熱膨れ性に優れた電子機器
用銅合金である。
According to the second aspect of the invention, 0.4 to 4.0 wt% of N
i, Si oxide containing 0.1 to 1.0 wt% of Si, containing an element more stable as an oxide than metallic Si, the balance consisting of Cu and inevitable impurities, and present in the surface layer at a depth of 1 μm from the surface Solder characterized by a size of 0.1 μm or less
It is a copper alloy for electronic devices, which has excellent wettability and resistance to heat swelling by Ag plating .

【0006】請求項3記載の発明は、 0.4〜4.0wt%のN
i、 0.1〜1.0wt%のSiを含み、更に 0.005〜0.3wt%のA
l、0.005〜0.2wt%のTi、 0.005〜0.5wt%のMgの中から選
ばれる1種又は2種以上を合計で 0.005〜0.5wt%含み、
残部がCuと不可避的不純物からなり、表面から1μmま
での深さの表層に存在するSi酸化物の大きさが 0.1μm
以下であることを特徴とする半田濡れ性およびAgめっ
き耐加熱膨れ性に優れた電子機器用銅合金である。
According to the third aspect of the invention, 0.4 to 4.0 wt% of N
i, comprises 0.1-1.0% of Si, further 0.005~0.3Wt% of A
l, 0.005 to 0.2 wt% Ti, 0.005 to 0.5 wt% Mg, and one or more selected from 0.005 to 0.5 wt% in total,
The balance is Cu and unavoidable impurities, and the size of Si oxide existing in the surface layer with a depth of 1 μm from the surface is 0.1 μm.
Solder wettability and Ag characteristics characterized by
It is a copper alloy for electronic devices that has excellent resistance to heat swelling .

【0007】請求項4記載の発明は、 0.4〜4.0wt%のN
i、 0.1〜1.0wt%のSiを含み、更に 0.005〜0.3wt%のA
l、0.005〜0.2wt%のTi、 0.005〜0.5wt%のMgの中から選
ばれる1種又は2種以上を合計で 0.005〜0.5wt%含み、
副成分として 0.001〜0.1wt%のP 、0.05〜1.0wt%のZn、
0.01〜0.5wt%のMn、 0.005〜0.1wt%のAgのうち何れか1
種又は2種以上を合計で 0.005〜2.0wt%を含み、残部が
Cuと不可避的不純物からなり、 表面から1μmまでの
深さの表層に存在するSi酸化物の大きさが 0.1μm以下
であることを特徴とする半田濡れ性およびAgめっき耐
加熱膨れ性に優れた電子機器用銅合金である。
The invention according to claim 4 is such that 0.4 to 4.0 wt% of N
i, comprises 0.1-1.0% of Si, further 0.005~0.3Wt% of A
l, 0.005 to 0.2 wt% Ti, 0.005 to 0.5 wt% Mg, and one or more selected from 0.005 to 0.5 wt% in total,
0.001 to 0.1 wt% P, 0.05 to 1.0 wt% Zn as sub-components,
Either 0.01 to 0.5 wt% Mn or 0.005 to 0.1 wt% Ag 1
Includes 0.005 to 2.0 wt% in total of two or more species, with the balance being
Solder wettability and Ag plating resistance characterized by the fact that the size of the Si oxide existing in the surface layer with a depth of 1 μm from the surface is 0.1 μm or less, which consists of Cu and inevitable impurities.
It is a copper alloy for electronic devices with excellent heat swelling properties .

【0008】[0008]

【発明の実施の形態】本発明において、NiとSiはCuマト
リックス中に Ni-Si系化合物(Ni2Si相) として析出し
て、導電率を低下させずに強度を向上させる元素であ
る。本発明でNiを 0.4〜4.0wt%、Siを 0.1〜1.0wt%に規
定した理由は、Niが0.4wt%未満でもSiが0.1wt%未満で
も、 Ni-Si化合物の析出量が少なくなり目標とする強度
が得られず、又Niが4.0wt%を超えてもSiが1.0wt%を超え
ても、鋳造又は熱間加工時に強度向上に寄与しない析出
物が生じて添加量に見合う強度が得られず、又熱間加工
性や曲げ加工性にも悪影響を及ぼす為である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, Ni and Si are elements that are precipitated as a Ni-Si compound (Ni 2 Si phase) in a Cu matrix to improve the strength without lowering the conductivity. In the present invention, the reason for defining Ni to 0.4 to 4.0 wt% and Si to 0.1 to 1.0 wt% is that Ni is less than 0.4 wt% and Si is less than 0.1 wt%. Strength is not obtained, and even if Ni exceeds 4.0 wt% or Si exceeds 1.0 wt%, precipitates that do not contribute to strength improvement occur during casting or hot working, and strength commensurate with the amount added. This is because it is not obtained, and the hot workability and bending workability are also adversely affected.

【0009】本発明において、表面から1μmまでの深
さの表層に存在するSi酸化物の大きさを 0.1μm以下に
規定した理由は、Siの酸化物の大きさが 0.1μmを超え
ると半田濡れ性やAgめっき耐加熱膨れ性等の表面特性が
悪化する為である。熱処理により試料表面近傍に生成す
るSi酸化物は表面に近い程大きく内部程小さくなる。従
って、試料表面近傍のSi酸化物が 0.1μmを超える場合
は、Si酸化物の大きさが 0.1μm以下になるまで表層を
除去することにより、表面特性は改善される。表層の除
去には、研削、バフ研磨、化学的溶解(酸洗)等の任意
の方法が適用できる。
In the present invention, the reason why the size of the Si oxide existing in the surface layer with a depth of 1 μm from the surface is specified to be 0.1 μm or less is that the size of the Si oxide exceeds 0.1 μm and the solder wets. This is because surface properties such as heat resistance and heat swelling resistance of Ag plating deteriorate. The Si oxide formed near the surface of the sample by heat treatment becomes larger as it approaches the surface and smaller as it gets inside. Therefore, when the Si oxide in the vicinity of the sample surface exceeds 0.1 μm, the surface characteristics are improved by removing the surface layer until the size of the Si oxide becomes 0.1 μm or less. For removing the surface layer, any method such as grinding, buffing, and chemical dissolution (pickling) can be applied.

【0010】請求項2記載の発明において、Siよりも酸
化物として安定な元素を添加する理由は、製造工程中の
熱処理で前記元素が酸化物となって酸素をトラップし、
Si酸化物の生成又は粗大化を阻止する為である。この方
法によれば、銅合金表層の除去が軽減又は省略できる。
In the second aspect of the invention, the reason for adding the element more stable as an oxide than Si is that the element becomes an oxide and traps oxygen by heat treatment during the manufacturing process.
This is to prevent generation or coarsening of Si oxide. According to this method, the removal of the copper alloy surface layer can be reduced or omitted.

【0011】Siよりも酸化物として安定な元素として
は、Al、Ti、Mg等が挙げられる。請求項3記載の発明に
おいて、Alを 0.005〜0.3wt%に規定した理由は、Alが0.
005wt%未満ではSi酸化物の生成又は粗大化を阻止でき
ず、0.3wt%を超えては導電率が大幅に低下する上、半田
濡れ性も低下する為である。
Examples of elements that are more stable as oxides than Si include Al, Ti and Mg. In the invention of claim 3, the reason for defining Al to be 0.005 to 0.3 wt% is that Al is 0.1%.
This is because if it is less than 005 wt%, generation or coarsening of Si oxide cannot be prevented, and if it exceeds 0.3 wt%, the conductivity is significantly reduced and the solder wettability is also reduced.

【0012】Tiを 0.005〜0.2wt%に規定した理由は、Ti
が0.005wt%未満ではSi酸化物の生成又は粗大化を阻止で
きず、0.2wt%を超えると導電率の大幅な低下を招く上、
表面特性も低下する為である。Tiは、Si酸化物の生成又
は粗大化を阻止する他に、表面特性を悪化させる固溶Ni
とSiを Ti-Ni化合物や Ti-Si化合物等として析出させて
無害化する。しかしTiを0.2wt%を超えて添加すると前記
Ti-Ni 化合物等が多量に析出して肝心のNi-Si 化合物が
減少して強度低下を来すことがある。
The reason for defining Ti to 0.005 to 0.2 wt% is that Ti is
Is less than 0.005 wt% it is not possible to prevent the formation or coarsening of Si oxide, and if more than 0.2 wt% causes a significant decrease in conductivity,
This is because the surface characteristics also deteriorate. Ti is a solid solution Ni that prevents the formation or coarsening of Si oxide and also deteriorates the surface characteristics.
And Si are deposited as Ti-Ni compounds or Ti-Si compounds to render them harmless. However, if Ti is added in excess of 0.2 wt%,
In some cases, a large amount of Ti-Ni compound, etc. precipitates and the important Ni-Si compound decreases, resulting in a decrease in strength.

【0013】Mgを0.01〜0.5wt%に規定した理由は、Mgが
0.01wt%未満ではSi酸化物の生成又は粗大化を阻止でき
ず、0.5wt%を超えると導電率が大幅に低下する上、表面
特性も低下してしまう為である。この他、Mgには熱間加
工性を改善する作用もある。これらAl、Ti、Mgの添加量
は要求性能に応じて個々に調整する。Al、Ti、Mgを2種
以上同時に添加する場合の総量は、0.005wt%未満では半
田濡れ性が改善されず、 0.5wt%を超えては導電率が大
幅に低下するばかりでなく、 表面特性も悪化する。従
って前記総量は 0.005〜0.5wt%と規定した。
The reason why Mg is specified to be 0.01 to 0.5 wt% is that Mg is
This is because if it is less than 0.01 wt%, generation or coarsening of Si oxide cannot be prevented, and if it exceeds 0.5 wt%, the conductivity is significantly reduced and the surface characteristics are also degraded. In addition, Mg also has the effect of improving hot workability. The added amounts of Al, Ti, and Mg are individually adjusted according to the required performance. If the total amount of Al, Ti, and Mg added at the same time is less than 0.005wt%, the solder wettability is not improved, and if it exceeds 0.5wt%, not only the conductivity decreases significantly, but also the surface characteristics. Also gets worse. Therefore, the total amount is defined as 0.005-0.5 wt%.

【0014】次に、請求項4記載の発明で添加する副成
分の P、Zn、Mn、Agについて説明する。PはCuマトリッ
クス中のNi、Siの固溶量を減少させる作用を有する。即
ち、 PはNiー Si化合物の析出量を増加させ、強度と導
電率を向上させる。その上 Pは酸素をトラップしてSi酸
化物の生成を抑える作用も有する。Pを 0.001〜0.1wt%
に規定した理由は、 Pが0.001wt%未満ではその効果が十
分に得られず、0.1wt%を超えると熱間加工性が低下し、
又錫や半田めっきの耐熱剥離性が低下する為である。
Next, P, Zn, Mn, and Ag, which are auxiliary components added in the invention of claim 4, will be described. P has the effect of reducing the solid solution amount of Ni and Si in the Cu matrix. That is, P increases the precipitation amount of Ni-Si compound and improves the strength and the conductivity. In addition, P has the function of trapping oxygen and suppressing the formation of Si oxide. 0.001 to 0.1 wt% P
The reason is as follows: If P is less than 0.001 wt%, the effect cannot be obtained sufficiently, and if it exceeds 0.1 wt%, the hot workability deteriorates.
Also, the heat-resistant peelability of tin or solder plating is reduced.

【0015】Znは錫や半田めっきの耐熱剥離性を向上さ
せる。しかし、そのメカニズムは定かでない。Znが 0.0
5wt%未満では所望の効果が得られず、1.0wt%を超えると
その効果が飽和してしまう上、半田濡れ性が悪化する。
従ってZnは0.05〜1.0wt%に規定した。
Zn improves the thermal peel resistance of tin or solder plating. However, the mechanism is not clear. Zn is 0.0
If it is less than 5 wt%, the desired effect cannot be obtained, and if it exceeds 1.0 wt%, the effect is saturated and the solder wettability is deteriorated.
Therefore, Zn is specified to be 0.05 to 1.0 wt%.

【0016】Mnは、Cu中に不純物レベルで存在する固溶
Sを取込み、 Sによる熱間加工性の低下を抑制する。Mn
が 0.01wt%未満ではその効果が十分に得られず、0.5wt%
を超えると導電率が大幅に低下する上、半田濡れ性も低
下する。従ってMnは0.01〜0.5wt%に規定した。
Mn is a solid solution present in Cu at the impurity level.
Takes in S and suppresses deterioration of hot workability due to S. Mn
Is less than 0.01 wt%, the effect is not sufficiently obtained, and 0.5 wt%
If it exceeds, the electrical conductivity is significantly reduced and the solder wettability is also reduced. Therefore, Mn is specified to be 0.01 to 0.5 wt%.

【0017】Agは強度と耐熱性を向上させる。Agが0.00
5wt%未満ではその効果が十分に得られず、0.1wt%を超え
てはコスト的に不利である。従ってAgは 0.005〜0.1wt%
に規定した。前記副成分元素を2種以上添加する場合の
総量は、半田濡れ性、Agめっき耐加熱膨れ性、錫や半田
めっきの耐熱剥離性、導電性等を考慮して 0.005〜2.0w
t%に規定した。
Ag improves strength and heat resistance. Ag is 0.00
If it is less than 5 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.1 wt%, it is disadvantageous in cost. Therefore, Ag is 0.005-0.1wt%
Stipulated in. When adding two or more of the above-mentioned sub-component elements, the total amount should be 0.005 to 2.0w in consideration of solder wettability, Ag plating heat swelling resistance, heat peeling resistance of tin or solder plating, conductivity, etc.
Specified as t%.

【0018】[0018]

【実施例】以下に本発明を実施例により詳細に説明す
る。表1に示す組成の合金を高周波溶解炉にて溶解し、
次いで厚さ50mm、幅120mmの鋳塊に鋳造した。この鋳塊
を 950℃、1時間の再熱溶体化処理後、厚さ11mmまで熱
間圧延した。熱間圧延後表面を研削して、熱間圧延時に
生成した酸化スケールを除去し、次いで 0.3mmの厚さま
で冷間圧延した。冷間圧延後、一部の試料については連
続式焼鈍炉を用いて中間溶体化処理(800℃で60秒加熱後
水焼入れ) を施した。次に、中間溶体化処理を施した試
料と冷間圧延しただけの試料の全てについて300〜600
℃で1〜6時間加熱する熱処理を施し、熱処理後更に0.
25mmの厚さまで冷間圧延し、次いで低温焼鈍で調質して
製品とした。調質後の製品の一部は、表面を研磨して表
層を除去した。
EXAMPLES The present invention will be described in detail below with reference to examples. The alloy having the composition shown in Table 1 is melted in a high frequency melting furnace,
Then, it was cast into an ingot having a thickness of 50 mm and a width of 120 mm. This ingot was subjected to reheat solution treatment at 950 ° C. for 1 hour, and then hot rolled to a thickness of 11 mm. After hot rolling, the surface was ground to remove oxide scale produced during hot rolling, and then cold rolled to a thickness of 0.3 mm. After cold rolling, some samples were subjected to an intermediate solution treatment (heating at 800 ° C for 60 seconds and then water quenching) using a continuous annealing furnace. Next, 300-600 for all the samples that have been subjected to the intermediate solution treatment and those that have just been cold rolled.
Heat treatment is performed by heating at ℃ for 1 to 6 hours, and after heat treatment, 0.
It was cold-rolled to a thickness of 25 mm and then tempered by low temperature annealing to obtain a product. The surface of some of the products after conditioning was removed by polishing the surface.

【0019】得られた製品について、引張強度、導電
率、半田濡れ性、Agめっき耐加熱膨れ性を測定した。結
果を、合金組成と製造条件を併記して表1に示す。尚、
引張強度は JIS-Z2241、導電率はJIS-H0505 に準じて測
定した。半田濡れ性は、電解脱脂後、10%H2SO4で酸洗
し、ロジン等のフラックスで前処理した幅10mm、長さ50
mmの試験片を 230℃の共晶半田浴中に浸漬し、目視にて
濡れ状態を観察した。Agめっき耐加熱膨れ性は、電解脱
脂後、10%H2SO4で酸洗し、次いでAgめっきを施し、これ
を大気中で 450℃、10分間加熱した後に、膨れの有無を
顕微鏡にて20倍に拡大して観察した。又透過型電子顕微
鏡(TEM) を用いて、表面から1μmまでの深さの表層に
存在するSi酸化物の大きさを観察した。尚、2万倍〜10
万倍で観察した視野内に見られる最大のSi酸化物の短部
の径をSi酸化物の大きさとした。
The resulting product was measured for tensile strength, conductivity, solder wettability, and resistance to heat swelling by Ag plating. The results are shown in Table 1 together with the alloy composition and manufacturing conditions. still,
Tensile strength was measured according to JIS-Z2241, and conductivity was measured according to JIS-H0505. Solder wettability is 10mm wide, 50mm long after electrolytic degreasing, pickling with 10% H 2 SO 4 and pre-treatment with flux such as rosin.
The mm test piece was immersed in a eutectic solder bath at 230 ° C., and the wet state was visually observed. Ag plating heat swelling resistance is, after electrolytic degreasing, pickled with 10% H 2 SO 4 , then subjected to Ag plating, heated in air at 450 ° C for 10 minutes, and then checked for swelling with a microscope. It was observed at 20 times magnification. Further, the size of the Si oxide existing in the surface layer having a depth of 1 μm from the surface was observed using a transmission electron microscope (TEM). 20,000 to 10
The diameter of the shortest part of the largest Si oxide in the field of view observed at 10,000 times was defined as the size of the Si oxide.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より明かなように、本発明例品 (No.1
〜11) はいずれも、半田濡れ性、Agめっき耐加熱膨れ性
において優れた特性を示した。金属Siよりも酸化物が安
定な元素を添加したものは、表面研磨の回数が1回以下
でもSi酸化物は小さかった。又副成分のZnを添加したN
o.6,9,10,11 は半田めっきの耐熱剥離性が特に優れる
ものとなった。更にZnに加えMnを添加したNo.6,10,11は
熱間加工性に優れ、Agを添加したNo.9は引張強度と耐熱
性に優れるものであった。 Pを添加したNo.8は Pを添加
しないNo.4に較べて引張強度と導電率が向上した。尚、
No.11の導電率が低いのは中間溶体化処理を含む工程で
製造した為である。
As is clear from Table 1, the products of the present invention (No. 1)
All of 11 to 11) showed excellent properties in solder wettability and Ag plating heat swelling resistance. In the case where the element whose oxide is more stable than that of metallic Si was added, the Si oxide was small even if the number of times of surface polishing was once or less. In addition, N with the addition of Zn
o.6,9,10,11 had excellent heat-resistant peeling property of solder plating. Further, Nos. 6, 10, and 11 in which Mn was added in addition to Zn were excellent in hot workability, and No. 9 in which Ag was added was excellent in tensile strength and heat resistance. No. 8 with P added has improved tensile strength and conductivity compared to No. 4 without P. still,
The low conductivity of No. 11 is due to the manufacturing process including the intermediate solution treatment.

【0022】これに対し、比較例品のNo.12 は表面研磨
を行わず、又 No.13は表面研磨を1回行っただけの為、
製品表層(表面から1μm深さまでの層)のSi酸化物の
大きさが共に 0.1μmを超えた。その為表面特性(半田
濡れ性とAgめっき耐加熱膨れ性)が劣った。No.14は中
間溶体化処理を施した為表面研磨を2回行っても製品表
層に 0.1μmを超えるSi酸化物が残存し表面特性が劣っ
た。No.15は本発明の規定を超える量のNi、Siを含んで
いる為熱間圧延時に割れが生じ、正常に製造することが
できなかった。No.16は金属Siよりも酸化物が安定な元
素のAlの添加量が少なく、しかも表面を研磨しなかった
為、 表層のSi酸化物が 0.1μmを超え、表面特性が改
善されなかった。No.17,18,19 は金属Siよりも酸化物が
安定な元素のAl,Mg のいずれかが添加されている為、製
品表層のSi酸化物の大きさが、表面研磨なしで 0.1μm
以下となりAgめっき耐加熱膨れ性が改善された。しか
し、Al、Mg、又は副成分のZnの添加量が多過ぎた為、い
ずれも半田濡れ性と導電率が低下した。No.20 は本発明
の規定を超える量の Pを含んでいる為、熱間圧延時に割
れが生じ、製品を正常に製造することができなかった。
No.21 は Ni,Si以外の添加元素がSiよりも酸化物が不安
定な元素(Fe)の為、Si酸化物の生成又は粗大化が阻止さ
れず、No.12 と同じに表面特性が低下した。
On the other hand, the comparative sample No. 12 had no surface polishing, and the sample No. 13 had only one surface polishing.
The size of the Si oxide in the surface layer of the product (layer from the surface to a depth of 1 μm) both exceeded 0.1 μm. As a result, the surface properties (solder wettability and heat swelling resistance to Ag plating) were poor. Since No. 14 was subjected to intermediate solution treatment, even if the surface was polished twice, Si oxides exceeding 0.1 μm remained on the surface layer of the product and the surface characteristics were poor. Since No. 15 contained Ni and Si in amounts exceeding the limits of the present invention, cracking occurred during hot rolling and normal production could not be performed. In No. 16, the addition amount of Al, which is an element whose oxide is more stable than that of metallic Si, was small, and since the surface was not polished, the Si oxide in the surface layer exceeded 0.1 μm and the surface characteristics were not improved. No.17,18,19 contains Al or Mg, which is an element whose oxide is more stable than metallic Si, so the size of Si oxide on the product surface layer is 0.1 μm without surface polishing.
The following was obtained, and the heat swelling resistance of Ag plating was improved. However, since the addition amount of Al, Mg, or Zn as a subcomponent was too large, the solder wettability and the conductivity were all decreased. Since No. 20 contained P in an amount exceeding the regulation of the present invention, cracking occurred during hot rolling, and the product could not be manufactured normally.
In No. 21, the additive element other than Ni and Si is an element (Fe) whose oxide is more unstable than Si, so the formation or coarsening of Si oxide is not prevented, and the surface characteristics are the same as No. 12. Fell.

【0023】透過電子顕微鏡による製品表面近傍の組織
写真を図1イ〜ハに示す。図1イ、ロはそれぞれ本発明
例品のNo.3とNo.4の組織で、中央付近に見える白く細長
いものがSi酸化物であり、その大きさ(短部の径)はい
ずれも0.03〜0.04μmと小さい。他方、図1ハは比較例
品のNo.13 の組織で、Si酸化物は0.14μm程度で大き
い。
Structure photographs of the vicinity of the product surface by a transmission electron microscope are shown in FIGS. 1A and 1B are the No. 3 and No. 4 microstructures of the product of the present invention, respectively, and the white elongated shape near the center is the Si oxide, and the size (diameter of the short portion) is 0.03 in each case. It is as small as ~ 0.04μm. On the other hand, FIG. 1C shows the No. 13 structure of the comparative example product, and the Si oxide is large at about 0.14 μm.

【0024】[0024]

【発明の効果】以上に述べたように、本発明の電子機器
用銅合金は、機械的・物理的性質が高度に維持され、又
表面特性を害する 0.1μmを超える大きさのSi酸化物が
表層に存在しないので表面特性に優れ、又非酸化性雰囲
気等での熱処理を要さないので低コストで製造できる。
依って工業上顕著な効果を奏する。
As described above, the copper alloy for electronic devices of the present invention has a high degree of mechanical and physical properties, and has a Si oxide with a size of more than 0.1 μm, which impairs surface characteristics. Since it does not exist in the surface layer, it has excellent surface characteristics, and since it does not require heat treatment in a non-oxidizing atmosphere, it can be manufactured at low cost.
Therefore, it has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cuー Niー Si系銅合金表層の透過電子顕微鏡に
よる組織写真である。
FIG. 1 is a transmission electron micrograph of a Cu—Ni—Si-based copper alloy surface layer.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 9/06 H01L 23/48 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 9/06 H01L 23/48

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0.4〜4.0wt%のNi、 0.1〜1.0wt%のSiを
含み、残部がCuと不可避的不純物からなり、表面から1
μmまでの深さの表層に存在するSi酸化物の大きさが
0.1μm以下であることを特徴とする半田濡れ性および
Agめっき耐加熱膨れ性に優れた電子機器用銅合金。
1. 0.4 to 4.0 wt% Ni, 0.1 to 1.0 wt% Si
Wherein the remainder being Cu and unavoidable impurities, 1 from the surface
The size of Si oxide existing in the surface layer with a depth of up to μm
Solder wettability characterized by being 0.1 μm or less and
Copper alloy for electronic equipment with excellent Ag plating resistance to heat swelling .
【請求項2】 0.4〜4.0wt%のNi、 0.1〜1.0wt%のSiを
含み、金属Siよりも酸化物として安定な元素を含み、残
部がCuと不可避的不純物からなり、表面から1μmまで
の深さの表層に存在するSi酸化物の大きさが 0.1μm以
下であることを特徴とする半田濡れ性およびAgめっき
耐加熱膨れ性に優れた電子機器用銅合金。
2. 0.4 to 4.0 wt% Ni, 0.1 to 1.0 wt% Si
Containing an element that is more stable as an oxide than metallic Si, the balance consisting of Cu and unavoidable impurities, and the size of the Si oxide existing in the surface layer at a depth of 1 μm from the surface is 0.1 μm or less. Solderability and Ag plating characterized by
Copper alloy for electronic devices with excellent resistance to heat swelling .
【請求項3】 0.4〜4.0wt%のNi、 0.1〜1.0wt%のSiを
含み、更に 0.005〜0.3wt%のAl、0.005〜0.2wt%のTi、
0.005〜0.5wt%のMgの中から選ばれる1種又は2種以上
を合計で 0.005〜0.5wt%含み、残部がCuと不可避的不純
物からなり、表面から1μmまでの深さの表層に存在す
るSi酸化物の大きさが 0.1μm以下であることを特徴と
する半田濡れ性およびAgめっき耐加熱膨れ性に優れた
電子機器用銅合金。
3. 0.4 to 4.0 wt% Ni, 0.1 to 1.0 wt% Si
In addition, 0.005-0.3wt% Al, 0.005-0.2wt% Ti,
It contains 0.005 to 0.5 wt% in total of one or more selected from 0.005 to 0.5 wt% Mg, the balance consisting of Cu and unavoidable impurities, and exists in the surface layer with a depth of 1 μm from the surface. A copper alloy for electronic devices , which is excellent in solder wettability and resistance to heat swelling by Ag plating , characterized in that the size of Si oxide is 0.1 μm or less.
【請求項4】 0.4〜4.0wt%のNi、 0.1〜1.0wt%のSiを
含み、更に 0.005〜0.3wt%のAl、0.005〜0.2wt%のTi、
0.005〜0.5wt%のMgの中から選ばれる1種又は2種以上
を合計で 0.005〜0.5wt%含み、副成分として 0.001〜0.
1wt%のP 、0.05〜1.0wt%のZn、0.01〜0.5wt%のMn、 0.0
05〜0.1wt%のAgのうち何れか1種又は2種以上を合計で
0.005〜2.0wt%を含み、残部がCuと不可避的不純物から
なり、表面から1μmまでの深さの表層に存在するSi酸
化物の大きさが 0.1μm以下であることを特徴とする
田濡れ性およびAgめっき耐加熱膨れ性に優れた電子機
器用銅合金。
4. 0.4 to 4.0 wt% Ni, 0.1 to 1.0 wt% Si
In addition, 0.005-0.3wt% Al, 0.005-0.2wt% Ti,
It contains 0.005 to 0.5 wt% in total of one or more selected from 0.005 to 0.5 wt% Mg, and 0.001 to 0.
1wt% P, 0.05-1.0wt% Zn, 0.01-0.5wt% Mn, 0.0
05-0.1wt% Ag, one or more in total
Comprises 0.005~2.0Wt%, half the remainder being Cu and unavoidable impurities, the size of the Si oxides present from the surface to the surface layer of depth to 1μm is characterized in that it is 0.1μm or less
A copper alloy for electronic devices that has excellent wettability and resistance to heat swelling on Ag plating .
JP03560196A 1996-01-30 1996-01-30 Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling Expired - Fee Related JP3445432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03560196A JP3445432B2 (en) 1996-01-30 1996-01-30 Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03560196A JP3445432B2 (en) 1996-01-30 1996-01-30 Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001103859A Division JP2001329323A (en) 2001-04-02 2001-04-02 Copper alloy for electronic apparatus excellent in surface property

Publications (2)

Publication Number Publication Date
JPH09209062A JPH09209062A (en) 1997-08-12
JP3445432B2 true JP3445432B2 (en) 2003-09-08

Family

ID=12446351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03560196A Expired - Fee Related JP3445432B2 (en) 1996-01-30 1996-01-30 Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling

Country Status (1)

Country Link
JP (1) JP3445432B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837140B2 (en) * 2004-04-30 2006-10-25 日鉱金属株式会社 Cu-Ni-Si-Mg copper alloy strip
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
JP5170864B2 (en) * 2006-09-13 2013-03-27 古河電気工業株式会社 Copper-based precipitation type alloy sheet for contact material and method for producing the same
JP5854574B2 (en) * 2008-03-12 2016-02-09 古河電気工業株式会社 Metal materials for electrical contact parts
JP5660757B2 (en) * 2008-11-07 2015-01-28 株式会社神戸製鋼所 Cu-Ni-Si-based copper alloy sheet for Sn plating
JP5660758B2 (en) * 2008-11-07 2015-01-28 株式会社神戸製鋼所 Cu-Ni-Si-based copper alloy sheet for Sn plating

Also Published As

Publication number Publication date
JPH09209062A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
JP4943095B2 (en) Copper alloy and manufacturing method thereof
JP4809602B2 (en) Copper alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JPH0841612A (en) Copper alloy and its preparation
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JP3977376B2 (en) Copper alloy
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2011208232A (en) Cu-Co-Si ALLOY MATERIAL
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPH0641660A (en) Cu alloy steel having fine structure for electric and electronic parts
JP2001181759A (en) Copper alloy for electronic material excellent in surface characteristic and producing method therefor
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JPS58124254A (en) Copper alloy for lead material of semiconductor device
JP3445432B2 (en) Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH11293367A (en) Copper alloy excellent in property of proof stress relaxation, and its production
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees