JP2836411B2 - Ice storage operation protection device - Google Patents

Ice storage operation protection device

Info

Publication number
JP2836411B2
JP2836411B2 JP4319854A JP31985492A JP2836411B2 JP 2836411 B2 JP2836411 B2 JP 2836411B2 JP 4319854 A JP4319854 A JP 4319854A JP 31985492 A JP31985492 A JP 31985492A JP 2836411 B2 JP2836411 B2 JP 2836411B2
Authority
JP
Japan
Prior art keywords
ice storage
temperature
ice
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4319854A
Other languages
Japanese (ja)
Other versions
JPH06159868A (en
Inventor
秀彦 片岡
有史 山崎
光陽 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP4319854A priority Critical patent/JP2836411B2/en
Publication of JPH06159868A publication Critical patent/JPH06159868A/en
Application granted granted Critical
Publication of JP2836411B2 publication Critical patent/JP2836411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷熱を氷として蓄積
する蓄氷運転の際における保護装置である蓄氷運転保護
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice storage operation protection device which is a protection device in an ice storage operation for storing cold heat as ice.

【0002】[0002]

【従来の技術】従来より、冷熱を氷として蓄積する蓄氷
器を有する空気調和機がある。この空気調和機は、圧縮
機,四路切換弁,室外熱交換器,膨張弁および室内熱交換
器を順次冷媒管で連結してなるヒートポンプ式の冷媒回
路における上記室内熱交換器に並列に配管された蓄氷器
を有している。そして、冷媒の流路を上記室内熱交換器
を通る流路と上記蓄氷器を通る流路とにバルブ等によっ
て切り換え可能にしている。上記蓄氷器は水槽内に蓄氷
式熱交換器を設置した構成を有して、後に詳細に説明す
る蓄氷運転時には上記蓄氷式熱交換器は蒸発器として機
能する一方、放熱運転時には凝縮機として機能する。
2. Description of the Related Art Conventionally, there is an air conditioner having an ice storage device that accumulates cold heat as ice. This air conditioner is connected in parallel to the indoor heat exchanger in a heat pump type refrigerant circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe. Ice storage. The flow path of the refrigerant can be switched between a flow path passing through the indoor heat exchanger and a flow path passing through the ice storage device by a valve or the like. The ice storage device has a configuration in which an ice storage type heat exchanger is installed in a water tank, and the ice storage type heat exchanger functions as an evaporator during ice storage operation to be described in detail later, while during a heat radiation operation. Functions as a condenser.

【0003】また、上記空気調和機における上記蓄氷器
は、更に上記室外熱交換器に対しても並列に配管されて
おり、室外熱交換器を通る流路と蓄氷器を通る流路とに
切り換え可能になっている。
Further, the ice accumulator in the air conditioner is further arranged in parallel with the outdoor heat exchanger, and has a flow path passing through the outdoor heat exchanger and a flow path passing through the ice accumulator. It is possible to switch to.

【0004】そして、冷房運転時には、上記圧縮機から
吐出された冷媒ガスを四路切換弁→室外熱交換器→膨張
弁→室内熱交換器→四路切換弁→圧縮機の順に循環さ
せ、上記室外熱交換器で放熱して冷媒を凝縮し、膨張弁
で減圧し、室内熱交換器で吸熱して蒸発を行って室内を
冷却する。
During the cooling operation, the refrigerant gas discharged from the compressor is circulated in the order of the four-way switching valve → the outdoor heat exchanger → the expansion valve → the indoor heat exchanger → the four-way switching valve → the compressor. The refrigerant is condensed by radiating heat in the outdoor heat exchanger, decompressed by the expansion valve, absorbed by the indoor heat exchanger and evaporated to cool the room.

【0005】さらに、夜間等の室内冷房を必要としない
場合に、以下のような蓄氷運転を実施する。すなわち、
上記冷媒の流路を室内熱交換器を通る流路から蓄氷器を
通る流路に切り換える。そして、圧縮機から吐出された
冷媒ガスを四路切換弁→室外熱交換器→膨張弁→蓄氷器
→四路切換弁→圧縮機の順に循環させ、蓄氷器内の水を
熱交換器による冷媒との熱交換によって冷却して製氷
し、上記蓄氷器内に冷熱を氷として蓄積する。すなわ
ち、上記空気調和機は蓄冷運転時にはスタティック型の
蓄氷システムとして機能するのである。
Further, when room cooling is not required at night or the like, the following ice storage operation is performed. That is,
The flow path of the refrigerant is switched from a flow path passing through the indoor heat exchanger to a flow path passing through the ice storage device. Then, the refrigerant gas discharged from the compressor is circulated in the order of the four-way switching valve → the outdoor heat exchanger → the expansion valve → the ice storage device → the four-way switching valve → the compressor, and the water in the ice storage device is exchanged. To make ice by heat exchange with the refrigerant, and accumulate cold heat as ice in the ice storage device. That is, the air conditioner functions as a static ice storage system during the cold storage operation.

【0006】ところで、真夏の昼間等において室外熱交
換器の凝縮能力がピークに達する場合がある。その場合
には、上述のような冷房運転では室内熱交換器の蒸発能
力が不足して充分に室内を冷却できなくなってしまう。
その際には、以下のような放熱運転を実施する。すなわ
ち、上記冷媒の流路を室外熱交換器を通る流路から蓄氷
器を通る流路に切り換える。そして、圧縮機から吐出さ
れた冷媒ガスを四路切換弁→蓄氷器→膨張弁→室内熱交
換器→四路切換弁→圧縮機の順に循環させ、蓄氷器内に
氷として蓄積された冷熱によって高温高圧の冷媒ガスを
凝縮させる。
[0006] By the way, the condensing capacity of the outdoor heat exchanger sometimes reaches a peak during the daytime in the middle of summer. In such a case, in the cooling operation described above, the evaporation capacity of the indoor heat exchanger is insufficient and the room cannot be sufficiently cooled.
At that time, the following heat dissipation operation is performed. That is, the flow path of the refrigerant is switched from the flow path passing through the outdoor heat exchanger to the flow path passing through the ice storage device. The refrigerant gas discharged from the compressor was circulated in the order of four-way switching valve → ice accumulator → expansion valve → indoor heat exchanger → four-way switching valve → compressor, and accumulated as ice in the ice accumulator. The high temperature and high pressure refrigerant gas is condensed by the cold heat.

【0007】こうして、外気温度が高温であるにも拘わ
らず効率よく冷媒の凝縮を行って、室内熱交換器の蒸発
能力低下を防止して充分に室内を冷却するのである。
[0007] Thus, the refrigerant is efficiently condensed even when the outside air temperature is high, so that the indoor heat exchanger is prevented from being reduced in evaporation capacity and the room is sufficiently cooled.

【0008】上記蓄氷運転時においては、上記蓄氷器内
における冷媒管の周囲の水が冷媒管を介する冷媒との熱
交換によって氷となって冷媒管の周囲に付着する。図5
は、この様子を模式的に表したものである。
[0008] During the ice storage operation, water around the refrigerant pipe in the ice accumulator becomes ice due to heat exchange with the refrigerant through the refrigerant pipe and adheres to the periphery of the refrigerant pipe. FIG.
Is a schematic representation of this situation.

【0009】図5(a)に示すように冷媒管1の周囲に形
成された氷2a,2b,2cは、さらに周囲の水を冷却して
氷に変化させて成長する。その際に、氷2a,2b,2cの
成長によって熱通過率が小さくなって氷の成長速度は小
さくなる。一方、ある1本の冷媒管1の周囲に形成され
た氷2aが隣接した冷媒管1の周囲に形成される氷2bま
たは氷2cに接触するまでは氷2a,2b,2cの表面積が大
きくなる分だけ成長速度が大きくなり、結果としてある
蓄氷率の範囲内では製氷能力が大略一定になる。その結
果、図6に示すように、上記蓄氷器内の蓄氷式熱交換器
における蒸発温度(低圧相当飽和温度)はあまり変化しな
い。
As shown in FIG. 5A, the ice 2a, 2b, 2c formed around the refrigerant pipe 1 grows by further cooling the surrounding water and changing it into ice. At this time, the growth of the ice 2a, 2b, 2c causes the heat transfer rate to decrease and the growth rate of the ice to decrease. On the other hand, the surface area of the ice 2a, 2b, 2c increases until the ice 2a formed around one refrigerant pipe 1 comes into contact with the ice 2b or the ice 2c formed around the adjacent refrigerant pipe 1. As a result, the growth rate increases, and as a result, the ice making capacity becomes substantially constant within a certain range of the ice storage rate. As a result, as shown in FIG. 6, the evaporation temperature (saturation temperature corresponding to low pressure) in the ice storage type heat exchanger in the ice storage device does not change much.

【0010】さらに氷の成長が進んで蓄氷率が上昇し、
やがて図5(b)に示すように、互いに隣接する氷2a,氷
2bおよび氷2cが接触する。そうすると、氷塊の表面積
が急激に小さくなるので、上記蓄氷式熱交換器の熱交換
効率が低下して図6に示すように上記蒸発温度が急激に
低下するのである。したがって、そのまま放っておくと
上記圧縮機が液圧縮となって損傷する恐れがある。
[0010] Further, the growth of ice proceeds, the ice storage rate increases,
Eventually, as shown in FIG. 5B, the adjacent ice 2a, ice 2b and ice 2c come into contact. Then, since the surface area of the ice block rapidly decreases, the heat exchange efficiency of the ice storage type heat exchanger decreases, and the evaporation temperature sharply decreases as shown in FIG. Therefore, if left unattended, the compressor may be compressed and damaged.

【0011】そこで、従来は、蓄氷センサを設けて、こ
の蓄氷センサからの信号によって蓄氷率が限界であるこ
とを検知して上記蓄冷運転を停止するようにしている。
Therefore, conventionally, an ice storage sensor is provided, and a signal from the ice storage sensor detects that the ice storage rate is at a limit and stops the cold storage operation.

【発明が解決しようとする課題】しかしながら、上記従
来の蓄氷器を有する空気調和機には以下のような問題が
ある。すなわち、上記蓄氷センサは2つの電極間におけ
る氷のインピーダンスあるいは氷の圧力を測定すること
によって電気的に蓄氷率を検出するものであり、高価で
あるためにコストアップとなる。
However, the air conditioner having the conventional ice storage device has the following problems. That is, the ice storage sensor electrically detects the ice storage ratio by measuring the impedance of the ice or the pressure of the ice between the two electrodes, and is expensive, so that the cost is increased.

【0012】また、特に圧縮機の側に保護装置がないた
めに、上記蓄氷センサが故障した場合には蓄氷率が限界
に達した際に圧縮機を停止する術がなく、蓄氷センサが
故障した際には圧縮機も同時に故障してしまうという問
題がある。
Also, since there is no protection device especially on the compressor side, if the ice storage sensor fails, there is no way to stop the compressor when the ice storage rate reaches the limit. However, there is a problem that when a failure occurs, the compressor also fails at the same time.

【0013】そこで、この発明の目的は、高価な蓄氷セ
ンサを設けることなく、蓄氷率が限界であることを検知
して自動的に蓄氷運転を終了する蓄氷運転保護装置を提
供することにある。
An object of the present invention is to provide an ice storage operation protection device that detects an ice storage rate being at a limit and automatically terminates the ice storage operation without providing an expensive ice storage sensor. It is in.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、蓄氷式熱交換器における蒸
発温度に対応した温度を検出して検出温度を表す温度信
号を出力する温度検出部と、上記蓄氷式熱交換器の隣接
する配管の回りの氷が互いに連結されて一体化した状態
における蒸発温度に対応する蓄氷停止温度と上記温度検
出部からの検出温度と比較して,上記蓄氷停止温度より
も上記検出温度が下がった場合に圧縮機を停止すべきと
判定する圧縮機停止判定部と、上記圧縮機停止判定部の
判定結果を受けて上記圧縮機を停止させる圧縮機停止部
を備えたことを特徴としている。
To achieve the above object, the invention according to claim 1 detects a temperature corresponding to an evaporation temperature in an ice storage type heat exchanger and outputs a temperature signal representing the detected temperature. A temperature detection unit and an ice storage stop temperature corresponding to an evaporating temperature in a state where ice around adjacent pipes of the ice storage type heat exchanger are connected to each other and integrated are compared with a temperature detected by the temperature detection unit. Then, when the detected temperature is lower than the ice storage stop temperature, the compressor stop determination unit that determines that the compressor should be stopped, and the compressor that receives the determination result of the compressor stop determination unit and starts the compressor. The compressor is provided with a compressor stop unit for stopping the compressor.

【0015】[0015]

【0016】[0016]

【0017】[0017]

【作用】請求項1に係る発明では、圧縮機停止判定部に
よって、温度検出部からの温度信号に基づく検出温度
と、蓄氷式熱交換器の隣接する配管の回りの氷が互いに
連結されて一体化した状態における蒸発温度に対応する
蓄氷停止温度とが比較される。そして、上記蓄氷停止温
度よりも上記検出温度が下がった場合には圧縮機を停止
すべきと判定される。そうすると、この判定結果を受け
て、圧縮機停止部によって上記圧縮機が停止されて蓄氷
運転が終了される。
In the invention according to the first aspect, the detected temperature based on the temperature signal from the temperature detecting unit and the ice around the adjacent pipe of the ice storage type heat exchanger are connected to each other by the compressor stop judging unit. The ice storage stop temperature corresponding to the evaporation temperature in the integrated state is compared. When the detected temperature is lower than the ice storage stop temperature, it is determined that the compressor should be stopped. Then, in response to this determination result, the compressor is stopped by the compressor stop unit, and the ice storage operation is ended.

【0018】[0018]

【0019】[0019]

【0020】[0020]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。図1は、本実施例における蓄氷器11の概略
断面図である。直方体をなす筐体14内に蛇行した冷媒
管13から成る蓄氷式熱交換器16を配置し、この蓄氷
式熱交換器16における流出管15に蓄氷式熱交換器1
6の蒸発温度を検出するためのサーミスタ13を取り付
けている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a schematic sectional view of an ice storage device 11 according to the present embodiment. An ice storage type heat exchanger 16 comprising a meandering refrigerant pipe 13 is arranged in a rectangular parallelepiped housing 14, and the ice storage type heat exchanger 1 is connected to an outlet pipe 15 of the ice storage type heat exchanger 16.
Thermistor 13 for detecting the evaporation temperature of No. 6 is attached.

【0021】上述のように、蓄氷運転時には、上記蓄氷
式熱交換器16の冷媒管12に膨張弁からの低温低圧の
冷媒が流入し、筐体14内の水と冷媒との冷媒管12を
介した熱交換によって氷が形成される。その際に、図6
に示すように、蓄氷式熱交換器16における蒸発温度が
変化していく。そこで、本実施例においては、上記蓄氷
式熱交換器16における蒸発温度をサーミスタ13によ
って検出して蓄氷率の限界を検知するのである。
As described above, during the ice storage operation, the low-temperature and low-pressure refrigerant from the expansion valve flows into the refrigerant pipe 12 of the ice storage type heat exchanger 16, and the refrigerant pipe of water and refrigerant in the housing 14. Ice is formed by heat exchange via 12. At that time, FIG.
As shown in the figure, the evaporation temperature in the ice storage type heat exchanger 16 changes. Therefore, in this embodiment, the limit of the ice storage rate is detected by detecting the evaporation temperature in the ice storage heat exchanger 16 by the thermistor 13.

【0022】図2は、本実施例における蓄氷運転保護装
置のブロック図である。この蓄氷運転保護装置は、上記
蓄氷式熱交換器16における蒸発熱を検出して蓄氷率の
限界を予測し、この予測結果によって圧縮機26を自動
的に停止するのである。
FIG. 2 is a block diagram of the ice storage operation protection device in this embodiment. The ice storage operation protection device detects the heat of evaporation in the ice storage heat exchanger 16 and predicts the limit of the ice storage rate, and automatically stops the compressor 26 based on the prediction result.

【0023】上記蓄氷運転時において、上記流出管15
に取り付けられたサーミスタ13によって検出された冷
媒管温度(蒸発温度に対応:以下、蒸発温度と言う)はA
/D変換器21でディジタルの温度信号に変換されて圧
縮機停止判定部22に入力される。そうすると、圧縮機
停止判定部22は、A/D変換器21からの温度信号に
基づいて蒸発温度Tを監視する。この蒸発温度Tは、氷
の成長が進むに連れて図3に示すように低下し、やがて
製氷能力が略一定となる安定期に入る直前に、予め設定
温度格納部23に格納されている設定温度“T0"に至
る。
During the ice storage operation, the outflow pipe 15
The refrigerant pipe temperature (corresponding to the evaporation temperature; hereinafter, referred to as the evaporation temperature) detected by the thermistor 13 attached to the
The temperature signal is converted into a digital temperature signal by the / D converter 21 and input to the compressor stop determination unit 22. Then, the compressor stop determination unit 22 monitors the evaporation temperature T based on the temperature signal from the A / D converter 21. The evaporating temperature T decreases as the growth of ice progresses as shown in FIG. 3, and immediately before the stable period in which the ice making capacity becomes substantially constant, the set temperature stored in the set temperature storage unit 23 in advance. The temperature reaches “T 0 ”.

【0024】そうすると、上記圧縮機停止判定部22は
所定時間“t0"にセットされたタイマ24をスタートさ
せる。そして、タイマ24から所定時間“t0"が経過し
たことを表す時間信号が入力されると、蓄氷率が限界に
達したと判定して圧縮機停止部25に圧縮機26の停止
を指示する停止指令信号を出力する。そして、上記圧縮
機停止部25は、圧縮機停止判定部22からの停止指令
信号に基づいて圧縮機26を停止させる。
Then, the compressor stop judging section 22 starts the timer 24 set at the predetermined time “t 0 ”. Then, when a time signal indicating that the predetermined time “t 0 ” has elapsed is input from the timer 24, it is determined that the ice storage rate has reached the limit, and the compressor stop unit 25 is instructed to stop the compressor 26. Output a stop command signal. The compressor stop unit 25 stops the compressor 26 based on a stop command signal from the compressor stop determination unit 22.

【0025】その際に、図3に示すように、上記設定温
度“T0"を上記製氷能力安定期に入る直前の温度に設定
し、上記所定時間“t0"を製氷能力安定期が終了する直
前までの時間に設定する。こうすることによって、製氷
能力安定期が終了して蒸発温度Tが急激に低下する前で
あって且つ高い蓄氷率を呈する時点に、圧縮機26を自
動的に停止できるのである。尚、上記製氷能力安定期の
長さは外気温度によって変化する。そこで、テンキー等
からなる時間設定部27によってタイマ24のセット時
間を変更して、外気温度に応じてタイマ24のセット時
間を最適に設定する。
At this time, as shown in FIG. 3, the set temperature “T 0 ” is set to a temperature immediately before the ice making capacity stabilization period, and the predetermined time “t 0 ” is set to the end of the ice making capacity stabilization period. Set the time immediately before By doing so, the compressor 26 can be automatically stopped before the end of the ice making capacity stabilization period and before the evaporation temperature T sharply decreases and at the time when a high ice storage rate is exhibited. The length of the ice making capacity stabilization period varies depending on the outside air temperature. Therefore, the set time of the timer 24 is changed by the time setting unit 27 including a numeric keypad or the like, and the set time of the timer 24 is optimally set according to the outside air temperature.

【0026】すなわち、サーミスタ13およびA/D変
換器21によって上記温度検出部を構成し、タイマ24
によって上記計時部を構成するのである。
That is, the temperature detector is constituted by the thermistor 13 and the A / D converter 21 and the timer 24
This constitutes the clock section.

【0027】図4は、上記圧縮機停止判定部22の制御
の下に実施される蓄氷運転保護処理動作のフローチャー
トである。以下、図4に従って、蓄氷運転保護処理動作
について説明する。ステップS1で、上記A/D変換器2
1からの温度信号が取り込まれて、蒸発温度Tが検知さ
れる。ステップS2で、上記検知された蒸発温度“T"が
上記設定温度“t0"より低くなったか否かが判定され
る。その結果設定温度“T0"より低くなればステップS
3に進む。
FIG. 4 is a flowchart of the ice storage operation protection processing operation executed under the control of the compressor stop judging section 22. Hereinafter, the ice storage operation protection processing operation will be described with reference to FIG. In step S1, the A / D converter 2
The temperature signal from 1 is taken in, and the evaporation temperature T is detected. In step S2, it is determined whether or not the detected evaporation temperature “T” has become lower than the set temperature “t 0 ”. As a result, if it becomes lower than the set temperature “T 0 ”, step S
Proceed to 3.

【0028】ステップS3で、タイマ24がスタートさ
れて、蒸発温度Tが設定温度“T0"より低くなってから
の時間tが計時される。ステップS4で、上記時間tが
所定時間“t0"以上になれば、圧縮機が停止されて蓄氷
運転が終了される。ステップS5で、上記タイマ24が
リセットされて蓄氷運転保護処理動作を終了する。
In step S3, the timer 24 is started, and a time t from when the evaporation temperature T becomes lower than the set temperature "T 0 " is measured. If the time t is equal to or longer than the predetermined time “t 0 ” in step S4, the compressor is stopped and the ice storage operation is terminated. In step S5, the timer 24 is reset, and the ice storage operation protection processing operation ends.

【0029】このように、本実施例においては、上記蓄
氷器11の蓄氷式熱交換器16における流出管15にサ
ーミスタ13を取り付ける。そして、圧縮機停止部22
によって、このサーミスタ13からの温度信号に基づく
蓄氷式熱交換器16の蒸発温度“T"が設定温度“T0"
よりも低い時間が所定時間“t0"以上続いたと判定され
た場合には、上記圧縮機停止部25を制御して圧縮機2
6を停止するようにしている。したがって、高価な蓄氷
センサを用いることなく、上記蓄氷式熱交換器16にお
ける蒸発温度が急激な低下に至る前に蓄氷運転を終了で
きる。すなわち、本実施例は、蓄氷運転時の圧縮機保護
装置としての機能を十分果すことができるのである。
As described above, in the present embodiment, the thermistor 13 is attached to the outflow pipe 15 of the ice storage type heat exchanger 16 of the ice storage device 11. Then, the compressor stopping unit 22
As a result, the evaporation temperature “T” of the ice storage heat exchanger 16 based on the temperature signal from the thermistor 13 is changed to the set temperature “T 0 ”.
If it is determined that the lower time has continued for the predetermined time “t 0 ” or more, the compressor stopping unit 25 is controlled to
6 is stopped. Therefore, without using an expensive ice storage sensor, the ice storage operation can be ended before the evaporation temperature in the ice storage heat exchanger 16 suddenly decreases. That is, the present embodiment can sufficiently fulfill the function as the compressor protection device during the ice storage operation.

【0030】上記実施例においては、上記設定温度“T
0"と所定時間“t0"とに基づいて蓄氷運転終了時点を決
定している。しかしながら、設定温度“T0"を蓄氷式熱
交換器16の隣接する冷媒管の回りの氷が互いに連結さ
れて一体化した状態における蒸発温度に対応する蓄氷停
止温度に設定する一方、所定時間“t0"を零として、蓄
氷式熱交換器16の隣接する冷媒管の回りの氷が互いに
連結されて一体化した時点で直ちに蓄氷運転を終了して
もよい。
In the above embodiment, the set temperature "T
0 "the predetermined time""determines the蓄氷operation end, based on the. However, the set temperature" t 0 is around ice adjacent refrigerant tubes蓄氷heat exchanger 16 to T 0 " While the ice storage stop temperature corresponding to the evaporating temperature in the connected and integrated state is set, while the predetermined time “t 0 ” is set to zero, the ice around the adjacent refrigerant pipe of the ice storage heat exchanger 16 is reduced. The ice storage operation may be terminated immediately at the time of being connected and integrated.

【0031】また、上記実施例においては、サーミスタ
13を蓄氷式熱交換器16の流出管15に取り付けてい
るが流入管に取り付けてもよい。あるいは、蓄氷器11
内の水温を検出可能に取り付けてもよい。また、上記蓄
氷運転保護処理動作のアルゴリズムは図4に示すフロー
チャートに限定されるものではない。
In the above embodiment, the thermistor 13 is attached to the outlet pipe 15 of the ice storage type heat exchanger 16, but may be attached to the inlet pipe. Alternatively, the ice storage 11
It may be attached so that the water temperature inside can be detected. The algorithm of the ice storage operation protection processing operation is not limited to the flowchart shown in FIG.

【0032】[0032]

【発明の効果】以上より明らかなように、請求項1に係
る発明の蓄氷運転保護装置は、圧縮機停止判定部によっ
て、温度検出部からの温度信号に基づく検出温度と蓄氷
式熱交換器の隣接する配管の回りの氷が互いに連結され
て一体化した状態における蒸発温度に対応する蓄氷停止
温度とを比較して、上記蓄氷停止温度よりも上記検出温
度が下がったときに圧縮機を停止すべきと判定し、圧縮
機停止部によって上記圧縮機を停止するので、上記蓄氷
式熱交換器の隣接する配管の回りの氷が互いに連結され
て一体化した状態における蒸発温度で直ちに蓄氷運転を
終了できる。したがって、この発明によれば、高価な蓄
氷センサを設けることなく、蓄氷率が限界であることを
検知して自動的に蓄氷運転を終了でき、低コストで高信
頼性の蓄氷運転が可能な空気調和機等を実現できる。
As is apparent from the above description, in the ice storage operation protection apparatus according to the first aspect of the present invention, the compressor stop judging unit and the ice storage type heat exchange system detect the temperature based on the temperature signal from the temperature detecting unit. Comparing the ice storage stop temperature corresponding to the evaporation temperature in a state where the ice around the pipes adjacent to the vessel is connected and integrated, and compresses when the detected temperature falls below the ice storage stop temperature. It is determined that the compressor should be stopped, and the compressor is stopped by the compressor stop unit, so that the ice around the adjacent pipes of the ice storage heat exchanger is connected to each other and integrated with the evaporation temperature in an integrated state. Ice storage operation can be terminated immediately. Therefore, according to the present invention, without providing an expensive ice storage sensor, the ice storage operation can be automatically terminated by detecting that the ice storage rate is at a limit, and a low-cost and highly reliable ice storage operation can be performed. It is possible to realize an air conditioner or the like that can perform the operation.

【0033】[0033]

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の蓄氷運転保護装置におけるサーミス
タの取り付け状態の説明図である。
FIG. 1 is an explanatory diagram of a state where a thermistor is mounted in an ice storage operation protection device of the present invention.

【図2】図1のサーミスタからの信号に基づいて動作す
る蓄氷運転保護装置のブロック図である。
FIG. 2 is a block diagram of an ice storage operation protection device that operates based on a signal from the thermistor of FIG. 1;

【図3】図2に示す蓄氷運転保護装置の動作の説明図で
ある。
FIG. 3 is an explanatory diagram of an operation of the ice storage operation protection device shown in FIG. 2;

【図4】図2に示す蓄氷運転保護装置における圧縮機停
止判定部によって行われる蓄氷運転保護処理動作のフロ
ーチャートである。
FIG. 4 is a flowchart of an ice storage operation protection process operation performed by a compressor stop determination unit in the ice storage operation protection device shown in FIG. 2;

【図5】蓄氷式熱交換器における製氷過程の説明図であ
る。
FIG. 5 is an explanatory diagram of an ice making process in the ice storage type heat exchanger.

【図6】図5に示す製氷過程における蓄氷率と蓄氷式熱
交換器の蒸発率との関係を示す図である。
6 is a diagram showing a relationship between an ice storage rate and an evaporation rate of an ice storage heat exchanger in the ice making process shown in FIG.

【符号の説明】[Explanation of symbols]

11…蓄氷器、 13…サーミス
タ、15…流出管、 16…蓄氷式
熱交換器、22…圧縮機停止判定部、 23…
設定温度格納部、24…タイマ、
26…圧縮機、27…時間設定部。
DESCRIPTION OF SYMBOLS 11 ... Ice storage device, 13 ... Thermistor, 15 ... Outflow pipe, 16 ... Ice storage type heat exchanger, 22 ... Compressor stop determination part, 23 ...
Set temperature storage unit, 24 timer
26: compressor, 27: time setting unit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−210774(JP,A) 特開 平1−210775(JP,A) 特開 昭49−61742(JP,A) 実開 昭56−47451(JP,U) (58)調査した分野(Int.Cl.6,DB名) F25B 47/02 570 F25B 1/00 320 F25B 1/00 341──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-210774 (JP, A) JP-A-1-210775 (JP, A) JP-A-49-61742 (JP, A) 47451 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) F25B 47/02 570 F25B 1/00 320 F25B 1/00 341

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蓄氷式熱交換器(16)における蒸発温度
に対応した温度を検出して検出温度を表す温度信号を出
力する温度検出部(13,21)と、 上記蓄氷式熱交換器(16)の隣接する配管の回りの氷が
互いに連結されて一体化した状態における蒸発温度に対
応する蓄氷停止温度と上記温度検出部(13,21)から
の検出温度と比較して、上記蓄氷停止温度よりも上記検
出温度が下がった場合に圧縮機(26)を停止すべきと判
定する圧縮機停止判定部(22)と、 上記圧縮機停止判定部(22)の判定結果を受けて、上記
圧縮機(26)を停止させる圧縮機停止部(25)を備えた
ことを特徴とする蓄氷運転保護装置。
A temperature detecting unit for detecting a temperature corresponding to an evaporation temperature in the ice storage type heat exchanger and outputting a temperature signal representing the detected temperature; Comparing the ice storage stop temperature corresponding to the evaporating temperature in the state where the ice around the adjacent pipes of the vessel (16) is connected to each other and integrated with the detected temperature from the temperature detection unit (13, 21), When the detected temperature is lower than the ice storage stop temperature, a compressor stop determination unit (22) that determines that the compressor (26) should be stopped, and a determination result of the compressor stop determination unit (22). An ice storage operation protection device comprising a compressor stop (25) for receiving the compressor (26) and stopping the compressor (26).
JP4319854A 1992-11-30 1992-11-30 Ice storage operation protection device Expired - Lifetime JP2836411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4319854A JP2836411B2 (en) 1992-11-30 1992-11-30 Ice storage operation protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4319854A JP2836411B2 (en) 1992-11-30 1992-11-30 Ice storage operation protection device

Publications (2)

Publication Number Publication Date
JPH06159868A JPH06159868A (en) 1994-06-07
JP2836411B2 true JP2836411B2 (en) 1998-12-14

Family

ID=18114977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4319854A Expired - Lifetime JP2836411B2 (en) 1992-11-30 1992-11-30 Ice storage operation protection device

Country Status (1)

Country Link
JP (1) JP2836411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022503B2 (en) * 2014-04-17 2016-11-09 福島工業株式会社 Cooling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53545B2 (en) * 1972-10-17 1978-01-10
JPS6017651Y2 (en) * 1979-09-19 1985-05-30 三洋電機株式会社 Ice maker operation control device
JPH01210775A (en) * 1988-02-18 1989-08-24 Takenaka Komuten Co Ltd Icing starting detecting device for vaporizer for ice-making
JP2567898B2 (en) * 1988-02-18 1996-12-25 株式会社竹中工務店 Operation control device for ice making device

Also Published As

Publication number Publication date
JPH06159868A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
JP2500522B2 (en) Refrigeration system operation controller
JP2836411B2 (en) Ice storage operation protection device
JP3240700B2 (en) Refrigeration cycle using non-azeotropic refrigerant mixture
JP3175706B2 (en) Binary refrigeration equipment
JP3036227B2 (en) Vending machine cooling method
JPH0239179Y2 (en)
JP3234930B2 (en) Air conditioner
JP3395449B2 (en) Air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2541172B2 (en) Operation control device for air conditioner
JPH0712850Y2 (en) Clogging detection device for air-cooled condenser
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JP3343915B2 (en) Defrost control device
JPH03213957A (en) Air conditioner
JPH0654186B2 (en) Refrigeration equipment
JPH09152237A (en) Air conditioner
JP2536354B2 (en) Refrigerator protection device
JPS6332272A (en) Refrigerator
JP2503784B2 (en) Operation control device for air conditioner
JP2801698B2 (en) Refrigerant natural circulation cooling system
JPS6383556A (en) Refrigeration cycle
JP3203039B2 (en) Absorption refrigerator
JPS5919262Y2 (en) Chiller
JPH0395339A (en) Device for controlling operation of air-conditioning apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14