JP4528184B2 - Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability - Google Patents

Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability Download PDF

Info

Publication number
JP4528184B2
JP4528184B2 JP2005101738A JP2005101738A JP4528184B2 JP 4528184 B2 JP4528184 B2 JP 4528184B2 JP 2005101738 A JP2005101738 A JP 2005101738A JP 2005101738 A JP2005101738 A JP 2005101738A JP 4528184 B2 JP4528184 B2 JP 4528184B2
Authority
JP
Japan
Prior art keywords
steel sheet
dip galvanized
steel
cold
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005101738A
Other languages
Japanese (ja)
Other versions
JP2006283071A (en
Inventor
純治 土師
薫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005101738A priority Critical patent/JP4528184B2/en
Publication of JP2006283071A publication Critical patent/JP2006283071A/en
Application granted granted Critical
Publication of JP4528184B2 publication Critical patent/JP4528184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、加工用の合金化溶融亜鉛メッキ高強度鋼板の製造方法に関するものである。   The present invention relates to a method for producing an alloyed hot-dip galvanized high strength steel sheet for processing.

自動車等に使用する高強度鋼板においては、地球環境問題に端を発する燃費向上の有力手段である車体軽量化と衝突時の乗員保護を目的とした衝突安全性の確保の両立を主な背景として、その要求は高まっている。しかし、高強度鋼板とはいえ、優れた加工性が要求され、強度と加工性を両立させる鋼板が必要とされている。加工性のうち、延性の向上はもちろんのこと低降伏比化も重要である。降伏比とは鋼板の引張強さ(TS)に対する降伏強度(YP)の割合、YP/TSであり、これを下げることにより、高強度化で悪化する形状凍結性の改善、プレス荷重の低減、しわ発生の抑制などを図ることができる。   For high-strength steel sheets used in automobiles, etc., the main background is the reduction of vehicle body weight, which is an effective means of improving fuel efficiency that originates from global environmental problems, and the securing of collision safety for the purpose of protecting passengers during collisions. The demand is growing. However, even though it is a high-strength steel plate, excellent workability is required, and a steel plate that balances strength and workability is required. Of the workability, it is important to lower the yield ratio as well as improve ductility. The yield ratio is the ratio of the yield strength (YP) to the tensile strength (TS) of the steel sheet, YP / TS, and by lowering this, the shape freezing property deteriorated by the increase in strength, the reduction in press load, Wrinkle generation can be suppressed.

良好な伸びが必要とされる用途に供される高強度鋼板として、従来、フェライトとマルテンサイトにより構成されるDual Phase鋼(以下DP鋼と称す)があり、自動車用などに広く使用されている。このDP鋼は、固溶強化型鋼板や析出強化型鋼板より優れた強度−延性バランスを示すと共に、降伏比が低いという特徴をもっている。   Conventionally, as a high-strength steel sheet used for applications requiring good elongation, there is a dual phase steel (hereinafter referred to as DP steel) composed of ferrite and martensite, and is widely used for automobiles and the like. . This DP steel is characterized by a strength-ductility balance superior to that of a solid solution strengthened steel sheet and a precipitation strengthened steel sheet, and a low yield ratio.

また、自動車においては、適用部位により高い耐食性が要求される。そのような用途では、合金化溶融亜鉛メッキ鋼板が好適である。したがって、自動車の軽量化及び衝突安全性の向上をより一層促進するには、耐食性に優れ、しかも延性に優れ、低い降伏比を有する合金化溶融亜鉛メッキ高強度鋼板が必要不可欠な素材となっている。   In automobiles, high corrosion resistance is required depending on the application site. For such applications, galvannealed steel sheets are preferred. Therefore, an alloyed hot-dip galvanized high-strength steel sheet with excellent corrosion resistance, excellent ductility, and low yield ratio has become an indispensable material for further promoting the reduction of automobile weight and the improvement of collision safety. Yes.

合金化溶融亜鉛メッキ鋼板は、通常、ゼンジマー法や無酸化炉方式で製造されるが、焼鈍設備とメッキ設備が連続化されており、焼鈍後の冷却はメッキ温度にて中断され、工程を通じた冷却速度も必然的に小さくなる。よって、冷却速度の大きい冷却条件下で生成するマルテンサイトをメッキ後の鋼板中に含有させることは難しい。また、上記DP鋼においては、延性向上のためにSiが添加されるが、Si含有量が高いと鋼板表面にSiが表面に濃縮し酸化するため、溶融メッキ時に不メッキが発生し易い。   Alloyed hot-dip galvanized steel sheets are usually manufactured by the Sendzimer method or non-oxidizing furnace method, but the annealing equipment and plating equipment are continuous, cooling after annealing is interrupted at the plating temperature, and through the process The cooling rate is necessarily reduced. Therefore, it is difficult to contain martensite generated under cooling conditions with a high cooling rate in the steel sheet after plating. Further, in the DP steel, Si is added to improve ductility. However, when the Si content is high, Si is concentrated on the surface of the steel sheet and oxidized, so that non-plating is likely to occur during hot dipping.

一方、特許文献1及び2において、Si添加高強度鋼板につき、Niプレメッキ後、430〜500℃まで急速加熱し、亜鉛メッキ後に合金化処理を行うという合金化溶融亜鉛メッキ高強度鋼板の製造方法が記載されている。この方法の場合、原板として既に材質を造り込んでいる冷延−連続焼鈍プロセスで製造した冷延鋼板を使用することが可能であり、最高到達温度が550℃程度であることから、原板の加工性をあまり損なわずに合金化溶融亜鉛メッキ鋼板を製造することができると考えられる。また、Niプレメッキなどの処理により、Si含有量が高くても不メッキが生じにくい。しかし、実際に冷延−連続焼鈍プロセスで製造されたDP鋼の冷延鋼板を用い、特許文献1及び2の方法を用いて合金化溶融亜鉛メッキ鋼板を製造したところ、原板に対して降伏比の大幅な上昇及び延性の低下がみられた。
特許第2526320号公報 特許第2526322号公報
On the other hand, in Patent Documents 1 and 2, there is a method for producing an alloyed hot-dip galvanized high-strength steel sheet in which a Si-added high-strength steel sheet is rapidly heated to 430 to 500 ° C. after Ni pre-plating and alloyed after galvanization. Are listed. In the case of this method, it is possible to use a cold-rolled steel plate manufactured by a cold-rolling-continuous annealing process in which the material has already been made as the original plate, and the maximum temperature reached is about 550 ° C. It is considered that an alloyed hot-dip galvanized steel sheet can be produced without significantly impairing the properties. Further, non-plating is less likely to occur even when the Si content is high due to a treatment such as Ni pre-plating. However, when a cold-rolled steel sheet of DP steel actually manufactured by a cold-rolling-continuous annealing process was used and an alloyed hot-dip galvanized steel sheet was manufactured using the methods of Patent Documents 1 and 2, the yield ratio relative to the original sheet There was a significant increase in the production and a decrease in ductility.
Japanese Patent No. 2526320 Japanese Patent No. 2526322

本発明では、DP鋼の冷延鋼板を原板としてNiプレメッキ法による合金化溶融亜鉛メッキ鋼板を製造するに当たり、原板の加工性をあまり損なわずに製造する方法の提供を課題とする。   An object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet by Ni pre-plating using a cold-rolled steel sheet of DP steel as an original sheet without significantly impairing the workability of the original sheet.

本発明者らは、上記のように、DP鋼の冷延鋼板を原板としてNiプレメッキ法による合金化溶融亜鉛メッキ鋼板を製造した際に、原板の加工性が大きく損なわれる原因を検討した結果、冷延鋼板に施されている調質圧延が原因であることを見出した。通常、DP鋼の冷延鋼板には、降伏比低減及び形状矯正のため、伸び率0.2〜0.6%程度の調質圧延がかけられている。しかし、この調質圧延をかけたまま、Niプレメッキ法による合金化溶融亜鉛メッキプロセスを通した場合、その熱処理により原板の加工性が大きく損なわれるのである。更に、調質圧延をかけなければ、原板の加工性をあまり損なうことなく製造可能なことを見出し、本発明を完成した。本発明は、上記課題を解決するためになされたもので、その要旨は次の通りである。
(1)質量%で、
C:0.05〜0.20%、
Mn:1.0〜3.0%、
Si:0.3〜1.8%、
P:0.05%以下、
S:0.03%以下、
sol.Al:0.005〜1.0%、
N:0.01%以下
を含み、残部はFeおよび不可避的不純物から成る鋼片を熱延、酸洗、冷延後、750〜900℃にて焼鈍し、600〜700℃から350℃以下まで50〜100℃/秒で冷却し、酸洗後、途中の調質圧延をかけることなく、NiまたはNi−Feをプレメッキし、5℃/秒以上で430〜500℃まで加熱後亜鉛メッキ浴中で亜鉛メッキし、460〜550℃で5〜40秒の合金化加熱処理を行い、最終の調質圧延を0.2〜1%の伸び率でかけることを特徴とする加工性の良好な合金化溶融亜鉛メッキ高強度鋼板の製造方法。
As described above, the present inventors, as a result of investigating the cause of greatly damaging the workability of the original plate when producing an alloyed hot-dip galvanized steel plate by Ni pre-plating method using a cold rolled steel plate of DP steel as the original plate, It has been found that the temper rolling applied to the cold-rolled steel sheet is the cause. Normally, DP steel is subjected to temper rolling with an elongation of about 0.2 to 0.6% in order to reduce the yield ratio and correct the shape. However, when the alloyed hot-dip galvanizing process by the Ni pre-plating method is performed while this temper rolling is applied, the workability of the original plate is greatly impaired by the heat treatment. Furthermore, the present invention has been completed by finding that it can be produced without damaging the workability of the original plate unless temper rolling is applied. The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) In mass%,
C: 0.05-0.20%,
Mn: 1.0 to 3.0%
Si: 0.3-1.8%
P: 0.05% or less,
S: 0.03% or less,
sol. Al: 0.005 to 1.0%,
N: Including 0.01% or less, the balance is a steel slab composed of Fe and inevitable impurities, hot-rolled, pickled, cold-rolled, and then annealed at 750-900 ° C, from 600-700 ° C to 350 ° C or lower 5 is cooled at 0 to 100 ° C. / sec, pickling, without applying temper rolling in the middle, and Puremekki Ni or Ni-Fe, 5 ° C. / after heating sec to from 430 to 500 ° C. or more galvanizing bath An alloy with good workability, characterized by being galvanized therein, subjected to alloying heat treatment at 460 to 550 ° C. for 5 to 40 seconds, and subjected to final temper rolling at an elongation of 0.2 to 1% producing how the galvanized high strength steel sheet.

本発明の製造方法によれば、延性が良好で低降伏比の合金化溶融亜鉛メッキ高強度鋼板を提供することが可能であり、自動車用などとしての用途は広く、産業上のメリットは大きい。   According to the production method of the present invention, it is possible to provide an alloyed hot-dip galvanized high-strength steel sheet having good ductility and a low yield ratio, which is widely used for automobiles and has great industrial merit.

先ず、本発明が対象とする鋼板の成分及び成分範囲を限定した理由を述べる。基本的には、一般的なDP鋼の冷延鋼板の成分となっている。なお、以下、組成における質量%は単に%と記す。   First, the reason why the components and the component ranges of the steel sheet targeted by the present invention are limited will be described. Basically, it is a component of common cold rolled steel of DP steel. Hereinafter, mass% in the composition is simply referred to as%.

Cは、硬化元素であり、マルテンサイトの生成に効果がある。しかし、0.05%未満では所望の高強度化が得られず、0.20%を超えると溶接性の劣化を招く。したがって、C量を0.05〜0.20%とした。   C is a hardening element and is effective in generating martensite. However, if it is less than 0.05%, the desired high strength cannot be obtained, and if it exceeds 0.20%, the weldability is deteriorated. Therefore, the C content is set to 0.05 to 0.20%.

Mnは、固溶強化により鋼を強化すると共に、焼き入れ性を上げてマルテンサイトの生成を促進する。このような作用を発揮するには1.0%以上必要である。また、3.0%を超えても効果が飽和し、含有量に見合う効果が期待できない。したがって、Mn量を1.0〜3.0%とした。   Mn strengthens the steel by solid solution strengthening and enhances hardenability to promote the formation of martensite. In order to exert such an effect, 1.0% or more is necessary. Moreover, even if it exceeds 3.0%, an effect will be saturated and the effect corresponding to content cannot be expected. Therefore, the amount of Mn is set to 1.0 to 3.0%.

Siはフェライト安定化元素であり、セメンタイトの析出を阻害し、オーステナイト中にCを濃化させることで、残留オーステナイトの生成を促進する。残留オーステナイトは歪誘起促進変態の効果により延性を向上させる。よって、SiはDP鋼の延性向上に有効な元素である。このような作用は0.3%以上で認められる。一方、1.8%を超えるとマルテンサイトの生成を阻害すると共に、メッキ性が顕著に劣化する。したがって、Si量を0.3〜1.8%とした。   Si is a ferrite stabilizing element that inhibits the precipitation of cementite and promotes the formation of retained austenite by concentrating C in the austenite. Residual austenite improves ductility by the effect of strain-induced accelerated transformation. Therefore, Si is an element effective for improving the ductility of DP steel. Such an effect is recognized at 0.3% or more. On the other hand, if it exceeds 1.8%, the formation of martensite is inhibited and the plating property is remarkably deteriorated. Therefore, the Si amount is set to 0.3 to 1.8%.

Pは、不純物として不可避的に含有され伸びに悪影響を与えるので、上限を0.05%とした。   Since P is inevitably contained as an impurity and adversely affects elongation, the upper limit was made 0.05%.

Sは、多くなると熱間脆性の原因となり、また、加工性を劣化させるので、その上限を0.03%とした。   If S increases, it causes hot brittleness and deteriorates workability, so the upper limit was made 0.03%.

Alは、鋼の脱酸剤として添加され鋼中に含有されsol.Alで0.005%以上必要である。また、Siと同様にフェライト安定化元素であり、量を増やしてSiの代わりに活用することも可能である。しかし、sol.Alで1%を超えると鋼板中に介在物が多くなりすぎて延性を劣化させる。したがって、sol.Alで0.005〜1.0%とした。   Al is added as a steel deoxidizer and contained in the steel. 0.005% or more is necessary for Al. Further, it is a ferrite stabilizing element like Si, and can be used in place of Si by increasing the amount. However, sol. If it exceeds 1% with Al, the inclusions in the steel sheet will increase and ductility will deteriorate. Therefore, sol. It was made into 0.005-1.0% with Al.

Nは不可避的不純物として含有されるが、N量が多いと加工性の劣化を招くので、上限を0.01%とする。   N is contained as an inevitable impurity, but if the amount of N is large, workability is deteriorated, so the upper limit is made 0.01%.

次に、本発明による合金化溶融亜鉛メッキ鋼板の製造方法について詳細に説明する。
溶鋼は通常の高炉法で溶製されたものの他、電炉法のようにスクラップを多量に使用したものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。スラブは一旦冷却してから、熱延前の加熱炉で加熱しても良いし、冷却途中で高温まま加熱炉に入れる、所謂HCRやDRでも良い。
Next, the manufacturing method of the galvannealed steel plate by this invention is demonstrated in detail.
The molten steel may be one produced by a normal blast furnace method or one using a large amount of scrap as in the electric furnace method. The slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting. The slab may be once cooled and then heated in a heating furnace before hot rolling, or may be a so-called HCR or DR that is placed in a heating furnace while being cooled.

熱延は、上記成分系の冷延鋼板における通常の製造条件にて実施される。粗圧延後に粗バーを巻き取って保持するコイルボックスを使用しても良い。更に巻き取った粗バーを巻き戻す際に先行する粗バーと接合して圧延する、いわゆる熱延連続化プロセスでも良い。   Hot rolling is performed under normal manufacturing conditions for the above-described cold-rolled steel sheets. A coil box that winds and holds the coarse bar after rough rolling may be used. Further, a so-called hot rolling continuous process in which the rolled coarse bar is joined and rolled with the preceding coarse bar when unwinding may be used.

酸洗、冷延についても、上記成分系の冷延鋼板における通常の製造条件にて実施される。冷延後の連続焼鈍プロセスでは、まず、750〜900℃にて焼鈍し、フェライトを再結晶させると共に、オーステナイトを生成させる。750℃未満では、十分に再結晶が生じず加工性の劣化をまねく。また、900℃を超えると異常粒成長により表面性状が劣化する。その際の保持時間は、30〜200秒程度が望ましい。次に、350℃以下まで50℃/秒以上で急冷される。これにより、マルテンサイトが生成される。350℃超までの冷却や50℃/秒未満の冷却では、十分にマルテンサイトが生成されず、強度低下や加工性劣化を招く。望ましくは、300℃以下まで冷却すべきである。また、急冷開始温度については、600〜700℃程度が望ましい。その急冷後は、そのまま室温まで冷却しても良いし、冷却終了温度近傍で数分保持してから室温まで冷却しても良い。連続焼鈍時に生成したスケールを除去するため、この段階で再度酸洗する必要がある。   The pickling and cold rolling are also carried out under normal manufacturing conditions for the above-described cold rolled steel sheet. In the continuous annealing process after cold rolling, first, annealing is performed at 750 to 900 ° C. to recrystallize ferrite and to generate austenite. If it is less than 750 ° C., recrystallization does not occur sufficiently, resulting in deterioration of workability. On the other hand, when the temperature exceeds 900 ° C., the surface properties deteriorate due to abnormal grain growth. In this case, the holding time is preferably about 30 to 200 seconds. Next, it is rapidly cooled to 350 ° C. or less at 50 ° C./second or more. Thereby, martensite is generated. Cooling to over 350 ° C. or cooling at less than 50 ° C./second does not sufficiently generate martensite, leading to strength reduction and workability deterioration. Desirably, it should be cooled to below 300 ° C. Moreover, about rapid cooling start temperature, about 600-700 degreeC is desirable. After the rapid cooling, it may be cooled to room temperature as it is, or may be cooled to room temperature after being kept near the cooling end temperature for several minutes. In order to remove the scale generated during the continuous annealing, it is necessary to pickle again at this stage.

連続焼鈍の後の調質圧延は、本発明で最も重要なポイントである。図1に示すように、調質圧延の伸び率が0、つまり全くかけなければ降伏比の上昇は少ない。しかし、伸び率が0.1%以上、つまり少しでも調質圧延をかけると降伏比が大幅に上昇する。伸びの低下についても同様の傾向がある。よって、この中間段階での調質圧延はかけてはならない。上記の現象は、調質圧延により鋼板中に生じた可動転位へ、メッキプロセス中に固溶Cや固溶Nが固着して転位を動きにくくする歪時効現象によるものと推定される。DP鋼の場合、軟質のフェライト相中に硬質のマルテンサイトが点在しているため、フェライトとマルテンサイトの界面で可動転位が生じ易く、上記の現象が顕著に生じるものと考えられる。   The temper rolling after the continuous annealing is the most important point in the present invention. As shown in FIG. 1, the elongation ratio of temper rolling is 0, that is, the yield ratio increases little if not applied at all. However, if the elongation is 0.1% or more, that is, if temper rolling is applied even a little, the yield ratio increases significantly. There is a similar tendency for the decrease in elongation. Therefore, temper rolling at this intermediate stage should not be applied. The above phenomenon is presumed to be due to a strain aging phenomenon in which solid solution C or solid solution N adheres to the movable dislocations generated in the steel sheet by temper rolling and the dislocations are difficult to move during the plating process. In the case of DP steel, since hard martensite is scattered in the soft ferrite phase, mobile dislocations are likely to occur at the interface between ferrite and martensite, and the above phenomenon is considered to occur remarkably.

亜鉛メッキプロセスにおいては、まず、メッキ密着性を確保するため、NiまたはNi−Fe合金をプレメッキする。メッキ量としては0.2〜2g/m程度が望ましい。プレメッキの方法は電気メッキ、浸浸メッキ、スプレーメッキの何れでもよい。その後、メッキするために5℃/秒以上で430〜500℃まで加熱する。5℃/秒未満の昇温速度では、固溶Cや固溶Nが動きやすく加工性の劣化を招く。望ましくは30℃/秒以上で昇温することにより劣化は更に抑制される。また、430℃未満ではメッキ時に不メッキを生じ易く、500℃を超えると加工部の耐赤錆性が劣化する。次に、亜鉛メッキ浴中で亜鉛メッキし、460℃〜550℃で5〜40秒の合金化加熱処理を行う。460℃未満または5秒未満では合金化が十分に生じない。また、550℃を超えて加熱したり、40秒を超えて加熱すると、加工性の劣化が大きくなる。 In the galvanizing process, first, Ni or a Ni—Fe alloy is pre-plated to ensure plating adhesion. The plating amount is preferably about 0.2 to 2 g / m 2 . The pre-plating method may be any of electroplating, immersion plating, and spray plating. Then, it heats to 430-500 degreeC at 5 degree-C / second or more in order to plate. At a temperature increase rate of less than 5 ° C./second, solute C and solute N easily move, resulting in deterioration of workability. Desirably, the deterioration is further suppressed by raising the temperature at 30 ° C./second or more. Moreover, if it is less than 430 degreeC, it will be easy to produce non-plating at the time of plating, and if it exceeds 500 degreeC, the red rust resistance of a process part will deteriorate. Next, galvanization is performed in a galvanizing bath, and alloying heat treatment is performed at 460 ° C. to 550 ° C. for 5 to 40 seconds. If it is less than 460 ° C. or less than 5 seconds, alloying does not occur sufficiently. Moreover, when it heats exceeding 550 degreeC or it heats exceeding 40 seconds, deterioration of workability will become large.

亜鉛メッキプロセスの後は、最終的な形状矯正及び降伏点伸びの消失のために最終の調質圧延を行う。伸び率0.2%未満では効果が十分でなく、伸び率1%を超えると降伏比の上昇代が大きい。よって、伸び率を0.2〜1%とした。   After the galvanization process, final temper rolling is performed for final shape correction and loss of yield point elongation. If the elongation is less than 0.2%, the effect is not sufficient, and if the elongation exceeds 1%, the allowance for increasing the yield ratio is large. Therefore, the elongation rate was set to 0.2 to 1%.

以上のような熱延の後の各工程、酸洗、冷延、連続焼鈍、調質圧延(中間)、プレメッキ、亜鉛メッキプロセス(合金化処理含む)、調質圧延(最終)は各々独立した工程であってもかまわないし、部分的に連続している工程でもかまわない。生産効率から考えれば、全て連続化していることが理想である。   Each process after hot rolling as described above, pickling, cold rolling, continuous annealing, temper rolling (intermediate), pre-plating, galvanizing process (including alloying treatment), temper rolling (final) are independent of each other. It may be a process, or may be a partially continuous process. From the viewpoint of production efficiency, it is ideal that everything is continuous.

表1に示した成分組成を有する250mm厚の連続鋳造スラブを、実機連続熱延ラインにおいて、1200℃に再加熱後、粗圧延し、850℃で仕上圧延を終了して板厚3.0mmとし、600℃にて巻き取りコイルとした。この熱延コイルを酸洗−冷延−連続焼鈍−調質圧延まで連続した実機ラインで冷延鋼板とした。板厚1.6mmまで冷延し、820℃で90秒焼鈍後、650℃まで2℃/秒、650℃から250℃まで100℃/秒で冷却し、250〜200℃にて360秒保持した後、室温まで冷却後酸洗し、調質圧延はかけずにサンプル採取した。このサンプルを以後、ラボで処理した。調質圧延はかけないか、1%以下の伸び率でかけた。その後、鋼板片面当たり、0.5g/mのNiプレメッキを行い、30℃/秒で470℃まで加熱後、亜鉛メッキ浴中で亜鉛メッキし、500℃で10秒の合金化加熱処理を行い、最終の調質圧延を0.4%の伸び率でかけた。その鋼板の材質をJIS5号引張試験片での引張試験にて調査した。その結果を表2に示す。また、比較のため、中間段階での冷延鋼板ままでの材質も表2中に示した。なお、メッキ密着性やパウダリング性などメッキ品質に関しては、全て問題なかった。 A 250 mm thick continuous cast slab having the composition shown in Table 1 is reheated to 1200 ° C in an actual continuous hot rolling line, roughly rolled, finish-finished at 850 ° C, and finished with a plate thickness of 3.0 mm. The coil was taken up at 600 ° C. This hot-rolled coil was made into a cold-rolled steel sheet in an actual machine line that continued from pickling to cold rolling to continuous annealing to temper rolling. Cold-rolled to a thickness of 1.6 mm, annealed at 820 ° C. for 90 seconds, then cooled to 650 ° C. at 2 ° C./second, cooled from 650 ° C. to 250 ° C. at 100 ° C./second, and held at 250-200 ° C. for 360 seconds. Then, after cooling to room temperature, pickling was performed, and a sample was collected without applying temper rolling. This sample was subsequently processed in the laboratory. The temper rolling was not applied or it was applied at an elongation of 1% or less. Thereafter, Ni pre-plating of 0.5 g / m 2 is performed per one side of the steel sheet, heated to 470 ° C. at 30 ° C./second, galvanized in a galvanizing bath, and subjected to alloying heat treatment at 500 ° C. for 10 seconds. The final temper rolling was applied at an elongation of 0.4%. The material of the steel plate was investigated by a tensile test using a JIS No. 5 tensile test piece. The results are shown in Table 2. For comparison, Table 2 also shows the material of the cold-rolled steel sheet in the intermediate stage. There were no problems with plating quality such as plating adhesion and powdering properties.

Figure 0004528184
Figure 0004528184

Figure 0004528184
Figure 0004528184

表2に示したように、本発明例では、冷延鋼板ままに対する降伏比の上昇および強度×伸び(TS×EL)の低下を最小限に抑えることが可能である。それに対し、比較例では降伏比の上昇および強度×伸びの低下が大きい。   As shown in Table 2, in the example of the present invention, it is possible to minimize an increase in yield ratio and a decrease in strength × elongation (TS × EL) relative to the cold-rolled steel sheet. On the other hand, in the comparative example, the increase in yield ratio and the decrease in strength × elongation are large.

中間の調質圧延の伸び率を除いて本発明の範囲内で製造した各種メッキ鋼板と途中段階での冷延鋼板とで、降伏比の上昇代(メッキ鋼板の降伏比−冷延鋼板の伸び)を測定し、その平均値を中間の調質圧延の伸び率に対してプロットしたグラフ。With various plated steel sheets manufactured within the scope of the present invention except the intermediate temper rolling elongation and cold-rolled steel sheets in the middle stage, the yield ratio increases (yield ratio of plated steel sheets-elongation of cold-rolled steel sheets) ) And the average value plotted against the elongation of intermediate temper rolling.

Claims (1)

質量%で、
C:0.05〜0.20%、
Mn:1.0〜3.0%、
Si:0.3〜1.8%、
P:0.05%以下、
S:0.03%以下、
sol.Al:0.005〜1.0%、
N:0.01%以下
を含み、残部はFeおよび不可避的不純物から成る鋼片を熱延、酸洗、冷延後、750〜900℃にて焼鈍し、600〜700℃から350℃以下まで50〜100℃/秒で冷却し、酸洗後、途中の調質圧延をかけることなく、NiまたはNi−Feをプレメッキし、5℃/秒以上で430〜500℃まで加熱後亜鉛メッキ浴中で亜鉛メッキし、460〜550℃で5〜40秒の合金化加熱処理を行い、最終の調質圧延を0.2〜1%の伸び率でかけることを特徴とする加工性の良好な合金化溶融亜鉛メッキ高強度鋼板の製造方法。
% By mass
C: 0.05-0.20%,
Mn: 1.0 to 3.0%
Si: 0.3-1.8%
P: 0.05% or less,
S: 0.03% or less,
sol. Al: 0.005 to 1.0%,
N: Including 0.01% or less, the balance is a steel slab composed of Fe and inevitable impurities, hot-rolled, pickled, cold-rolled, and then annealed at 750-900 ° C, from 600-700 ° C to 350 ° C or lower 5 is cooled at 0 to 100 ° C. / sec, pickling, without applying temper rolling in the middle, and Puremekki Ni or Ni-Fe, 5 ° C. / after heating sec to from 430 to 500 ° C. or more galvanizing bath An alloy with good workability, characterized by being galvanized therein, subjected to alloying heat treatment at 460 to 550 ° C. for 5 to 40 seconds, and subjected to final temper rolling at an elongation of 0.2 to 1% For producing high-strength hot-dip galvanized steel sheets.
JP2005101738A 2005-03-31 2005-03-31 Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability Active JP4528184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101738A JP4528184B2 (en) 2005-03-31 2005-03-31 Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101738A JP4528184B2 (en) 2005-03-31 2005-03-31 Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability

Publications (2)

Publication Number Publication Date
JP2006283071A JP2006283071A (en) 2006-10-19
JP4528184B2 true JP4528184B2 (en) 2010-08-18

Family

ID=37405284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101738A Active JP4528184B2 (en) 2005-03-31 2005-03-31 Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability

Country Status (1)

Country Link
JP (1) JP4528184B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4855442B2 (en) * 2008-06-20 2012-01-18 新日本製鐵株式会社 Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP5212056B2 (en) * 2008-12-02 2013-06-19 新日鐵住金株式会社 Method for producing galvannealed steel sheet
JP5739669B2 (en) * 2010-04-20 2015-06-24 株式会社神戸製鋼所 Method for producing high-strength cold-rolled steel sheet with excellent ductility
MX2014003712A (en) 2011-09-30 2014-07-09 Nippon Steel & Sumitomo Metal Corp High-strength hot-dipp.
TWI467030B (en) * 2011-10-06 2015-01-01 Nippon Steel & Sumitomo Metal Corp Steel sheet and manufacturing method thereof
CN111218620B (en) * 2018-11-23 2021-10-22 宝山钢铁股份有限公司 High-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof
CN111945061A (en) * 2020-07-13 2020-11-17 首钢集团有限公司 1180MPa cold-rolled hot-galvanized dual-phase steel and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526322B2 (en) * 1991-05-23 1996-08-21 新日本製鐵株式会社 Method for producing high-strength hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2526320B2 (en) * 1991-05-07 1996-08-21 新日本製鐵株式会社 Method for producing high-strength galvannealed steel sheet
JPH11279691A (en) * 1998-03-27 1999-10-12 Nippon Steel Corp High strength hot dip galvannealed steel sheet good in workability and its production
JP2004211119A (en) * 2002-12-27 2004-07-29 Jfe Steel Kk High-tensile-strength hot-dip galvanized steel sheet consisting of complex metal structure superior in formability for extension flange, strength-ductility balance and strain age-hardening property, and manufacturing method therefore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526320B2 (en) * 1991-05-07 1996-08-21 新日本製鐵株式会社 Method for producing high-strength galvannealed steel sheet
JP2526322B2 (en) * 1991-05-23 1996-08-21 新日本製鐵株式会社 Method for producing high-strength hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH11279691A (en) * 1998-03-27 1999-10-12 Nippon Steel Corp High strength hot dip galvannealed steel sheet good in workability and its production
JP2004211119A (en) * 2002-12-27 2004-07-29 Jfe Steel Kk High-tensile-strength hot-dip galvanized steel sheet consisting of complex metal structure superior in formability for extension flange, strength-ductility balance and strain age-hardening property, and manufacturing method therefore

Also Published As

Publication number Publication date
JP2006283071A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
CN108474096B (en) Aluminum-plated iron alloy steel sheet for hot press forming, hot press formed member using same, and method for producing same
JP5532188B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
JP4510488B2 (en) Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP4804996B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability, powdering property and slidability
JP5949253B2 (en) Hot dip galvanized steel sheet and its manufacturing method
JP5504643B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2013118679A1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP2021021145A (en) Manufacturing method of twip steel sheet having austenite microstructure
JP4528184B2 (en) Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability
JP6398967B2 (en) High-strength hot-dip hot-rolled steel sheet excellent in surface appearance and plating adhesion and method for producing the same
JP5531757B2 (en) High strength steel plate
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4422645B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5212056B2 (en) Method for producing galvannealed steel sheet
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP5682356B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5531737B2 (en) Low yield ratio type alloyed hot dip galvanized high strength steel sheet with excellent ductility and hole expansibility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4528184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350