JP2567898B2 - Operation control device for ice making device - Google Patents

Operation control device for ice making device

Info

Publication number
JP2567898B2
JP2567898B2 JP63035621A JP3562188A JP2567898B2 JP 2567898 B2 JP2567898 B2 JP 2567898B2 JP 63035621 A JP63035621 A JP 63035621A JP 3562188 A JP3562188 A JP 3562188A JP 2567898 B2 JP2567898 B2 JP 2567898B2
Authority
JP
Japan
Prior art keywords
temperature
solution
freezing
ice
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63035621A
Other languages
Japanese (ja)
Other versions
JPH01210774A (en
Inventor
良則 井上
斉和 三宅
明 倉多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Daikin Kogyo Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP63035621A priority Critical patent/JP2567898B2/en
Publication of JPH01210774A publication Critical patent/JPH01210774A/en
Application granted granted Critical
Publication of JP2567898B2 publication Critical patent/JP2567898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製氷用溶液でシャーベット状の氷を生成し
て蓄熱槽に蓄え、例えば冷房等の冷熱源を得るようにし
た製氷装置における運転制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the operation of an ice making device in which sherbet-like ice is generated with an ice making solution and stored in a heat storage tank to obtain a cold heat source such as cooling. Regarding the control device.

(従来の技術) 従来、この種の製氷装置として、特開昭56−2567号公
報に開示され、又、第9図に示すように、内管(A)内
に、外周部に羽根(F)を備えた回転ドラム(D)を内
装すると共に、内管(A)と外管(B)との間に、圧縮
機を用いて構成される冷凍装置における蒸発器(E)を
コイル状にして内装し、蒸発器(E)による冷却作用
と、羽根(F)による氷の剥ぎ取り作用とにより、下方
に配設する蓄熱槽(C)にシャーベット状の氷を落下さ
せると共に、該蓄熱槽(C)の液域と内管(A)の上部
との間を、循環ポンプ(P)を介して接続し、深夜電力
等を利用して、室内ユニット(U)……へ昼間供給する
冷熱源を予め得ておき、省エネ等に貢献できるようにし
たものが知られている。
(Prior Art) Conventionally, an ice making device of this type is disclosed in Japanese Patent Laid-Open No. 56-2567, and as shown in FIG. 9, a blade (F ) Is installed inside, and the evaporator (E) in the refrigerating apparatus configured by using a compressor is coiled between the inner pipe (A) and the outer pipe (B). The sherbet-shaped ice is dropped into the heat storage tank (C) arranged below by the cooling operation by the evaporator (E) and the ice removing operation by the blade (F), and the heat storage tank is also installed. Cooling heat is supplied between the liquid area of (C) and the upper part of the inner pipe (A) via a circulation pump (P), and is supplied to the indoor unit (U) in the daytime by using midnight power or the like. It is known that a source is obtained in advance so that it can contribute to energy saving.

そして、シャーベット状の氷とされる製氷用溶液とし
ては、水の氷点(0℃)以下で凍結するように、水にエ
チレングリコール等を添加した水溶液が一般に用いられ
ている。
As the ice-making solution that is made into sherbet-like ice, an aqueous solution obtained by adding ethylene glycol or the like to water so as to freeze below the freezing point of water (0 ° C.) is generally used.

(発明が解決しようとする課題) 所で、この種製氷装置では、蓄熱槽(C)内にできる
だけ多量のシャーベット状の氷を蓄えるのが蓄熱量の確
保の点で望ましい。しかし、内管(A)での凍結防止を
図りながら、なおかつ、内管(A)と蓄熱槽(C)との
間で氷混じりの溶液を循環流動させる必要性から、溶液
の総重量(W1)と生成される氷の重量(W2)との比(W2
/W1)(以下これをIPF(Ice Packing Factor;蓄氷
率)と云う)は40〜60%程度が限界であり、これより高
いIPFを得ようとすると、内管(A)での凍結で回転ド
ラム(D)が凍結ロックしてしまう等の問題が生じる。
従って、生成される氷の量、すなわちIPFの限界値を管
理しながら運転を行う必要がある。
(Problems to be Solved by the Invention) In this type of ice making device, it is desirable to store as much sherbet-like ice as possible in the heat storage tank (C) from the viewpoint of securing the heat storage amount. However, while it is necessary to circulate and flow the ice-mixed solution between the inner tube (A) and the heat storage tank (C) while preventing freezing in the inner tube (A), the total weight of the solution (W1 ) And the weight of ice produced (W2) (W2
/ W1) (hereinafter referred to as IPF (Ice Packing Factor)) is limited to about 40 to 60%, and if you try to obtain a higher IPF, you will freeze it in the inner pipe (A). There arises a problem that the rotary drum (D) freezes and locks.
Therefore, it is necessary to operate while controlling the amount of ice produced, that is, the IPF limit value.

又、室内ユニット(U)の運転台数少ない場合等、室
内熱負荷の要求で、IPFの限界値よりも低いIPFで運転し
たい場合がある。
In addition, when the number of operating indoor units (U) is small, there are cases where it is desired to operate at an IPF lower than the IPF limit value due to the demand for indoor heat load.

この場合、生成される氷自身は水のみの結晶であり、
氷の生成に伴い、溶液濃度が高まり、それにつれて新た
に氷の生成する温度つまり氷点が低下することを利用し
て、溶液温度を常時検出し、その検出温度が所定値以下
となったら、溶液冷却用冷媒を供給する圧縮機の運転を
停止することが考えられる。ところが、こうした場合に
は、溶液の初期濃度が変われば、最初に結氷を開始する
温度そのものが異なるから、特定の温度で運転を停止す
るにしても、結氷開始温度に対してどれだけ温度低下し
たかという温度評価は行えず、正確な蓄氷量を得ること
ができない。又、特定の温度つまり絶対値検出のため、
温度検出機のバラツキで蓄氷量にもバラツキが生じる。
In this case, the generated ice itself is a water-only crystal,
As the concentration of the solution increases with the formation of ice, the temperature at which ice is newly generated, that is, the freezing point, lowers, and the solution temperature is constantly detected. It is possible to stop the operation of the compressor that supplies the cooling medium. However, in such a case, if the initial concentration of the solution changes, the temperature itself at which ice formation first starts differs, so even if the operation is stopped at a specific temperature, the temperature will decrease by the ice formation start temperature. It is not possible to evaluate the temperature, and it is not possible to obtain an accurate ice storage amount. Also, because of the specific temperature, that is, the absolute value detection,
Variations in the temperature detector cause variations in the amount of ice storage.

本発明の目的は、結氷開始温度と、その後の濃度増加
に伴い低下する温度との差、つまり溶液温度の相対値で
圧縮機の発停制御を行うことにより、溶液の初期濃度に
影響されず、又、温度検出器のバラツキにも影響される
ことなく、所定のIPFに制御可能とした製氷装置におけ
る運転制御装置を提供する点にある。
The object of the present invention is not affected by the initial concentration of the solution by controlling the start and stop of the compressor by the difference between the freezing start temperature and the temperature that decreases with the subsequent increase in concentration, that is, the relative value of the solution temperature. Another object is to provide an operation control device in an ice making device that can be controlled to a predetermined IPF without being affected by variations in temperature detectors.

(課題を解決するための手段) そこで、本発明では、回転ドラム(5)を内装し、製
氷用溶液を流通させる内管(2)と、前記溶液を冷却す
る冷媒を流通させる外管(3)とをもつ製氷用蒸発器
(1)と、前記外管(3)に前記冷媒を供給するための
圧縮機(8)をもつ冷凍サイクルとを備えた製氷装置に
おける運転制御装置であって、前記内管(2)での前記
溶液の結氷開始を検出する結氷検出手段と、前記内管
(2)の出口温度を検出する温度検出器(Th)と、前記
結氷検出手段により結氷開始を検出した時の前記温度検
出器(Th)による検出出口温度(T1)を記憶する記憶手
段と、記憶した出口温度(T1)と結氷開始後の前記温度
検出器(Th)による検出出口温度(T2)との差(T1−T
2)に基づいて前記圧縮機(8)の発停制御を行う圧縮
機発停手段とを備えていることを特徴とするものであ
る。
(Means for Solving the Problem) Therefore, in the present invention, an inner pipe (2) having a rotary drum (5) as an internal component for circulating a solution for ice making and an outer pipe (3 for circulating a refrigerant for cooling the solution). ) And an ice making evaporator (1), and a refrigeration cycle having a compressor (8) for supplying the refrigerant to the outer pipe (3). Freezing detection means for detecting the freezing start of the solution in the inner pipe (2), a temperature detector (Th) for detecting the outlet temperature of the inner pipe (2), and the freezing start is detected by the freezing detection means. Storage means for storing the outlet temperature (T1) detected by the temperature detector (Th) at the time of storage, and the outlet temperature (T2) detected by the temperature detector (Th) after the start of freezing and the stored outlet temperature (T1) Difference with (T1-T
And a compressor starting / stopping means for controlling the starting / stopping of the compressor (8) based on 2).

(作用) 結氷開始時の溶液温度(T1)と、結氷後に溶液濃度の
増加により低下する溶液温度(T2)との差をとり、この
差(T1−T2)で圧縮機(8)の発停制御を行うことによ
り、生成される氷の量ひいては蓄氷率IPFを、温度検出
器(Th)による検出温度の相対値で制御でき、これによ
り、溶液の初期濃度に影響されずに、所定の蓄氷量が得
られる。又、温度検出器(Th)の検出値が実際より高め
に出たり、あるいは低めに出たりすることがあっても、
2つの検出値の差で制御するものであるから、該検出機
(Th)のバラツキにも影響されることはない。
(Function) The difference between the solution temperature (T1) at the start of freezing and the solution temperature (T2) which decreases due to the increase in the solution concentration after freezing is calculated, and this difference (T1-T2) is used to start and stop the compressor (8). By performing the control, the amount of ice produced, and thus the ice storage rate IPF, can be controlled by the relative value of the temperature detected by the temperature detector (Th), which makes it possible to control a predetermined value without being affected by the initial concentration of the solution. The amount of ice storage is obtained. Also, even if the detected value of the temperature detector (Th) may appear higher or lower than the actual value,
Since it is controlled by the difference between the two detection values, it is not affected by the variation of the detector (Th).

(実施例) 第5図及び第6図に示すものは、製氷用蒸発器(1)
であって、軸方向一端に製氷用溶液の流入口(21)を、
他端に前記溶液の流出口(22)を設けた内管(2)と、
冷媒の取入口(31)と取出口(32)とを設けた外管
(3)とを備え、前記内管(2)に、該内管(2)の内
周面(20)に摺接するブレード(4)を備えた回転ドラ
ム(5)を内装し、前記内周面(20)を伝熱面として前
記冷媒により溶液を冷却するようにしている。
(Example) What is shown in FIG. 5 and FIG. 6 is an evaporator (1) for ice making.
And an inlet (21) for the ice-making solution at one axial end,
An inner tube (2) having an outlet (22) for the solution at the other end,
An outer pipe (3) having an inlet (31) and an outlet (32) for the refrigerant is provided, and the inner pipe (2) is in sliding contact with the inner peripheral surface (20) of the inner pipe (2). A rotary drum (5) equipped with a blade (4) is incorporated, and the solution is cooled by the refrigerant using the inner peripheral surface (20) as a heat transfer surface.

前記ブレード(4)は、回転ドラム(5)の軸方向長
さに沿って4分割して4対(4a,4a)(4b,4b)(4c,4
c)(4d,4d)配設され、各一対は互いに回転ドラム
(5)の円周上180℃隔てて対向状に設けられ、又、各
対は該回転ドラム(5)の軸方向長さに沿って互いに45
℃づづ偏位させて設けている。
The blade (4) is divided into four along the axial length of the rotary drum (5) into four pairs (4a, 4a) (4b, 4b) (4c, 4
c) (4d, 4d) are arranged, and each pair is provided to face each other with 180 ° on the circumference of the rotating drum (5), and each pair is the axial length of the rotating drum (5). 45 along each other
It is provided by deviating by ° C.

以上構成する蒸発器(1)は、第1図に示すように、
2台を一対にして、各回転ドラム(5)(5)の駆動軸
(50)(50)を1台のモータ(M2)で駆動している。
又、各内管(2)(2)は連絡管(63)で直列に接続さ
れ、初段側の流入口(21)と後段側の流出口(22)と
に、溶液の供給管(61)及び戻し管(62)を結合して蓄
熱槽(6)を接続し、供給管(61)に介装する循環ポン
プ(7)を介して蓄熱槽(6)と各内管(2)(2)と
の間で溶液を循環させるようにしている。一方各外管
(3)(3)は互いに並列に接続されて、圧縮機(8)
を備え、冷凍サイクルを構成する冷凍装置(10)に連結
されている。
As shown in FIG. 1, the evaporator (1) configured as described above is
The two drums are paired, and the drive shafts (50) (50) of the rotary drums (5) (5) are driven by one motor (M2).
The inner pipes (2) and (2) are connected in series by a communication pipe (63), and a solution supply pipe (61) is connected to a first-stage inlet (21) and a second-stage outlet (22). The heat storage tank (6) is connected by connecting the return pipe (62), and the heat storage tank (6) and each inner pipe (2) (2) are connected via a circulation pump (7) interposed in the supply pipe (61). ) To circulate the solution. On the other hand, the outer tubes (3) (3) are connected in parallel with each other, and the compressor (8)
And is connected to a refrigeration system (10) that constitutes a refrigeration cycle.

冷凍装置(10)は、圧縮機(8)の吐出側から、油分
離器(11)、水冷式凝縮器(12)を介装すると共に、分
流器(13)を介して2系統の分岐路(14)(14)を並列
に設け、該各分岐路に、凝縮した高圧液冷媒を膨張させ
るエジェクター(15)と、膨張後の低圧液冷媒の蒸発作
用を行わせる前記外管(3)とを介装して、その出口を
ヘッダ(16)で統合し、更にアキュムレータ(17)を介
して圧縮機(8)の吸入側に接続して成るものである。
The refrigerating device (10) is provided with an oil separator (11) and a water-cooled condenser (12) from the discharge side of the compressor (8), and a two-way branch path through a flow divider (13). (14) An ejector (15) for providing (14) in parallel and expanding the condensed high-pressure liquid refrigerant in each branch path, and the outer pipe (3) for performing an evaporating action of the expanded low-pressure liquid refrigerant. The outlet is integrated with a header (16), and further connected to the suction side of a compressor (8) via an accumulator (17).

尚、第1図中、(18)は、凝縮器(12)の出口管(12
0)と圧縮機(8)の吸入管(80)とを熱交換可能に付
設して成る吸入熱交換器、(19)(19)は各エジェクタ
ー(15)(15)の均圧管、又、(M3)は圧縮機モータ、
(SV)は閉鎖弁、(BV)は逆止弁、(RI)はリキッドア
イ、(DF)はドライヤフィルタ、(HPS)は高圧圧力検
出器、(HG)は同高圧圧力ゲージ、(LPS)は低圧圧力
検出器、(LG)は同低圧圧力ゲージである。又、(M1)
は循環ポンプモータである。
In Fig. 1, (18) is the outlet pipe (12) of the condenser (12).
0) and the suction pipe (80) of the compressor (8) are attached so as to be capable of heat exchange, (19) (19) are equalizing pipes of the ejectors (15) (15), and (M3) is the compressor motor,
(SV) is a closing valve, (BV) is a check valve, (RI) is a liquid eye, (DF) is a dryer filter, (HPS) is a high pressure detector, (HG) is the same high pressure gauge, (LPS). Is a low pressure detector and (LG) is a low pressure gauge. Also (M1)
Is a circulation pump motor.

そして、溶液の戻し管(62)に、内管(2)から流出
される溶液の出口温度を検出するサーミスタ等の温度検
出器(Th)を介装する。
Then, a temperature detector (Th) such as a thermistor for detecting the outlet temperature of the solution flowing out from the inner pipe (2) is interposed in the solution return pipe (62).

又、この温度検出器(Th)による検出温度で結氷の開
始を検出する結氷検出手段(91)を構成する。結氷開始
は、第2図のフローに示すように、溶液が結氷を開始す
ると、主に溶液と冷媒との潜熱のみのやりとりとなって
溶液の検出温度がほぼ一定に遷移する(第3図参照)こ
とから検出される。
Further, an ice-free detecting means (91) for detecting the start of freezing at the temperature detected by the temperature detector (Th) is constituted. As shown in the flow chart of FIG. 2, when the solution starts to freeze, the latent temperature of the solution and the refrigerant are mainly exchanged, and the detected temperature of the solution changes to almost constant (see FIG. 3). ) Is detected from that.

そして、結氷開始が検出された時の溶液温度(T1)を
記憶手段(92)に記憶する。更に、この記憶手段(92)
に記憶した温度(T1)と、結氷開始後の温度(T2)との
差(T1−T2)が設定値(T0)以上となった時、圧縮機発
停手段(93)を介して、圧縮機(8)の運転を停止す
る。
The solution temperature (T1) when the start of freezing is detected is stored in the storage means (92). Further, this storage means (92)
When the difference (T1-T2) between the temperature (T1) stored in the memory and the temperature (T2) after the start of freezing exceeds the set value (T0), the compression is started via the compressor start / stop means (93). Stop the operation of the machine (8).

温度差(T1−T2)に基づいてIPFを設定値に制御でき
るのは、次の理由による。
The reason why the IPF can be controlled to the set value based on the temperature difference (T1-T2) is as follows.

すなわち、溶液中のエチレングリコールの添加量(重
量)を(x)、結氷前の溶液の初期濃度(重量比)を
(a1)、溶液重量を(W1)、溶液出口温度を(T1)と
し、結氷後、氷(重量)が(W2)だけ生成された時の濃
度を(a2)、濃度増加による氷点低下による温度を(T
2)とすると、 a1=x/W1 a2=x/(W1−W2) ∴W2=W1・(a2−a1)/a2 よって、氷が(W2)生成された時には、 IPF=W2/W1 =(a2−a1)/a2 となる。
That is, the addition amount (weight) of ethylene glycol in the solution is (x), the initial concentration (weight ratio) of the solution before freezing is (a1), the solution weight is (W1), and the solution outlet temperature is (T1), After freezing, the concentration when only ice (W2) is produced (W2) is the concentration (a2), and the temperature due to the decrease in freezing point due to the concentration increase (T
2) Then, a1 = x / W1 a2 = x / (W1−W2) ∴W2 = W1 ・ (a2−a1) / a2 Therefore, when ice (W2) is generated, IPF = W2 / W1 = ( a2-a1) / a2.

ここに、第4図に示すように、IPFは、溶液濃度の増
加で1すなわち100%に漸近することになるが、IPFの限
界値はたかだか40〜60%程度のものであり、この範囲で
IPFを設定しようとするものであるから、溶液濃度とIPF
との対応は、ほぼ線形性を有する。
Here, as shown in FIG. 4, the IPF gradually approaches 1 or 100% as the solution concentration increases, but the IPF limit value is at most 40 to 60%, and within this range.
Since the IPF is to be set, the solution concentration and IPF
The correspondence with and is almost linear.

一方、溶液濃度とその氷点との関係もほぼ直線的に推
移するので、単位温度当たりのIPF、すなわち、 {(a2−a1)/a2}/(T1−T2)を、定数(C)とおく
と、IPFは温度差(T1−T2)の関数として表され、次式
から得られる。
On the other hand, since the relationship between the solution concentration and its freezing point changes almost linearly, the IPF per unit temperature, that is, {(a2-a1) / a2} / (T1-T2) is set as the constant (C). And IPF is expressed as a function of temperature difference (T1-T2) and is obtained from the following equation.

IPF=C・(T1−T2) 従って、結氷開始時の溶液温度(T1)と、結氷後の溶
液温度(T2)との差をとって、この差(T1−T2)が、設
定IPFが得られる時の温度差すなわち設定値(T0)以上
となった時に運転を打ち切れば、所望の設定IPFが得ら
れるのである。
IPF = C · (T1-T2) Therefore, the difference between the solution temperature at the start of freezing (T1) and the solution temperature after freezing (T2) is calculated, and this difference (T1-T2) is obtained as the set IPF. The desired set IPF can be obtained by discontinuing the operation when the temperature difference at the time of heating, that is, the set value (T0) or more is reached.

以上のように、温度差(T1−T2)で設定IPFを得よう
とするものであり、すなわち、検出温度の相対値で制御
を行うものであるから、溶液の初期濃度に影響されず
に、所定の蓄氷量が得られるのである。又、温度検出器
(Th)にバラツキがあっても、つまり、該温度検出器
(Th)の検出値が実際より高めに出たり、あるいは低め
に出たりすることがあっても、2つの検出値の差で制御
するものであるから、該検出器(Th)のバラツキにも影
響されることなく、正確な氷量が得られる。
As described above, in order to obtain the set IPF with the temperature difference (T1-T2), that is, because the control is performed by the relative value of the detected temperature, without being affected by the initial concentration of the solution, A predetermined amount of ice storage can be obtained. Even if the temperature detector (Th) has variations, that is, even if the detected value of the temperature detector (Th) is higher or lower than the actual value, two detections are performed. Since it is controlled by the difference in value, an accurate amount of ice can be obtained without being affected by variations in the detector (Th).

尚、上記実施例における結氷検出手段(91)では、温
度検出器(Th)による検出温度が一定となることにより
その結氷を検出したが、その他、第7図に示すように、
戻し管(62)に溶液の濁り具合を検出する光学センサー
(OPS)を介装して、氷が発生すると溶液と透明度が鈍
ることから結氷を検出するようにしてもよい。
In the freezing detection means (91) in the above embodiment, the freezing was detected by the temperature detected by the temperature detector (Th) becoming constant. In addition, as shown in FIG.
An optical sensor (OPS) for detecting the degree of turbidity of the solution may be provided in the return pipe (62) so that when the ice is generated, the transparency with the solution becomes dull, so that the freezing may be detected.

又、第8図に示すように、溶液を冷却する冷媒の蒸発
圧力を検出する圧力検出器(PS)を介装して、結氷後に
溶液温度が一定となり、顕熱のやりとりから潜熱のやり
とりへと推移されるに伴い、冷媒の蒸発圧力がほぼ一定
に推移されることにより、結氷を検出するようにしても
よい。
In addition, as shown in Fig. 8, the temperature of the solution becomes constant after freezing through the pressure detector (PS) that detects the evaporation pressure of the refrigerant that cools the solution, and the transfer of sensible heat to the transfer of latent heat. It is also possible to detect freezing by changing the evaporation pressure of the refrigerant to a substantially constant value as the temperature changes.

その他、回転ドラム(5)を回転する駆動モータ(M
2)の負荷トルク変動等によって結氷を検出するように
してもよい。
In addition, a drive motor (M that rotates the rotary drum (5)
It is also possible to detect freezing by the load torque fluctuation of 2).

(発明の効果) 以上、本発明では、内管(2)での製氷用溶液の結氷
開始を検出する結氷検出手段と、内管(2)の出口温度
を検出する温度検出器(Th)と、結氷検出手段により結
氷開始を検出した時の温度検出器(Th)により検出出口
温度(T1)を記憶する記憶手段と、記憶した出口温度
(T1)と結氷開始後の温度検出器(Th)による検出出口
温度(T2)との差(T1−T2)に基づいて、溶液冷却用の
冷媒を供給する圧縮機(8)の発停制御を行う圧縮機発
停手段とを備えているから、溶液の初期濃度や温度検出
機(Th)の検出値のバラツキに影響されずに、所定の蓄
氷量が得られるのである。
(Effects of the Invention) As described above, in the present invention, the freezing detection means for detecting the start of freezing of the ice making solution in the inner pipe (2), and the temperature detector (Th) for detecting the outlet temperature of the inner pipe (2). , Storage means for storing the outlet temperature (T1) detected by the temperature detector (Th) when the start of freezing is detected by the freezing detection means, and the stored outlet temperature (T1) and the temperature detector (Th) after the start of freezing Based on the difference (T1-T2) from the detection outlet temperature (T2) by the compressor, a compressor start / stop means for controlling the start / stop of the compressor (8) for supplying the refrigerant for solution cooling is provided. The predetermined amount of ice storage can be obtained without being affected by variations in the initial concentration of the solution and the detection value of the temperature detector (Th).

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明製氷装置の配管系統並びに運転制御装置
の構成ブロックを示す図、第2図は同制御装置の制御フ
ローを示す図、第3図は溶液出口温度の経時変化を示す
図、第4図は溶液濃度と蓄氷率及び氷点の関係を示す
図、第5図は製氷用蒸発器の一部切換側断面図、第6図
はその縦断面図、第7図及び第8図は結氷検出手段の他
の実施例をそれぞれ示す図、第9図は従来例の配管系統
図である。 (1)……製氷用蒸発器 (2)……内管 (3)……外管 (5)……回転ドラム (8)……圧縮機 (Th)……温度検出器 (91)……結氷検出手段 (92)……記憶手段 (93)……圧縮機発停手段
FIG. 1 is a diagram showing a configuration block of a pipe system and an operation control device of the ice making device of the present invention, FIG. 2 is a diagram showing a control flow of the control device, and FIG. 3 is a diagram showing a change with time of a solution outlet temperature, FIG. 4 is a diagram showing the relationship between the solution concentration, the ice storage rate, and the freezing point, FIG. 5 is a partial cross-sectional side view of the evaporator for ice making, FIG. 6 is its longitudinal cross-sectional view, FIG. 7 and FIG. Are views showing other embodiments of the freezing detection means, respectively, and FIG. 9 is a piping system diagram of a conventional example. (1) …… Evaporator for ice making (2) …… Inner tube (3) …… Outer tube (5) …… Rotating drum (8) …… Compressor (Th) …… Temperature detector (91) …… Freezing detection means (92) …… Storage means (93) …… Compressor start / stop means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉多 明 大阪府堺市金岡町1304番地 ダイキン工 業株式会社堺製作所金岡工場内 (56)参考文献 特開 昭64−46553(JP,A) 特開 昭64−23075(JP,A) 特開 昭58−2567(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kurata 1304 Kanaoka-machi, Sakai-shi, Osaka Daikin Industrial Co., Ltd., Kanaoka Plant, Sakai Manufacturing Co., Ltd. (56) Reference JP-A-64-46553 (JP, A) Kai 64-23075 (JP, A) JP 58-2567 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回転ドラム(5)を内装し、製氷用溶液を
流通させる内管(2)と、前記溶液を冷却する冷媒を流
通させる外管(3)とをもつ製氷用蒸発器(1)と、前
記外管(3)に前記冷媒を供給するための圧縮機(8)
をもつ冷凍サイクルとを備えた製氷装置における運転制
御装置であって、前記内管(2)での前記溶液の結氷開
始を検出する結氷検出手段と、前記内管(2)の出口温
度を検出する温度検出器(Th)と、前記結氷検出手段に
より結氷開始を検出した時の前記温度検出器(Th)によ
る検出出口温度(T1)を記憶する記憶手段と、記憶した
出口温度(T1)と結氷開始後の前記温度検出器(Th)に
よる検出出口温度(T2)との差(T1−T2)に基づいて前
記圧縮機(8)の発停制御を行う圧縮機発停手段とを備
えていることを特徴とする製氷装置おける運転制御装
置。
1. An evaporator (1) for ice-making, comprising a rotating drum (5) and an inner pipe (2) for circulating a solution for ice-making, and an outer pipe (3) for circulating a refrigerant for cooling the solution. ) And a compressor (8) for supplying the refrigerant to the outer pipe (3)
An operation control device in an ice making device having a refrigerating cycle having: a freezing detection means for detecting a freezing start of the solution in the inner pipe (2); and an outlet temperature of the inner pipe (2). Temperature detector (Th), storage means for storing the outlet temperature (T1) detected by the temperature detector (Th) when the start of freezing is detected by the freezing detection means, and the stored outlet temperature (T1) A compressor starting / stopping means for controlling starting / stopping of the compressor (8) based on a difference (T1-T2) between the temperature (T2) detected by the temperature detector (Th) after the start of freezing. The operation control device in the ice making device, which is characterized in that
JP63035621A 1988-02-18 1988-02-18 Operation control device for ice making device Expired - Fee Related JP2567898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035621A JP2567898B2 (en) 1988-02-18 1988-02-18 Operation control device for ice making device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035621A JP2567898B2 (en) 1988-02-18 1988-02-18 Operation control device for ice making device

Publications (2)

Publication Number Publication Date
JPH01210774A JPH01210774A (en) 1989-08-24
JP2567898B2 true JP2567898B2 (en) 1996-12-25

Family

ID=12446929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035621A Expired - Fee Related JP2567898B2 (en) 1988-02-18 1988-02-18 Operation control device for ice making device

Country Status (1)

Country Link
JP (1) JP2567898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152248A (en) * 2014-02-14 2015-08-24 高砂熱学工業株式会社 Ice making system and ice making method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734269Y2 (en) * 1989-08-30 1995-08-02 株式会社間組 Ice heat storage type air conditioning system
JPH0617757B2 (en) * 1989-09-14 1994-03-09 清水建設株式会社 Freezing detection method for low temperature cold water production equipment
JP2836411B2 (en) * 1992-11-30 1998-12-14 ダイキン工業株式会社 Ice storage operation protection device
JP2009162392A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Sherbet ice producing device and its method
US11614264B2 (en) * 2018-01-15 2023-03-28 Daikin Industries, Ltd. Icemaking system and a method of controlling evaporation temperature referred to by the icemaking system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152248A (en) * 2014-02-14 2015-08-24 高砂熱学工業株式会社 Ice making system and ice making method

Also Published As

Publication number Publication date
JPH01210774A (en) 1989-08-24

Similar Documents

Publication Publication Date Title
EP2823239B1 (en) Intelligent compressor flooded start management
US20100186604A1 (en) Refrigerating apparatus
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
CN107076477A (en) System and method for defrosting freely and actively
JP2567898B2 (en) Operation control device for ice making device
CN108224631A (en) A kind of data center meets an urgent need refrigeration system and its control method
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP3637786B2 (en) Brine cooling system
JP2004354017A (en) Cooling device
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2004354019A (en) Cooling device
JP5773711B2 (en) refrigerator
JP5502460B2 (en) Refrigeration equipment
US6244058B1 (en) Tube and shell evaporator operable at near freezing
JP2008175402A (en) Operating method of refrigerating cycle device
JP2002139257A (en) Heat pump hot water supplier
JP2719169B2 (en) Refrigeration equipment for ice making
JP2801623B2 (en) Ice making equipment
JP2904525B2 (en) Method of controlling refrigerant flow rate in heat pump air conditioner and heat pump air conditioner
JP2719170B2 (en) Refrigeration equipment for ice making
JP2585687B2 (en) Ice making evaporator
JPH01210775A (en) Icing starting detecting device for vaporizer for ice-making
JP2634615B2 (en) Ice making equipment
JPH01210776A (en) Icing starting detecting device for vaporizer for ice-making
JP3835074B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees