JP2826058B2 - Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method - Google Patents

Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method

Info

Publication number
JP2826058B2
JP2826058B2 JP35210293A JP35210293A JP2826058B2 JP 2826058 B2 JP2826058 B2 JP 2826058B2 JP 35210293 A JP35210293 A JP 35210293A JP 35210293 A JP35210293 A JP 35210293A JP 2826058 B2 JP2826058 B2 JP 2826058B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hydrogen embrittlement
ultra
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35210293A
Other languages
Japanese (ja)
Other versions
JPH07197183A (en
Inventor
田中福輝
三村和弘
大宮良信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18421797&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2826058(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35210293A priority Critical patent/JP2826058B2/en
Publication of JPH07197183A publication Critical patent/JPH07197183A/en
Application granted granted Critical
Publication of JP2826058B2 publication Critical patent/JP2826058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車のバンパー、ドア
の補強部材など軽量でかつ耐強度が要求される用途にお
いて好適な超高強度薄鋼板とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high-strength thin steel sheet suitable for applications requiring light weight and high strength, such as bumpers for automobiles and reinforcing members for doors, and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】米国の
CAFE(Corporate Average Fuel Economy)の規制
強化提案により自動車の軽量化が進み、バンパー、ドア
の補強部材などに980N/mm2以上の超高強度薄鋼板
が採用されるようになってきた。
2. Description of the Related Art The weight of automobiles has been reduced due to the proposal of CAFE (Corporate Average Fuel Economy) in the United States to strengthen regulations, and bumpers and door reinforcing members have a height of 980 N / mm 2 or more. High strength steel sheets have been adopted.

【0003】980N/mm2以上の超高強度鋼では、水
素脆化が発生することが、例えば、日本ねじ協会発行
(1990年10月18日)の研修テキスト“ねじ締結の
設計と実際”にて知られている。したがって、超高強度
薄鋼板においても、大気環境下の腐食反応で発生する水
素が鋼板中に入り、使用中に突然破壊することが考えら
れる。
[0003] Hydrogen embrittlement occurs in ultra-high-strength steel of 980 N / mm 2 or more, for example, according to the Japan Screw Association.
(October 18, 1990) Training text "Design and practice of screw fastening". Therefore, even in an ultra-high strength thin steel sheet, it is conceivable that hydrogen generated by a corrosion reaction in an atmospheric environment enters the steel sheet and is suddenly destroyed during use.

【0004】超高強度薄鋼板の水素脆化については、特
開平4−268053号に記載されているように、鋼に
Siを添加し、鋼板中への水素原子の侵入を抑制するこ
とが提案されている。しかし、腐食環境によって錆の発
生状況は種々変化し、必ずしもSi添加によって鋼板中
への水素原子の侵入を十分に抑制し、水素脆化を防止す
ることは困難である。
With respect to hydrogen embrittlement of ultra-high strength thin steel sheets, as described in Japanese Patent Application Laid-Open No. Hei 4-268053, it has been proposed to add Si to steel to suppress intrusion of hydrogen atoms into the steel sheet. Have been. However, the state of rust changes variously depending on the corrosive environment, and it is difficult to sufficiently suppress the intrusion of hydrogen atoms into the steel sheet by Si addition and prevent hydrogen embrittlement.

【0005】また、鋼の水素脆化防止について報告があ
る条鋼の分野では、例えば、特開昭60−155644
号に記載されているように、マルテンサイト組織を40
0℃以上で焼戻し、Fe−C系化合物を十分に析出させ
て防止する方法が知られている。しかし、このような鋼
は、プレス成形などの加工を行う超高強度薄鋼板に比較
して加工性に劣っている。また超高強度薄鋼板では冷間
加工による強度増加で水素脆化が発生し易くなると考え
られるが、この特性までは考慮されていない。
[0005] In the field of steel bars in which there is a report on prevention of hydrogen embrittlement of steel, for example, Japanese Patent Application Laid-Open No. 60-155644.
As described in the issue, the martensitic structure is 40
There is known a method of tempering at 0 ° C. or higher to sufficiently precipitate and prevent the Fe—C compound. However, such a steel is inferior in workability as compared with an ultra-high strength thin steel sheet that is processed by press forming or the like. Further, it is considered that hydrogen embrittlement is likely to occur in an ultra-high strength thin steel sheet due to an increase in strength due to cold working, but this property is not considered.

【0006】通常、連続焼鈍法で製造される超高強度薄
鋼板は、プレス成形などの冷間加工性の確保のために
C、Mn量を比較的低くしており、400℃以上で焼戻
した場合には強度が低下し、目的の特性が得られない。
このため、均熱処理後所定の冷却速度で400℃以下に
冷却、又は一旦常温まで冷却後400℃以下で焼戻して
製造されるものであり、条鋼で知られている方法とは全
く異なっている。
[0006] Normally, ultra-high strength thin steel sheets produced by the continuous annealing method have relatively low C and Mn contents in order to ensure cold workability such as press forming, and are tempered at 400 ° C or more. In such a case, the strength is reduced and the desired characteristics cannot be obtained.
For this reason, it is manufactured by cooling to a temperature of 400 ° C. or lower at a predetermined cooling rate after soaking or by tempering at a temperature of 400 ° C. or lower after once cooling to room temperature, which is completely different from the method known for strip steel.

【0007】本発明は、引張強さ980N/mm2以上の
超高強度薄鋼板における上記従来技術の問題点を解決
し、水素脆化の発生しない加工用超高強度薄鋼板を提供
し、並びにその製造方法を提供することを目的とするも
のである。
The present invention solves the above-mentioned problems of the prior art in an ultra-high-strength thin steel sheet having a tensile strength of 980 N / mm 2 or more, and provides an ultra-high-strength thin steel sheet for processing which does not cause hydrogen embrittlement; It is an object of the present invention to provide a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、C:0.05〜0.25%、M
n:1.0〜3.0%、Al:0.025〜0.100%、
S:0.01%以下、N:0.008%以下を含み、必要
に応じて更に、Si:3.0%以下、P:0.1%以下、
Cr:1.0%以下、Mo:1.0%以下、W:1.0%以
下の1種以上、及び/又は、Ti:0.2%以下、Nb:
0.1%以下、V:0.1%以下、Zr:0.1%以下の1
種以上を含み、残部が不可避的不純物からなる組成を有
し、引張強さ980N/mm2以上で、マルテンサイトを
体積率で70%以上含む超高強度薄鋼板において、0.
1μm以上のFe−C系の析出物が1mm2当たり3×105
以下であることを特徴とする水素脆化の発生しない超高
強度薄鋼板を要旨としている。
Means for Solving the Problems As means for solving the above problems, the present invention relates to a method for producing C: 0.05 to 0.25%, M:
n: 1.0 to 3.0%, Al: 0.025 to 0.100%,
S: 0.01% or less, N: 0.008% or less, and if necessary, Si: 3.0% or less, P: 0.1% or less,
Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, and / or Ti: 0.2% or less, Nb:
0.1% or less, V: 0.1% or less, Zr: 0.1% or less 1
The ultrahigh-strength thin steel sheet containing at least 980 N / mm 2 and having a tensile strength of 980 N / mm 2 or more and containing 70% or more by volume of martensite has a composition of at least 0.1%.
3 × 10 5 Fe-C based precipitates of 1 μm or more per mm 2
The gist of the present invention is an ultra-high-strength steel sheet free from hydrogen embrittlement, characterized by the following.

【0009】また、他の本発明は、上記組成を有する鋼
を常法により熱間圧延し、酸洗まま又はその後冷間圧延
して、連続焼鈍するに際して、Ac3点以上に均熱後85
0〜650℃まで徐冷し、その温度から5℃/sec以上
で300℃以下まで冷却し、以後、300℃以下に再加
熱し若しくはそのまま300℃以下で1〜20minの焼
戻し処理を行うことにより、引張強さ980N/mm2
上で、マルテンサイトが体積率で70%以上含み、0.
1μm以上のFe−C系の析出物が1mm2当たり3×105
以下を得ることを特徴とする水素脆化の発生しない超高
強度薄鋼板の製造方法を要旨としている。
In another aspect of the present invention, when a steel having the above composition is hot-rolled by a conventional method, and then continuously rolled while being pickled or cold-rolled, and after soaking at a temperature of 3 or more Ac, the steel is soaked.
Slowly cooling to 0 to 650 ° C, cooling from that temperature to 300 ° C or less at 5 ° C / sec or more, and then reheating to 300 ° C or less or tempering at 300 ° C or less for 1 to 20 minutes With a tensile strength of 980 N / mm 2 or more, a martensite content of 70% or more by volume,
3 × 10 5 Fe-C based precipitates of 1 μm or more per mm 2
The gist of the present invention is a method for producing an ultra-high-strength steel sheet free from hydrogen embrittlement, characterized by obtaining the following.

【0010】[0010]

【作用】以下に本発明を更に詳細に説明する。まず、本
発明における炭化物の限定理由を述べる。
The present invention will be described below in more detail. First, the reasons for limiting the carbide in the present invention will be described.

【0011】本発明者らは、プレス成形、曲げ加工など
の冷間加工を行なった超高強度薄鋼板における大気及び
塩水噴霧などの腐食環境下での水素脆化について鋭意研
究を行った。
The present inventors have conducted intensive studies on hydrogen embrittlement of corrosive environments such as air and salt water in ultrahigh-strength thin steel sheets which have been subjected to cold working such as press forming and bending.

