JP3395449B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3395449B2
JP3395449B2 JP11949295A JP11949295A JP3395449B2 JP 3395449 B2 JP3395449 B2 JP 3395449B2 JP 11949295 A JP11949295 A JP 11949295A JP 11949295 A JP11949295 A JP 11949295A JP 3395449 B2 JP3395449 B2 JP 3395449B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
temperature
discharge pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11949295A
Other languages
Japanese (ja)
Other versions
JPH08313075A (en
Inventor
寛 竹中
孝 佐野
俊治 佐々木
崇 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11949295A priority Critical patent/JP3395449B2/en
Publication of JPH08313075A publication Critical patent/JPH08313075A/en
Application granted granted Critical
Publication of JP3395449B2 publication Critical patent/JP3395449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、空気調和機に関する。 【0002】 【従来の技術】従来の空気調和機では、特開昭61−1017
56号公報に記載のように、吐出圧力の検出を、圧縮機か
ら吐出された高温高圧ガスの一部をバイパスさせ、低圧
ガス配管に設けた熱交換部で冷却させ気体と液体の二相
冷媒状態とし、さらに、キャピラリを通過させて低温低
圧の冷媒ガスとした後圧縮機高圧側流入するようにし、
温度センサを熱交換部とキャピラリの間に設け、センサ
により飽和温度を検出させ、飽和温度と圧力の関係よ
り、圧力を推定しヒートポンプ装置の動作を制御するよ
うにしている。 【0003】従来技術では、圧縮機の吐出ガスの一部を
バイパスさせるため冷凍サイクル能力が低下するという
問題と、バイパス配管を用いるため冷凍サイクルが複雑
になるということに対し考慮がなされていなかった。 【0004】一方、従来の別の空気調和機では特開昭58
−179754号公報に記載のように、暖房外気低温時の暖房
能力の低下を補うよう補助ヒータを設けたとき、圧縮機
電流を検出するセンサにより、圧縮機電流の上昇を検出
し、その増大分に応じ全電流が設定値を超えないよう
に、補助ヒータに流れる電流を、トライアックによる位
相制御またはトランジスタによる振幅制御を行い、全電
流を抑えるように制御していた。 【0005】この技術では、暖房運転における外気温度
上昇時、吐出圧力が上昇し保護装置が作動するまでに圧
縮機運転電流により吐出圧力を抑えるよう制御するとい
うことに対し考慮がなされていなかった。 【0006】 【発明が解決しようとする課題】上記従来技術は、吐出
ガスの一部をバイパスさせ、高温高圧ガスをガス冷媒と
二相冷媒とするため、圧力の絶対値を正確に検出しよう
とするものであり、急激な圧力変動を検出するには遅れ
が生じる問題があった。また温度から圧力を推定する際
の精度にも問題があった。 【0007】本発明の目的は、吐出圧力の上昇時、吐出
圧力の絶対値を高圧ガス配管に設けた圧力スイッチによ
り検出し、圧力スイッチ作動設定値からの圧力上昇幅を
熱交換器出口側に設けた凝縮温度検出用サーミスタによ
り検出して、吐出圧力の上昇を防止することにある。 【0008】本発明の第二の目的は、圧力スイッチの作
動と凝縮温度検出用サーミスタにより、吐出圧力を推定
し、吐出圧力が保護装置作動設定値に到達する前に圧縮
機を停止させ、保護装置の作動を防止することにある。 【0009】本発明の第三の目的は、圧力スイッチの作
動と凝縮温度検出用サーミスタにより、吐出圧力を推定
し、吐出圧力が保護装置作動設定値に到達する前に冷凍
サイクル中に減圧装置として設けた電子膨張弁開度を開
き、吐出圧力低下の機会を与え圧力上昇を防止し、さら
に吐出圧力が上昇する場合には、吐出圧力が保護装置作
動設定値に到達する前に圧縮機を停止させ、保護装置の
作動を防止することにある。 【0010】他の上記従来技術は、圧縮機運転電流の検
出を行うが、補助ヒータの電流制御を行い、全電流値が
所定値を超えないように制御するのに用いている。この
ため圧縮機運転電流値の変化より吐出圧力の変化を推定
し、冷凍サイクルの安定化をはかるということに対し考
慮されていなかった。 【0011】本発明の第四の目的は、吐出圧力の上昇
時、圧縮機の入力が増え圧縮機運転電流値が増大するの
を利用したものであり、吐出圧力の絶対値を高圧ガス配
管に設けた圧力スイッチにより確認し、圧力スイッチ作
動設定値からの圧力上昇幅を圧縮機運転電流検出センサ
により捉えた電流変化幅により検出し吐出圧力の上昇を
防止することにある。 【0012】本発明の第五の目的は圧力スイッチの作動
と電流センサにより吐出圧力を推定し、吐出圧力が保護
装置作動設定値に到達する前に圧縮機を停止させ、保護
装置の作動を防止することにある。 【0013】本発明の第六の目的は、圧力スイッチの作
動と電流センサにより吐出圧力を推定し、吐出圧力が保
護装置作動設定値に到達する前に冷凍サイクル中に低圧
装置として設けた電子膨張弁開度を開き、吐出圧力低下
の機会を与え圧力上昇を防止し、さらに吐出圧力が上昇
する場合には、吐出圧力が保護装置作動設定値に到達す
る前に圧縮機を停止させ、保護装置の作動を防止するこ
とにある。 【0014】 【課題を解決するための手段】上記目的を達成するため
に、本発明の第一の空気調和機は室外ユニットと前記室
外ユニットにガス配管と液配管で接続された室内ユニッ
トで冷凍サイクルを構成し、前記室外ユニットは冷媒ガ
スを圧縮する圧縮機と圧縮された冷媒ガスの送付先を切
り替える四方弁と外部熱源と冷媒を熱交換させる室外熱
交換器からなり、前記室内ユニットは冷媒と室内空気を
熱交換させる室内熱交換器と前記室内熱交換器に接続さ
れて冷媒を減圧する膨張弁を含んでなる空気調和機にお
いて、圧縮機吐出ガス配管に設けた制御用圧力スイッチ
と、室内熱交換器の液配管側出口に、また室外熱交換器
の液配管側出口に設けた凝縮温度検出サーミスタを設
け、制御用圧力スイッチの作動と、制御用圧力スイッチ
作動時の凝縮温度検知サーミスタ温度とその上昇値か
ら、圧縮機から吐出された吐出ガスの圧力変動を捉え、
吐出圧力上昇防止制御を備えたことを特徴とする。 【0015】本発明の第二の空気調和機は、第一の発明
手段に加え、圧力上昇幅が所定値以上になった場合、圧
縮機を停止させ吐出圧力の上昇を防止し、また所定値以
下まで吐出圧力が低下した場合圧縮機を再起動させ、吐
出圧力上昇を防止する制御を備えたことを特徴とする。 【0016】本発明の第三の空気調和機は、第一の発明
手段に加え、圧力上昇幅が所定値以上になった場合、電
子膨張弁開度を開き、吐出圧力の上昇を防止することを
特徴とする。 【0017】本発明の第四の空気調和機は、第一の発明
手段における凝縮温度検知サーミスタの代わりに圧縮機
運転電流を検出する電流センサを備え、制御用圧力スイ
ッチの作動と、制御用圧力スイッチ作動時の圧縮機運転
電流値とその上昇幅から、圧縮機から吐出された吐出圧
力の圧力変動を捉え、吐出圧力上昇防止制御を備えたこ
とを特徴とする。 【0018】本発明の第五の空気調和機は、第四の発明
手段に加え、圧力上昇幅が所定値以上になった場合、圧
縮機を停止させ吐出圧力の上昇を防止し、また所定値以
下まで吐出圧力が低下した場合、圧縮機を再起動させ、
吐出圧力上昇を防止する制御を備えたことを特徴とす
る。 【0019】本発明の第六の空気調和機は、第四の発明
手段に加え、圧力上昇幅が所定値以上になった場合、電
子膨張弁開度を開き、吐出圧力上昇を防止することを特
徴とする。 【0020】 【作用】圧縮機の吐出ガス配管に設置された制御用圧力
スイッチ作動値は、通常保護用(高圧カット用)圧力ス
イッチの作動値30kg/cm2 に対し、保護装置が作動し
ないよう約5kg/cm2 低い25kg/cmに設定される。吐
出圧力の急激な上昇を伴う場合、制御用圧力スイッチの
作動から保護用圧力スイッチが作動するまでの間、吐出
圧力値を監視するため熱交換器の液配管接続側に設置し
た凝縮温度検出用サーミスタによる凝縮温度の制御用圧
力スイッチ作動時からの上昇幅により吐出圧力を捉え、
吐出圧力が保護用圧力スイッチ作動値に到達する前に、
圧縮機を停止させるか、又は電子膨張弁を開くことによ
り吐出圧力の上昇を防止することができる。 【0021】つまり吐出圧力絶対値を制御用圧力スイッ
チの作動により捉えそれ以降の圧力上昇を凝縮温度の変
化幅で捉えることができ、圧力センサより安価な方法に
より正確に圧力を推定することができる。また吐出圧力
が25kg/cm2 以上上昇する場合、熱交換器出口では過
冷却度がとれなくなり、熱交換器出口温度がすなわち飽
和温度となるため、吐出ガスの一部をバイパスさせ、低
圧ガス配管等で冷却し、冷媒を二相化して飽和温度から
圧力を換算するといった複雑な冷凍サイクル配管を具備
させる必要がなく、熱交換器出口にサーミスタを設置す
るだけで、凝縮温度を測定することが可能となる。 【0022】また吐出ガス圧力が上昇した場合、圧縮機
入力が増え運転電流もリンクし上昇するのを利用し、制
御用圧力スイッチの作動と、センサにより捉えた圧縮機
運転電流の制御用圧力スイッチ作動時からの上昇幅によ
り、吐出圧力を推定することが可能となる。つまり、保
護用圧力スイッチが作動する前に圧縮機を停止させる
か、又は電子膨張弁開度を開くことにより吐出圧力の上
昇を防止することができる。 【0023】圧縮機運転電流をセンサにより検出する場
合、圧力変動に対するセンサにより検出した電流値の応
答性が良いため、急激な圧力変動を正確に捉えることが
可能となる。温度センサにより飽和温度を検出する場
合、温度センサの時定数による遅れが伴い、急激な圧力
変動を捉えにくいという問題がある。 【0024】 【実施例】以下、本発明の一実施例を図1ないし図5を
参照して説明する。 【0025】室外ユニット1は圧縮機2と、圧縮機2の
吐出口にポートを接続させた四方弁3と、四方弁3の
ポートに冷媒流路の一端を接続した室外熱交換器4
と、四方弁3のポートに接続された阻止弁18と、圧
縮機2の吸い込み口に一端を接続させ他端を四方弁3の
ポートに接続されたアキュムレータ5と室外熱交換器
4の他端に接続された阻止弁19と室外熱交換器4の出
口温度(冷房時の凝縮温度)を検知する温度センサ15
と、圧縮機運転電流を検知する電流センサ17と圧縮機
吐出圧力を検知する制御用圧力スイッチ18,保護用圧
力スイッチ19、これら温度センサと圧力スイッチに接
続され、これらからの信号を取り込む室外側制御装置1
1とを含んでなっている。室外側制御装置11には、こ
れらセンサからの信号を取り込み室内側電子膨張弁10
の開度を決定する制御手段を備えている。 【0026】また室内ユニット8は、冷媒流路の一端を
ガス配管7及び阻止弁18を介して四方弁3のポート
に連通させた室内熱交換器9と、一端を室内熱交換器9
の冷媒流路の他端に接続された電子膨張弁10と室内熱
交換器9の出口温度(暖房時の凝縮温度)を検知する温
度センサ16と、温度センサからの信号を取り込むとと
もに、動作指令回路13及び運転情報回路14を介して
室外ユニット1の室外側制御装置11に接続されている
室内側制御装置12とを含んでなっている。室内側制御
装置12は、温度センサ15,16,電流センサ17か
らの信号を取り込み圧縮機の停止,起動を行う制御手段
を有している。 【0027】冷房時の冷凍サイクルにおいては、四方弁
3は、そのポート,及びポート,がそれぞれ連
通されるように操作される。この冷凍サイクルでは、室
外ユニット1の圧縮機2によって冷媒が高温高圧に圧縮
され四方弁3から室外熱交換器4に入り凝縮され液冷媒
となる。しかし、外気温度が高く吐出圧力が高い場合、
室外熱交換器4の凝縮性能が室外空気負荷に対し小さく
なるため、熱交換器出口で過冷却度がとれず二相冷媒と
なる。この二相冷媒は液配管6内を流れ室内ユニット8
に流入する。室内ユニット8に流入した二相冷媒は電子
膨張弁10を通って断熱膨張し、次いで室内熱交換器9
で蒸発し、低温低圧ガスとなってガス配管7内を流れ、
再び室内ユニット1に戻る。室外ユニット1に戻ったガ
ス冷媒は四方弁3を経てアキュムレータ5に入り、ここ
で気液分離された後圧縮機2に戻る。 【0028】一方、暖房の冷凍サイクルでは、四方弁3
は、ポート,及び、ポート,がそれぞれ連通さ
れるように操作され、冷房時の冷媒回路とは、逆方向に
循環する冷媒回路が形成される。この冷凍サイクルで
は、室外ユニット1の圧縮機2によって高温高圧に圧縮
されたガス冷媒は四方弁3,ガス配管7を経て室内ユニ
ット8に入る。室内ユニット8に流入したガス冷媒は室
内熱交換器9で凝縮され液冷媒となる。ただし吐出圧力
が上昇し制御用圧力スイッチが作動する場合、冷媒は過
冷却されず二相冷媒となる。この二相冷媒は電子膨張弁
10で減圧され、液配管6を通過し、室外ユニット1に
戻る。二相冷媒は室外熱交換器4に流入し蒸発して低温
低圧ガスとなり四方弁3を介してアキュムレータ5に入
り圧縮機2に戻る。 【0029】図2は、横軸に時間を縦軸に圧縮機の運転
状態,電子膨張弁開度吐出圧力,凝縮温度,圧縮機運転
電流を示したものである。 【0030】吐出圧力の上昇に伴い冷房時は室外熱交換
器4出口の凝縮温度Tc が暖房時には室内熱交換器9出
口の凝縮温度Tc が上昇する。すなわち、凝縮温度は吐
出圧力にリンクし変化するため、凝縮温度より吐出圧力
を推定することが可能となる。また吐出圧力の上昇とと
もに圧縮機2の入力が増え、圧縮機2を流れる運転電流
が増える。電流値の場合、凝縮温度に比べ圧力変動に対
する応答性が良く、急激な圧力変動を検知するのに適し
ている。 【0031】図3に示す第一の実施例は、吐出圧力が上
昇し、制御用圧力スイッチ18が25kg/cm2 で作動
し、このときの凝縮温度Tcoを室外側制御装置11にメ
モリしておく。次いでそのまま制御用圧力スイッチ18
が作動している場合、凝縮温度の上昇幅と凝縮温度の絶
対値を設定値と比較判定し、凝縮温度が判定値以上に上
昇する場合、圧縮機2を停止させ、圧力の上昇を防止さ
せる。凝縮温度で圧力を推定する場合、温度サーミスタ
の検出誤差が大きいため、温度センサ15,16の変化
幅と、その絶対値の両方で圧力を推定し、検出誤差を小
さくすることが可能となる。 【0032】図4に示す第二の実施例は、第一の実施例
で、制御用圧力スイッチ18が作動した後、凝縮温度セ
ンサ15,16で検知した凝縮温度の変化幅とその絶対
値を判定した後、凝縮温度が上昇する場合、すぐに圧縮
機2を停止させるのではなく、一旦、電子膨張弁10を
全開まで開き、吐出圧力が低下する機会を与え、電子膨
張弁10の開度操作後さらに吐出圧力が上昇し凝縮温度
が上がる場合には圧縮機を停止させ、保護用圧力スイッ
チ19が作動するのを防止したものである。本制御によ
り、ユニットの連続運転時間を長くし、頻繁な圧縮機オ
ン/オフの繰り返しを防止することが可能となる。 【0033】図5に示す第三の実施例は、第一,二の実
施例で制御用圧力スイッチ18が作動した後、温度サー
ミスタの代わりに電流センサ17を用い、電流の変化幅
と、その絶対値により圧力の上昇を判定し、圧力低下を
はかるべく、電子膨張弁10の開度操作及び、圧縮機の
オン/オフ制御を行うようにしたものである。温度セン
サの代わりに電流センサを用いることにより、吐出変動
に対する応答性が良いため、起動時の急激な圧力上昇を
検知することができ、冷凍サイクルの安定化をはかるこ
とが可能となる。また電流センサにより検出した電流値
の絶対値も誤差が大きいため、電流値の変化幅により圧
力変動を捉えることは適切な方法である。 【0034】また、本発明は、吐出圧力が上昇し、保護
用圧力スイッチが作動する前に圧力を低下させることで
あり、吐出圧力が本領域では凝縮装置側の熱交換器出口
で過冷却度がとれないため二相冷媒となることから、簡
便な方法にて凝縮温度を検出することができる。 【0035】また温度センサの代わりに電流センサを用
いることにより、電流が吐出圧力の変動に対し応答性良
く変化するため、起動時の急激な圧力変化に対し有効に
作用し、吐出圧力が保護用圧力スイッチ作動値まで達す
る前に圧力低下させることが可能となる。 【0036】 【発明の効果】本発明によれば吐出圧力の上昇を凝縮温
度の変化幅とその絶対値で捉えることができ、圧力セン
サや、吐出ガスの一部をバイパスさせ低圧配管で冷却さ
せて二相冷媒とした後その飽和温度を検出する方法に比
べ、比較的安価な方法にて吐出圧力を推定することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner. 2. Description of the Related Art A conventional air conditioner is disclosed in
As described in JP-A-56, the detection of the discharge pressure is performed by bypassing a part of the high-temperature and high-pressure gas discharged from the compressor and cooling it by a heat exchange unit provided in a low-pressure gas pipe, thereby forming a two-phase gas-liquid refrigerant. State, further, through a capillary to make a low-temperature low-pressure refrigerant gas, and then flow into the compressor high-pressure side,
A temperature sensor is provided between the heat exchange section and the capillary, and the sensor detects the saturation temperature. The pressure is estimated from the relationship between the saturation temperature and the pressure to control the operation of the heat pump device. In the prior art, no consideration has been given to the problem that the refrigeration cycle capacity is reduced by bypassing a part of the discharge gas of the compressor, and that the refrigeration cycle is complicated by the use of bypass piping. . On the other hand, another conventional air conditioner is disclosed in
As described in Japanese Patent No. 179754, when an auxiliary heater is provided to compensate for a decrease in the heating capacity when the outside temperature of the heating air is low, a sensor for detecting the compressor current detects an increase in the compressor current, and an increase in the compressor current is detected. In order to prevent the total current from exceeding the set value, the current flowing through the auxiliary heater is controlled so as to suppress the total current by performing phase control using a triac or amplitude control using a transistor. In this technique, no consideration has been given to controlling the discharge pressure to be suppressed by the compressor operating current until the discharge pressure rises when the outside air temperature rises in the heating operation and the protection device operates. In the above-mentioned prior art, since a part of the discharge gas is bypassed and the high-temperature and high-pressure gas is used as a gas refrigerant and a two-phase refrigerant, the absolute value of the pressure is detected accurately. However, there is a problem that a delay occurs in detecting a rapid pressure fluctuation. There is also a problem in accuracy in estimating pressure from temperature. An object of the present invention is to detect the absolute value of the discharge pressure by a pressure switch provided in a high-pressure gas pipe when the discharge pressure rises, and to provide the pressure rise width from the pressure switch operation set value to the heat exchanger outlet side. An object of the present invention is to prevent the rise of the discharge pressure by detecting the condensation temperature detecting thermistor provided. A second object of the present invention is to estimate a discharge pressure by operating a pressure switch and a thermistor for detecting a condensing temperature, and to stop the compressor before the discharge pressure reaches a set value of a protection device operation to protect the compressor. It is to prevent the operation of the device. A third object of the present invention is to estimate a discharge pressure by operating a pressure switch and a thermistor for detecting a condensing temperature, and as a pressure reducing device during a refrigeration cycle before the discharge pressure reaches a protection device operation set value. The opening of the provided electronic expansion valve is opened to give an opportunity to lower the discharge pressure to prevent the pressure from increasing.If the discharge pressure further increases, the compressor is stopped before the discharge pressure reaches the protection device operation set value. To prevent the operation of the protection device. In the above-mentioned prior art, the compressor operating current is detected, but it is used to control the current of the auxiliary heater so that the total current value does not exceed a predetermined value. For this reason, no consideration has been given to estimating the change in the discharge pressure from the change in the compressor operating current value and stabilizing the refrigeration cycle. A fourth object of the present invention is to utilize the fact that the input of the compressor increases and the operating current value of the compressor increases when the discharge pressure increases, and the absolute value of the discharge pressure is supplied to the high-pressure gas pipe. An object of the present invention is to prevent a rise in discharge pressure by checking the pressure switch provided and detecting a pressure rise from a pressure switch operation set value by a current change width detected by a compressor operation current detection sensor. A fifth object of the present invention is to estimate the discharge pressure by operating a pressure switch and a current sensor, stop the compressor before the discharge pressure reaches a protection device operation set value, and prevent the operation of the protection device. Is to do. A sixth object of the present invention is to estimate the discharge pressure by operating a pressure switch and a current sensor, and to provide an electronic expansion provided as a low-pressure device during a refrigeration cycle before the discharge pressure reaches a protection device operation set value. Open the valve to prevent the pressure from increasing by giving the opportunity to lower the discharge pressure.If the discharge pressure rises, stop the compressor before the discharge pressure reaches the protection device operation set value. To prevent the operation of [0014] In order to achieve the above object, a first air conditioner of the present invention comprises an outdoor unit and an indoor unit connected to the outdoor unit by a gas pipe and a liquid pipe. Constituting a cycle, the outdoor unit comprises a compressor for compressing the refrigerant gas, a four-way valve for switching the destination of the compressed refrigerant gas, and an outdoor heat exchanger for exchanging heat between the external heat source and the refrigerant, and the indoor unit comprises a refrigerant. In an air conditioner including an indoor heat exchanger that exchanges heat with indoor air and an expansion valve that is connected to the indoor heat exchanger and decompresses refrigerant, a control pressure switch provided on a compressor discharge gas pipe; Condensation temperature detection thermistors provided at the outlet of the indoor heat exchanger on the liquid pipe side and at the outlet of the outdoor heat exchanger on the liquid pipe side are used to operate the control pressure switch and the control pressure switch. From the condensation temperature detection thermistor temperature and its rise value, the pressure fluctuation of the discharge gas discharged from the compressor is captured,
Discharge pressure rise prevention control is provided. According to the second air conditioner of the present invention, in addition to the first invention, when the pressure increase width exceeds a predetermined value, the compressor is stopped to prevent the discharge pressure from rising, The compressor is restarted when the discharge pressure decreases to the following level, and control is provided to prevent the discharge pressure from rising. According to a third air conditioner of the present invention, in addition to the first aspect of the present invention, when the pressure rise width exceeds a predetermined value, the electronic expansion valve is opened to prevent the discharge pressure from rising. It is characterized by. A fourth air conditioner of the present invention includes a current sensor for detecting a compressor operating current instead of the condensing temperature detecting thermistor in the first aspect of the present invention. The present invention is characterized in that a discharge pressure rise prevention control is provided by detecting a pressure fluctuation of a discharge pressure discharged from the compressor from a compressor operating current value and a rise width thereof when the switch is operated. According to a fifth aspect of the present invention, in addition to the fourth aspect of the present invention, when the pressure increase width exceeds a predetermined value, the compressor is stopped to prevent the discharge pressure from increasing, and If the discharge pressure drops below, restart the compressor,
It is characterized by having a control for preventing the discharge pressure from rising. According to the sixth air conditioner of the present invention, in addition to the fourth aspect of the present invention, when the pressure rise width exceeds a predetermined value, the electronic expansion valve is opened to prevent the discharge pressure from rising. Features. The operating value of the control pressure switch installed in the discharge gas pipe of the compressor is 30 kg / cm 2 for the normal protection (high pressure cut) pressure switch, so that the protection device does not operate. It is set to 25 kg / cm, which is about 5 kg / cm 2 lower. When the discharge pressure rises sharply, a condensation temperature detector is installed on the liquid pipe connection side of the heat exchanger to monitor the discharge pressure value from the time the control pressure switch is activated until the protection pressure switch is activated. The discharge pressure is captured by the rise width from the time of operating the pressure switch for controlling the condensation temperature by the thermistor,
Before the discharge pressure reaches the protective pressure switch activation value,
By stopping the compressor or opening the electronic expansion valve, an increase in the discharge pressure can be prevented. That is, the absolute value of the discharge pressure can be detected by the operation of the control pressure switch, and the subsequent pressure rise can be detected by the variation width of the condensing temperature, and the pressure can be accurately estimated by a method less expensive than the pressure sensor. . When the discharge pressure increases by 25 kg / cm 2 or more, the degree of supercooling cannot be obtained at the heat exchanger outlet, and the heat exchanger outlet temperature becomes a saturation temperature. It is not necessary to equip with a complicated refrigeration cycle piping such as cooling by cooling and two-phase refrigerant and converting the pressure from the saturation temperature, it is possible to measure the condensation temperature simply by installing a thermistor at the heat exchanger outlet It becomes possible. Also, when the discharge gas pressure rises, the operation of the control pressure switch and the control pressure switch of the compressor operating current detected by the sensor are utilized by utilizing the fact that the compressor input increases and the operating current also links and increases. The discharge pressure can be estimated from the rise width from the time of operation. That is, the compressor can be stopped before the protection pressure switch is operated, or the electronic expansion valve can be opened to prevent the discharge pressure from rising. When the compressor operating current is detected by the sensor, the response of the current value detected by the sensor to the pressure fluctuation is good, so that a rapid pressure fluctuation can be accurately detected. When the saturation temperature is detected by the temperature sensor, there is a problem that a delay due to the time constant of the temperature sensor accompanies, and it is difficult to catch a rapid pressure fluctuation. An embodiment of the present invention will be described below with reference to FIGS. The outdoor unit 1 comprises a compressor 2, a four-way valve 3 having a port connected to a discharge port of the compressor 2, and an outdoor heat exchanger 4 having one end of a refrigerant flow path connected to a port of the four-way valve 3.
A blocking valve 18 connected to the port of the four-way valve 3, an accumulator 5 connected to one end of the suction port of the compressor 2 and the other end connected to the port of the four-way valve 3, and the other end of the outdoor heat exchanger 4. Temperature sensor 15 for detecting the temperature of the outlet of the outdoor heat exchanger 4 (condensation temperature during cooling)
And a current sensor 17 for detecting a compressor operating current, a control pressure switch 18 for detecting a compressor discharge pressure, a protection pressure switch 19, and a temperature sensor and a pressure switch which are connected to the outdoor to take in signals from these. Control device 1
1 is included. The signals from these sensors are taken into the outdoor controller 11 by the electronic expansion valve 10 on the indoor side.
Is provided with control means for determining the degree of opening. The indoor unit 8 has an indoor heat exchanger 9 having one end of the refrigerant flow path communicating with the port of the four-way valve 3 via the gas pipe 7 and the blocking valve 18, and an indoor heat exchanger 9 having one end.
The electronic expansion valve 10 connected to the other end of the refrigerant flow path and the temperature sensor 16 for detecting the outlet temperature (condensing temperature during heating) of the indoor heat exchanger 9, a signal from the temperature sensor, and an operation command An indoor controller 12 connected to the outdoor controller 11 of the outdoor unit 1 via the circuit 13 and the operation information circuit 14 is included. The indoor control device 12 has control means for taking in signals from the temperature sensors 15, 16 and the current sensor 17 to stop and start the compressor. In the refrigeration cycle at the time of cooling, the four-way valve 3 is operated such that its ports are connected to each other. In this refrigeration cycle, the refrigerant is compressed to a high temperature and a high pressure by the compressor 2 of the outdoor unit 1, enters the outdoor heat exchanger 4 from the four-way valve 3, and is condensed to become a liquid refrigerant. However, when the outside air temperature is high and the discharge pressure is high,
Since the condensation performance of the outdoor heat exchanger 4 becomes smaller with respect to the outdoor air load, a supercooling degree cannot be obtained at the heat exchanger outlet, and the refrigerant becomes a two-phase refrigerant. The two-phase refrigerant flows through the liquid pipe 6 and the indoor unit 8
Flows into. The two-phase refrigerant flowing into the indoor unit 8 adiabatically expands through the electronic expansion valve 10, and then expands in the indoor heat exchanger 9.
And evaporates into low-temperature low-pressure gas, which flows through the gas pipe 7,
Return to indoor unit 1 again. The gas refrigerant returned to the outdoor unit 1 enters the accumulator 5 via the four-way valve 3, where the gas refrigerant is separated into gas and liquid, and then returns to the compressor 2. On the other hand, in the heating refrigeration cycle, the four-way valve 3
Are operated such that the ports and the ports are communicated with each other, and a refrigerant circuit circulating in a direction opposite to the refrigerant circuit at the time of cooling is formed. In this refrigeration cycle, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 2 of the outdoor unit 1 enters the indoor unit 8 via the four-way valve 3 and the gas pipe 7. The gas refrigerant that has flowed into the indoor unit 8 is condensed in the indoor heat exchanger 9 and becomes a liquid refrigerant. However, when the discharge pressure rises and the control pressure switch operates, the refrigerant is not supercooled and becomes a two-phase refrigerant. The pressure of the two-phase refrigerant is reduced by the electronic expansion valve 10, passes through the liquid pipe 6, and returns to the outdoor unit 1. The two-phase refrigerant flows into the outdoor heat exchanger 4 and evaporates to become a low-temperature low-pressure gas, enters the accumulator 5 via the four-way valve 3, and returns to the compressor 2. FIG. 2 shows the operating state of the compressor, the discharge pressure of the electronic expansion valve opening, the condensing temperature, and the operating current of the compressor on the horizontal axis and the vertical axis on the vertical axis. [0030] During the cooling with the rise of the discharge pressure condensation temperature T c of 4 outlets outdoor heat exchanger during heating condensation temperature T c of the indoor heat exchanger 9 outlet is increased. That is, since the condensation temperature is linked to the discharge pressure and changes, the discharge pressure can be estimated from the condensation temperature. Further, as the discharge pressure increases, the input of the compressor 2 increases, and the operating current flowing through the compressor 2 increases. In the case of the current value, the response to the pressure fluctuation is better than the condensation temperature, and is suitable for detecting a sudden pressure fluctuation. In the first embodiment shown in FIG. 3, the discharge pressure rises, the control pressure switch 18 operates at 25 kg / cm 2 , and the condensation temperature T co at this time is stored in the outdoor controller 11. Keep it. Next, the control pressure switch 18 is used as it is.
When the condensing temperature rises and the absolute value of the condensing temperature is compared with a set value, and when the condensing temperature rises above the judgment value, the compressor 2 is stopped to prevent the pressure from rising. . When estimating the pressure based on the condensing temperature, since the detection error of the temperature thermistor is large, it is possible to estimate the pressure based on both the change width of the temperature sensors 15 and 16 and the absolute value thereof, thereby reducing the detection error. The second embodiment shown in FIG. 4 is a first embodiment in which the change width of the condensing temperature detected by the condensing temperature sensors 15 and 16 and the absolute value thereof are measured after the control pressure switch 18 is operated. If the condensing temperature rises after the determination, instead of immediately stopping the compressor 2, the electronic expansion valve 10 is once opened to the full open, giving an opportunity to reduce the discharge pressure, and the opening degree of the electronic expansion valve 10. If the discharge pressure further increases and the condensing temperature rises after the operation, the compressor is stopped to prevent the protection pressure switch 19 from operating. This control makes it possible to extend the continuous operation time of the unit and prevent frequent repetition of compressor on / off. In the third embodiment shown in FIG. 5, after the control pressure switch 18 is operated in the first and second embodiments, the current sensor 17 is used instead of the temperature thermistor to change the current variation width and The operation of opening the electronic expansion valve 10 and the ON / OFF control of the compressor are performed in order to determine a rise in pressure based on the absolute value and measure a decrease in pressure. By using a current sensor instead of a temperature sensor, the responsiveness to discharge fluctuations is good, so that a rapid pressure rise at startup can be detected, and the refrigeration cycle can be stabilized. Further, since the absolute value of the current value detected by the current sensor also has a large error, it is an appropriate method to capture the pressure fluctuation based on the variation width of the current value. Further, the present invention is to reduce the pressure before the protective pressure switch is activated by increasing the discharge pressure. In this region, the discharge pressure is reduced at the outlet of the heat exchanger on the condenser side in this region. Since the refrigerant is not two-phase refrigerant, the condensation temperature can be detected by a simple method. Also, by using a current sensor instead of a temperature sensor, the current changes responsively to a change in the discharge pressure, so that it effectively works against a sudden pressure change at the time of startup, and the discharge pressure is used for protection. The pressure can be reduced before reaching the pressure switch operation value. According to the present invention, the rise of the discharge pressure can be detected by the change width of the condensing temperature and its absolute value, and the pressure sensor and a part of the discharge gas are bypassed and cooled by the low-pressure pipe. The discharge pressure can be estimated by a relatively inexpensive method as compared with a method of detecting the saturation temperature of a two-phase refrigerant.

【図面の簡単な説明】 【図1】本発明の第一ないし第三の実施例であるペアタ
イプ空気調和機の冷凍サイクルの系統図。 【図2】本発明の第一ないし第三の実施例で、圧縮機運
転状態,電子膨張弁開度,各センサの時間変化がわかる
タイムチャート。 【図3】本発明の第一の実施例のフローチャート。 【図4】本発明の第二の実施例のフローチャート。 【図5】本発明の第三の実施例のフローチャート。 【符号の説明】 1…室外ユニット、2…圧縮機、4…室外熱交換器、8
…室内ユニット、9…室内熱交換器、10…電子膨張
弁、15…温度センサ、17…電流センサ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of a refrigeration cycle of a pair type air conditioner according to first to third embodiments of the present invention. FIG. 2 is a time chart showing a compressor operating state, an electronic expansion valve opening, and a time change of each sensor according to the first to third embodiments of the present invention. FIG. 3 is a flowchart of the first embodiment of the present invention. FIG. 4 is a flowchart of a second embodiment of the present invention. FIG. 5 is a flowchart of a third embodiment of the present invention. [Description of Signs] 1 ... Outdoor unit, 2 ... Compressor, 4 ... Outdoor heat exchanger, 8
... indoor unit, 9 ... indoor heat exchanger, 10 ... electronic expansion valve, 15 ... temperature sensor, 17 ... current sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 崇 静岡県清水市村松390番地 株式会社 日立製作所 空調システム事業部内 (56)参考文献 特開 平4−225771(JP,A) 特開 昭62−196562(JP,A) 特開 平6−82130(JP,A) 特開 平1−277159(JP,A) 特開 昭63−143464(JP,A) 実開 昭58−131374(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 341 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Mori 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Air Conditioning Systems Division, Hitachi, Ltd. (56) References JP-A-4-225771 (JP, A) JP-A-62- 196562 (JP, A) JP-A-6-82130 (JP, A) JP-A-1-277159 (JP, A) JP-A-63-143464 (JP, A) Japanese Utility Model Publication No. 58-131374 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 1/00 341

Claims (1)

(57)【特許請求の範囲】 【請求項1】圧縮機,室外熱交換器,電子膨張弁,室内
熱交換器とアキュムレータを順次連結し冷凍サイクルを
構成する空気調和機において、高圧圧力制御用圧力スイ
ッチと凝縮温度検出用サーミスタを室内及び前記室外熱
交換器の出口に具備させ、高圧圧力の上昇を高圧圧力制
御用の圧力スイッチの作動信号と前記圧力スイッチの作
動時の凝縮温度を基準としたその上昇幅により検出し、
高圧圧力の上昇を防止する制御手段を設けたことを特徴
とする空気調和機。
(57) [Claims 1] In an air conditioner constituting a refrigeration cycle by sequentially connecting a compressor, an outdoor heat exchanger, an electronic expansion valve, an indoor heat exchanger and an accumulator, a high pressure control system is provided. A pressure switch and a thermistor for detecting a condensing temperature are provided in the room and at the outlet of the outdoor heat exchanger, and a rise in high pressure is determined based on an operation signal of a pressure switch for high pressure control and a condensing temperature when the pressure switch is operated. Detected by the amount of rise
An air conditioner comprising a control means for preventing an increase in high pressure.
JP11949295A 1995-05-18 1995-05-18 Air conditioner Expired - Lifetime JP3395449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11949295A JP3395449B2 (en) 1995-05-18 1995-05-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11949295A JP3395449B2 (en) 1995-05-18 1995-05-18 Air conditioner

Publications (2)

Publication Number Publication Date
JPH08313075A JPH08313075A (en) 1996-11-29
JP3395449B2 true JP3395449B2 (en) 2003-04-14

Family

ID=14762613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11949295A Expired - Lifetime JP3395449B2 (en) 1995-05-18 1995-05-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP3395449B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523041B1 (en) * 1999-01-27 2005-10-21 삼성전자주식회사 Control method for bistable valve and compressor of refrigerator
JP3853550B2 (en) * 1999-11-12 2006-12-06 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH08313075A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
EP1826513B1 (en) Refrigerating air conditioner
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
JPH0327249Y2 (en)
EP2075519B1 (en) Air Conditoning system
JP4408413B2 (en) Refrigeration apparatus and air conditioner using the same
JP3395449B2 (en) Air conditioner
JP3435822B2 (en) Air conditioner
JP2551238B2 (en) Operation control device for air conditioner
JP2964705B2 (en) Air conditioner
JP2504997Y2 (en) Air conditioner
JPS6222962A (en) Refrigerator
JP2842020B2 (en) Operation control device for air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JP2508842B2 (en) Air conditioner
JP2904354B2 (en) Air conditioner
JPH0213908Y2 (en)
KR880000935B1 (en) Control device for refrigeration cycle
JP3134388B2 (en) Air conditioner
JPS63286664A (en) Heat pump type air conditioner
US20240151443A1 (en) Refrigeration cycle apparatus, control method for refrigeration cycle apparatus, and non-transitory computer-readable recording medium
KR20040073325A (en) A supercritical cooling-heating cycle
JP2503784B2 (en) Operation control device for air conditioner
JP2503785B2 (en) Operation control device for air conditioner
JP3054560B2 (en) Air conditioner heating operation method
JPS6345030B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

EXPY Cancellation because of completion of term