【0012】その結果、水素脆化による破壊は冷間加工
部から発生し、破壊が短時間で生じる鋼板は、粒界破壊
が主体の破面であり、0.1μm以上のFe−C系の析出
物が1mm2当たり3×105よりも多く析出していた。一
方、破壊時間が長い鋼板は、粒内破壊が主体の破面であ
り、水素脆化が発生しない鋼板と同様、0.1μm以上の
Fe−C系の析出物が1mm2当たり3×105以下である
ことを見い出した。
As a result, the fracture due to hydrogen embrittlement occurs from the cold-worked portion, and the steel sheet in which the fracture occurs in a short time is a fracture surface mainly due to grain boundary fracture, and is a Fe-C based material of 0.1 μm or more. More than 3 × 10 5 precipitates were deposited per mm 2 . On the other hand, the long steel plate breaking time is fracture transgranular fracture is mainly similar to the steel sheet hydrogen embrittlement does not occur, Fe-C based precipitates more than 0.1μm is 1 mm 2 per 3 × 10 5 We found that:

【0013】0.1μmよりも小さいFe−C系、又はそ
れ以外の炭化物はいずれの鋼板にも多数存在しており、
水素脆化による破壊の発生時間の長短との関係は認めら
れなかった。
A large number of Fe—C-based or other carbides smaller than 0.1 μm are present in any steel sheet.
No relationship was observed with the length of time of occurrence of fracture due to hydrogen embrittlement.

【0014】このように、0.1μm以上のFe−C系
の析出物が1mm2 当たり3x105 よりも多く析出し
ている場合に粒界破壊が主体の破面となり、水素脆化に
よる破壊時間が短くなる原因については明確でないが、
次のように推定される。
As described above, when more than 3 × 10 5 Fe—C based precipitates are precipitated per 1 mm 2 , grain boundary fracture mainly occurs, and the fracture time due to hydrogen embrittlement is increased. It is not clear why this is shortened,
It is estimated as follows.

【0015】すなわち、高い引張りの外力が存在するプ
レス成形等の加工を施した超高強度薄鋼板の製品で、
0.1μm以上のFe−C系の析出物が析出していると、
プレス時の冷間加工によって炭化物と母材組織の界面に
高い応力、又はボイドが生成し、その場所に腐食反応で
発生した原子状の水素が集まり、更に応力集中を高める
か、又は亀裂が発生する。析出物は本来格子欠陥の多い
粒界に優先的に析出することから、0.1μm以上のFe
−C系の析出物が1mm2当たり3×105よりも多くなる
と、粒界での応力集中、又は亀裂の発生頻度も高まり、
粒界破壊が主体の水素脆化が発生する。一方、0.1μm
よりも小さいFe−C系の析出物は冷間加工によって炭
化物と母材組織の界面に高い応力、又はボイドが生成し
難く、したがって、粒界での亀裂の発生頻度も低下する
ため、粒界破壊が主体の水素脆化が発生し難いと考えら
れる。
That is, a product of an ultra-high-strength thin steel sheet that has been subjected to processing such as press forming in which a high tensile external force exists.
When Fe-C based precipitates of 0.1 μm or more are precipitated,
High stress or voids are generated at the interface between carbide and base metal structure by cold working at the time of pressing, atomic hydrogen generated by corrosion reaction gathers at that location, further increasing stress concentration or cracking I do. Precipitates originally preferentially precipitate at grain boundaries with many lattice defects, so that Fe of 0.1 μm or more
When the amount of -C based precipitates is more than 3 × 10 5 per 1 mm 2 , the frequency of stress concentration at the grain boundaries or the occurrence of cracks increases,
Hydrogen embrittlement mainly due to grain boundary fracture occurs. On the other hand, 0.1 μm
Fe-C-based precipitates, which are smaller in size, are less likely to generate high stresses or voids at the interface between the carbide and the base metal structure by cold working, and thus the frequency of cracks at the grain boundaries is reduced. It is considered that hydrogen embrittlement mainly due to fracture hardly occurs.

【0016】次に本発明における鋼の化学成分の限定理
由について説明する。
Next, the reasons for limiting the chemical components of steel in the present invention will be described.

【0017】C:Cはマルテンサイトを生成し高強度化
には必須の元素であり、980N/mm2以上の強度を得
るためには0.05%以上が必要である。しかし、0.2
5%を超えると曲げなどの加工性が低下するため、これ
を上限とする。
C: C is an element which forms martensite and is indispensable for increasing the strength. In order to obtain a strength of 980 N / mm 2 or more, 0.05% or more is required. However, 0.2
If it exceeds 5%, the workability such as bending deteriorates, so this is made the upper limit.

【0018】Mn:Mnは鋼の焼入性を高める元素で、連
続焼鈍設備で安定してマルテンサイトを得るためには
1.0%以上が必要である。しかし、3.0%を超えると
その効果が飽和するのみならず、偏析が大きくなり、組
織が不均一となり、加工性が低下するため、これを上限
とする。
Mn: Mn is an element that enhances the hardenability of steel, and must be at least 1.0% in order to obtain martensite stably with continuous annealing equipment. However, if the content exceeds 3.0%, not only the effect is saturated, but also segregation increases, the structure becomes nonuniform, and the workability deteriorates. Therefore, the upper limit is set.

【0019】S:Sは介在物を形成して曲げ加工性など
を劣化させるため、0.01%以下に抑制する。
S: Since S forms inclusions and deteriorates bending workability and the like, S is suppressed to 0.01% or less.

【0020】N:Nは鋼中に固溶してプレス加工性など
を劣化させるため、0.008%以下に規定する。
N: N is specified as 0.0008% or less because N forms a solid solution in steel and deteriorates press workability and the like.

【0021】以上の元素を必須成分とするが、以下に示
すとおり、必要に応じて、Si、P、Cr、Mo、Wから
なる群の1種以上、或いはTi、Nb、V、Zrからなる
群の1種以上を適量にて含有させることができる。
The above elements are essential components. As shown below, if necessary, one or more of the group consisting of Si, P, Cr, Mo, W, or Ti, Nb, V, Zr. One or more of the groups can be included in appropriate amounts.

【0022】Si:Siは鋼を強化し、延性を高めるため
に有効な元素であるが、3.0%を超えるとその効果が
飽和するのみならず、冷間圧延での荷重が高くなるなど
の問題があるため、これ以下に規定する。
Si: Si is an element effective for strengthening steel and increasing ductility, but if it exceeds 3.0%, not only its effect is saturated, but also the load in cold rolling increases. Because of the problem described above, it is stipulated below.

【0023】P:Pは鋼を強化し、延性を高めるために
有効な元素であるが、0.1%を超えると脆化が起こり
易くなるため、これ以下とする。
P: P is an element effective for strengthening steel and increasing ductility. However, if it exceeds 0.1%, embrittlement is liable to occur.

【0024】Cr、Mo:Cr、Moは鋼の焼入性を高めて
連続焼鈍設備で安定してマルテンサイトを得るために有
効な元素であるが、それぞれ1.0%を超えると効果が
飽和するため、それぞれ1.0%を上限とする。
Cr, Mo: Cr and Mo are effective elements for increasing the hardenability of steel and stably obtaining martensite in a continuous annealing facility, but the effect is saturated when each exceeds 1.0%. Therefore, the upper limit is 1.0%.

【0025】W:Wは鋼の強度を高めるために有効な元
素であるが、1.0%を超えると加工性が劣化するた
め、これを上限とする。
W: W is an element effective for increasing the strength of steel, but if it exceeds 1.0%, the workability deteriorates.

【0026】Ti、Nb、V、Zr:Ti、Nb、V及びZr
は炭化物を形成し、細粒化に効果があり、鋼の強化に有
効な元素であるが、Tiが0.2%を超え、他の元素がそ
れぞれ0.1%を超えると冷間圧延の荷重が高くなるな
どの問題があるため、Tiは0.2%以下、他の元素はそ
れぞれ0.1%を上限とする。
Ti, Nb, V and Zr: Ti, Nb, V and Zr
Is an element that forms carbides, is effective for grain refinement, and is effective for strengthening steel. However, when Ti exceeds 0.2% and other elements each exceed 0.1%, cold rolling of Due to problems such as an increased load, the upper limit of Ti is 0.2% or less, and the upper limit of each of the other elements is 0.1%.

【0027】次に本発明の製造方法について述べる。Next, the manufacturing method of the present invention will be described.

【0028】上記化学成分を有する鋼のスラブは連続鋳
造又は造塊によって製造され、常法により熱間圧延し、
酸洗され、又はその後冷間圧延が行なわれる。
A steel slab having the above chemical composition is manufactured by continuous casting or ingot casting, and hot-rolled by a conventional method.
Pickling or subsequent cold rolling is performed.

【0029】熱間圧延するに際しては、所定の圧延温度
以上に加熱する必要があるが、鋳造後一旦常温付近まで
冷却し再加熱しても、高温のまま加熱炉に挿入しても、
また鋳造後そのまま圧延しても特に問題はない。圧延は
Ar3変態点以上の温度で仕上ればよく、その後の冷却条
件、巻取温度についても特に規定されず、常法に従えば
よい。例えば、冷却は平均で30〜100℃/secの範
囲で、巻取温度は750〜400℃行えばよい。
In hot rolling, it is necessary to heat the material to a predetermined rolling temperature or higher.
Also, there is no particular problem if rolling is performed as it is after casting. The rolling may be performed at a temperature equal to or higher than the Ar 3 transformation point, and the cooling conditions and the winding temperature thereafter are not particularly limited, and may be in accordance with a conventional method. For example, the cooling may be performed at an average of 30 to 100 ° C./sec, and the winding temperature may be performed at 750 to 400 ° C.

【0030】次いで連続焼鈍する。連続焼鈍に際して
は、熱延後酸洗したままでも、その後更に25〜80%
の冷間圧延を行った鋼板を用いてもよい。連続焼鈍の均
熱温度はAc3点以上の温度で行う。Ac3点未満では均熱
過程でフェライトの成長により、組織が不均一となり曲
げ加工性などが低下する。また強度の確保が困難となる
ため望ましくない。均熱後は、急冷開始温度まで1〜3
0℃/secで徐冷する。急冷開始温度はマルテンサイト
組織体積率を70%以上として所定の強度を確保するた
めに下限を650℃とするが、850℃を超えると急冷
時に鋼板の形状が悪くなるため、850℃を上限とす
る。急冷の冷却速度は5℃/sec以上であればマルテン
サイト組織が得られるため、これを下限とする。冷却方
法は水焼入れ、水冷ロール冷却、気水冷却、及びガスジ
ェット冷却など、その方法は問わない。急冷停止温度は
マルテンサイト組織を主体とするために300℃以下と
する。
Next, continuous annealing is performed. In continuous annealing, even after pickling after hot rolling, 25 to 80%
May be used. The soaking temperature in the continuous annealing is at a temperature of three or more Ac. If the Ac is less than 3 points, the structure becomes non-uniform due to the growth of ferrite during the soaking process, and the bending workability and the like decrease. Further, it is not desirable because it is difficult to secure the strength. After soaking, 1-3 to the quenching start temperature
Slowly cool at 0 ° C / sec. The quenching start temperature has a lower limit of 650 ° C. in order to secure a predetermined strength by setting the martensite structure volume ratio to 70% or more. However, if the temperature exceeds 850 ° C., the shape of the steel sheet deteriorates during quenching. I do. If the quenching cooling rate is 5 ° C./sec or more, a martensite structure can be obtained. The cooling method does not matter, such as water quenching, water-cooled roll cooling, steam-water cooling, and gas jet cooling. The quenching stop temperature is set to 300 ° C. or less in order to mainly have a martensite structure.

【0031】その後は、300℃以下で1〜20minの
焼戻し処理を行うことで所定の強度に調整する。この
際、急冷開始温度が焼戻し処理温度範囲内であればその
温度でそのまま恒温保持してもよく、焼戻し処理温度よ
りも低い場合は再加熱すればよい。焼戻し時間は1min
以上でないとその効果が殆ど認められず、しかし20mi
nよりも長いとその効果が飽和するのみならず、設備が
巨大化するので望ましくない。また焼戻し処理温度が3
00℃よりも高いと炭化物が所定の量よりも多くなり破
壊特性が劣化するので望ましくない。
Thereafter, tempering treatment is performed at a temperature of 300 ° C. or lower for 1 to 20 minutes to adjust the strength to a predetermined value. At this time, if the quenching start temperature is within the tempering temperature range, the temperature may be kept constant at that temperature, and if it is lower than the tempering temperature, reheating may be performed. Tempering time is 1min
Otherwise the effect is hardly noticeable, but 20mi
If the length is longer than n, not only the effect is saturated, but also the equipment becomes huge, which is not desirable. The tempering temperature is 3
If the temperature is higher than 00 ° C., the amount of carbides becomes larger than a predetermined amount, and the fracture characteristics are deteriorated.

【0032】以上の製造方法により、引張強さ980N
/mm2以上で、マルテンサイトを体積率で70%以上含
み、0.1μm以上のFe−C系の析出物を1mm2当たり3
×105以下である超高強度鋼板が得られる。
According to the above manufacturing method, the tensile strength is 980 N
/ Mm 2 or more, contains 70% or more by volume of martensite, and contains Fe-C based precipitates of 0.1 μm or more per 3 mm 2.
An ultra-high strength steel sheet having a size of × 10 5 or less is obtained.

【0033】この超高強度鋼板は塩水噴霧、塩酸浸漬及
び陰極チャージ試験などの腐食環境下の水素脆化試験で
遅れ破壊の発生時間が長くなり、又は破壊せず、水素脆
化に対して優れた耐性を有している。
This ultra-high-strength steel sheet has a delayed fracture occurrence time in a hydrogen embrittlement test in a corrosive environment such as salt spray, hydrochloric acid immersion and a cathode charge test, or does not break, and is excellent in hydrogen embrittlement. Resistant.

【0034】また、組織については、所定の強度を確保
するために上記炭化物を含むマルテンサイトが体積率で
70%以上であればよい。マルテンサイトが100%で
あっても、或いは他にフェライト、ベイナイト、及び残
留オーステナイトを単独又は複合して30%以下で含ん
でも、何ら本発明の効果が変わらない。
Further, as for the structure, in order to secure a predetermined strength, it is sufficient that martensite containing the above-mentioned carbide is at least 70% by volume. Even if the martensite content is 100%, or the content of ferrite, bainite and retained austenite alone or in combination containing 30% or less, the effect of the present invention does not change at all.

【0035】なお、連続焼鈍後は調質圧延しても、また
亜鉛などのめっき処理を行っても問題はない。
It should be noted that there is no problem if the temper rolling is performed after the continuous annealing, or if plating treatment with zinc or the like is performed.

【0036】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【実施例】【Example】

【0037】表1に示す化学成分の鋼を1200℃に加
熱した後、3.2mm厚さに熱延し560℃で巻取った。
酸洗後板厚0.8mmまで冷間圧延し、表2に示す条件で
連続焼鈍を行なった。0.3%の調質圧延を施した後、
強度、曲げ加工性などの機械的性質、耐水素脆化を調査
した。その結果を表1に示す。
A steel having the chemical composition shown in Table 1 was heated to 1200 ° C., hot-rolled to a thickness of 3.2 mm, and wound at 560 ° C.
After pickling, the sheet was cold-rolled to a sheet thickness of 0.8 mm and continuously annealed under the conditions shown in Table 2. After subjecting to 0.3% temper rolling,
Mechanical properties such as strength and bending workability, and hydrogen embrittlement resistance were investigated. Table 1 shows the results.

【0038】耐水素脆化については、30mmw×150
mmlの短冊試験片を曲げ半径12mmで曲げ加工し、板間
の幅が24mmになるまで締め込み、表面に20μmの電
着塗装を施した後、0.5mol/リットルの硫酸+0.0
001mol/リットルのKSCN溶液中でポテンショス
タットを用いて、自然電位よりも550mV卑である電
位を与えて割れが発生する時間で評価した。曲げ加工性
は45度V曲げ試験により評価した。
Regarding the hydrogen embrittlement resistance, 30 mmw × 150
A mml strip test piece was bent at a bending radius of 12 mm, tightened until the width between the plates became 24 mm, applied with a 20 μm electrodeposition coating on the surface, and then added with 0.5 mol / l sulfuric acid + 0.0.
Using a potentiostat in a 001 mol / liter KSCN solution, a potential 550 mV lower than the natural potential was applied to evaluate the time when cracks occurred. The bending workability was evaluated by a 45 degree V bending test.

【0039】表1より明らかなように、本発明例はいず
れも980N/mm2以上の引張強度と良好な加工性を示
し、また図1に示すように、0.1μm以上の炭化物が少
なく、割れ発生までの時間が980sec以上と長く耐水
素脆化が優れている。
As is clear from Table 1, all of the examples of the present invention show a tensile strength of 980 N / mm 2 or more and good workability, and as shown in FIG. 1, there are few carbides of 0.1 μm or more. The time until crack generation is as long as 980 sec or more, and the hydrogen embrittlement resistance is excellent.

【0040】これに対し、比較例の鋼No.1、7、8
は、化学成分が本発明範囲から外れており、所定の強度
が確保できず、又は加工性が悪い。また鋼No.3、6、
16、22、23、24、25は、焼鈍条件が本発明範
囲から外れており、マルテンサイトの体積率が不足し所
定の強度が確保できず、又は図2に示すように0.1μm
以上の炭化物が多く、割れ発生までの時間が短く耐水素
脆化が劣っている。
On the other hand, steel Nos. 1, 7, and 8 of Comparative Examples
Has a chemical component deviating from the range of the present invention, cannot secure a predetermined strength, or has poor workability. In addition, steel No. 3, 6,
16, 22, 23, 24, and 25, the annealing conditions were out of the range of the present invention, the volume ratio of martensite was insufficient, and a predetermined strength could not be secured, or 0.1 μm as shown in FIG.
Many of the above carbides are present, and the time until crack generation is short and hydrogen embrittlement resistance is inferior.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
自動車のバンパー及びドアインパクトビームなどの補強
部材として最適な980N/mm2以上の引張強度と良好
な加工性を有し、しかも使用時に問題となる水素脆化に
ついて優れた耐性を有している超高強度薄鋼板を提供で
きるので、上述のような強度部材、補強部材などの軽量
化に寄与する効果は顕著である。
As described above, according to the present invention,
Has a car bumper and optimal 980 N / mm 2 or more tensile strength and good processability as a reinforcing member such as a door impact beam, yet has excellent resistance for hydrogen embrittlement becomes a problem when using super Since a high-strength thin steel plate can be provided, the effect of reducing the weight of the above-described strength member, reinforcement member, and the like is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で得られた鋼板の金属組織を示す写真
で、抽出レプリカによる炭化物の分布状況を示してお
り、(a)は本発明例、(b)は比較例の場合である。
FIG. 1 is a photograph showing a metal structure of a steel sheet obtained in an example, showing a distribution state of carbides by an extracted replica, (a) showing a case of the present invention, and (b) showing a case of a comparative example.

フロントページの続き (56)参考文献 特開 平6−122936(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 301 C21D 8/02 C21D 9/46(56) References JP-A-6-122936 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 301 C21D 8/02 C21D 9/46

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、C:0.05〜
0.25%、Mn:1.0〜3.0%、Al:0.025〜
0.100%、S:0.01%以下、N:0.008%以
下を含み、残部が不可避的不純物からなる組成を有し、
引張強さ980N/mm2以上で、マルテンサイトを体積
率で70%以上含む超高強度薄鋼板において、0.1μm
以上のFe−C系の析出物が1mm2当たり3×105以下
であることを特徴とする水素脆化の発生しない超高強度
薄鋼板。
(1) C: 0.05 to 5% by weight (the same applies hereinafter)
0.25%, Mn: 1.0-3.0%, Al: 0.025-
0.10% or less, S: 0.01% or less, N: 0.008% or less, with the balance being composed of unavoidable impurities,
An ultra-high-strength steel sheet having a tensile strength of 980 N / mm 2 or more and containing 70% or more of martensite by volume is 0.1 μm
An ultra-high-strength steel sheet free from hydrogen embrittlement, characterized in that the Fe-C-based precipitates are 3 × 10 5 or less per 1 mm 2 .
【請求項2】 更に、Si:3.0%以下、P:0.1%
以下、Cr:1.0%以下、Mo:1.0%以下、W:1.
0%以下の1種以上を含むことを特徴とする請求項1に
記載の水素脆化の発生しない超高強度薄鋼板。
2. Si: 3.0% or less, P: 0.1%
Hereinafter, Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less.
The ultra-high-strength steel sheet free from hydrogen embrittlement according to claim 1, comprising one or more of 0% or less.
【請求項3】 更に、Ti:0.2%以下、Nb:0.1%
以下、V:0.1%以下、Zr:0.1%以下の1種以上
を含むことを特徴とする請求項1又は2に記載の水素脆
化の発生しない超高強度薄鋼板。
3. Ti: 0.2% or less, Nb: 0.1%
The ultrahigh-strength steel sheet free from hydrogen embrittlement according to claim 1 or 2, wherein the steel sheet contains at least one of V: 0.1% or less and Zr: 0.1% or less.
【請求項4】 請求項1、2又は3に記載の組成を有す
る鋼を常法により熱間圧延し、酸洗まま又はその後冷間
圧延して、連続焼鈍するに際して、Ac3点以上に均熱後
850〜650℃まで徐冷し、その温度から5℃/sec
以上で300℃以下まで冷却し、以後、300℃以下に
再加熱し若しくはそのまま300℃以下で1〜20min
の焼戻し処理を行うことにより、引張強さ980N/mm
2以上で、マルテンサイトが体積率で70%以上含み、
0.1μm以上のFe−C系の析出物が1mm2当たり3×1
5以下を得ることを特徴とする水素脆化の発生しない
超高強度薄鋼板の製造方法。
4. A hot rolled in a conventional manner a steel having a composition according to claim 1, 2 or 3, pickling remain or thereafter cold rolling, when continuous annealing, soaking the Ac 3 point or more After heating, slowly cool down to 850-650 ° C, then 5 ° C / sec from that temperature
The above is cooled to 300 ° C. or lower, and thereafter, reheated to 300 ° C. or lower or as it is at 300 ° C. or lower for 1 to 20 minutes
Tempering treatment, the tensile strength is 980N / mm
2 or more, contains 70% or more by volume of martensite,
Fe × C precipitates of 0.1 μm or more are 3 × 1 per mm 2
0 5 method for manufacturing ultra-high strength thin steel sheet without occurrence of hydrogen embrittlement, characterized in that to obtain the following.
JP35210293A 1993-12-29 1993-12-29 Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method Expired - Fee Related JP2826058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35210293A JP2826058B2 (en) 1993-12-29 1993-12-29 Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35210293A JP2826058B2 (en) 1993-12-29 1993-12-29 Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method

Publications (2)

Publication Number Publication Date
JPH07197183A JPH07197183A (en) 1995-08-01
JP2826058B2 true JP2826058B2 (en) 1998-11-18

Family

ID=18421797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35210293A Expired - Fee Related JP2826058B2 (en) 1993-12-29 1993-12-29 Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method

Country Status (1)

Country Link
JP (1) JP2826058B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695933B2 (en) 2000-09-12 2004-02-24 Nkk Corporation Ultra-high strength cold rolled steel sheet and method for manufacturing the same
WO2009096596A1 (en) 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
WO2009096595A1 (en) 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
WO2011013845A1 (en) 2009-07-30 2011-02-03 Jfeスチール株式会社 High-strength steel sheet, and process for production thereof
CN103572156A (en) * 2012-07-18 2014-02-12 株式会社神户制钢所 Manufacturing method for high strength sheet steel used for door reinforced pipes
CN103572171B (en) * 2012-07-18 2017-06-30 株式会社神户制钢所 The manufacture method of the ultrahigh-strength thin steel sheet of hydrogen embrittlement is not produced

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530606B2 (en) * 2002-06-10 2010-08-25 Jfeスチール株式会社 Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
JP4714404B2 (en) * 2003-01-28 2011-06-29 新日本製鐵株式会社 High strength thin steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JP4492111B2 (en) * 2003-12-03 2010-06-30 Jfeスチール株式会社 Manufacturing method of super high strength steel plate with good shape
JP4586449B2 (en) * 2004-02-27 2010-11-24 Jfeスチール株式会社 Ultra-high-strength cold-rolled steel sheet excellent in bendability and stretch flangeability and manufacturing method thereof
JP4646134B2 (en) * 2006-01-26 2011-03-09 株式会社神戸製鋼所 Evaluation method of delayed fracture resistance of high strength steel sheet
WO2011065591A1 (en) * 2009-11-30 2011-06-03 新日本製鐵株式会社 HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF
JP5704721B2 (en) 2011-08-10 2015-04-22 株式会社神戸製鋼所 High strength steel plate with excellent seam weldability
JP5906154B2 (en) * 2012-07-20 2016-04-20 株式会社神戸製鋼所 High strength steel plate with excellent delayed fracture resistance and method for producing the same
KR101657800B1 (en) * 2014-12-18 2016-09-20 주식회사 포스코 High strength cold rolled steel sheet having excellent stretch flange ability and method for manufacturing the same
WO2016177420A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
KR102057946B1 (en) * 2015-07-13 2019-12-20 닛폰세이테츠 가부시키가이샤 Steel plate, hot dip galvanized steel and alloyed hot dip galvanized steel, and their manufacturing method
MX2018000328A (en) * 2015-07-13 2018-03-14 Nippon Steel & Sumitomo Metal Corp Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor.
KR102478025B1 (en) * 2016-12-14 2022-12-15 티센크루프 스틸 유럽 악티엔게젤샤프트 Hot-rolled flat steel product and manufacturing method thereof
US20210381085A1 (en) 2018-10-18 2021-12-09 Jfe Steel Corporation High-yield-ratio high-strength electrogalvanized steel sheet and method for manufacturing the same
CN109652625B (en) * 2019-01-15 2021-02-23 象山华鹰塑料工程有限公司 Manufacturing process of ultrahigh-strength cold-rolled steel plate for automobile window
KR102403767B1 (en) * 2020-11-25 2022-05-30 현대제철 주식회사 Ultra high strength cold rolled steel sheet treated by softening heat process and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695933B2 (en) 2000-09-12 2004-02-24 Nkk Corporation Ultra-high strength cold rolled steel sheet and method for manufacturing the same
WO2009096596A1 (en) 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
WO2009096595A1 (en) 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength steel sheet and process for production thereof
US8840834B2 (en) 2008-01-31 2014-09-23 JFE Steel Coporation High-strength steel sheet and method for manufacturing the same
WO2011013845A1 (en) 2009-07-30 2011-02-03 Jfeスチール株式会社 High-strength steel sheet, and process for production thereof
CN103572156A (en) * 2012-07-18 2014-02-12 株式会社神户制钢所 Manufacturing method for high strength sheet steel used for door reinforced pipes
CN103572171B (en) * 2012-07-18 2017-06-30 株式会社神户制钢所 The manufacture method of the ultrahigh-strength thin steel sheet of hydrogen embrittlement is not produced

Also Published As

Publication number Publication date
JPH07197183A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP2826058B2 (en) Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
JP4781836B2 (en) Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet
JP2005528519A5 (en)
CN113840934B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
JP3514276B2 (en) Ultra-high strength steel sheet excellent in delayed fracture resistance and method of manufacturing the same
JPH0564215B2 (en)
KR100711445B1 (en) A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it
KR20190042022A (en) METHOD FOR MANUFACTURING STRENGTH STEEL STRIP WITH IMPROVED CHARACTERISTICS FOR ADDITIONAL TREATMENT
JP4528184B2 (en) Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability
CN112955575B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
KR20070011007A (en) Hot dip galvanized steel sheets of trip steels which have good adhesion property and excellent formability and the method of developing those steels
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
JP3918589B2 (en) Steel plate for heat treatment and manufacturing method thereof
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JP3286047B2 (en) Manufacturing method of ultra-high strength steel sheet for processing with good hydrogen embrittlement resistance
JPH05271857A (en) High tensile strength steel sheet and its production
JP3247909B2 (en) High-strength hot-dip galvanized steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3330207B2 (en) Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JP2806121B2 (en) Method for producing high-strength hot-dip galvanized steel with excellent workability and material stability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070911

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100911

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100911

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110911

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110911

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees