JP3330207B2 - Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same - Google Patents

Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same

Info

Publication number
JP3330207B2
JP3330207B2 JP27315193A JP27315193A JP3330207B2 JP 3330207 B2 JP3330207 B2 JP 3330207B2 JP 27315193 A JP27315193 A JP 27315193A JP 27315193 A JP27315193 A JP 27315193A JP 3330207 B2 JP3330207 B2 JP 3330207B2
Authority
JP
Japan
Prior art keywords
steel sheet
hydrogen embrittlement
ultra
rolled steel
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27315193A
Other languages
Japanese (ja)
Other versions
JPH07102341A (en
Inventor
田中福輝
三村和弘
大宮良信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17523827&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3330207(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27315193A priority Critical patent/JP3330207B2/en
Publication of JPH07102341A publication Critical patent/JPH07102341A/en
Application granted granted Critical
Publication of JP3330207B2 publication Critical patent/JP3330207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐水素脆化特性の優れ
た引張強度が980〜1670N/mm2の超高強度冷
延鋼板の製造方法に関し、特にプレス成形或いはロール
成形などの加工を受けた後の耐水素脆化特性の優れた超
高強度冷延鋼板の製造方法に関するもので、具体的に
は、例えば、自動車のバンパー、ドアの補強部材など軽
量でかつ耐強度が要求される用途において好適な超高強
鋼板の製造に適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-high-strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance and a tensile strength of 980 to 1670 N / mm 2 , and particularly to a method such as press forming or roll forming. The present invention relates to a method for manufacturing an ultra-high-strength cold-rolled steel sheet having excellent hydrogen embrittlement resistance characteristics after receiving the same. Specifically, for example, bumpers for automobiles, reinforcing members for doors, and the like are required to be lightweight and resistant. Suitable for the production of ultra-high strength steel sheet suitable for use.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
の軽量化が進み、バンパー、ドアインパクトビームなど
の強度部材などに980N/mm2以上の超高強度薄鋼板
をプレス成形したり、ロール成形によりパイプ形状にし
て採用する場合が多くなってきた。
2. Description of the Related Art As automobiles have become lighter in weight, ultrahigh-strength steel sheets of 980 N / mm 2 or more have been press-formed or roll-formed on strength members such as bumpers and door impact beams. In many cases, it has been adopted in a pipe shape.

【0003】980N/mm2以上の超高強度鋼では、水
素脆化が発生することが、例えば、日本ねじ協会「ねじ
締結の設計と実際」研修講座テキスト(1990年10
月18日)にて知られている。したがって、超高強度薄
鋼板においても、大気環境下の腐食反応で発生する水素
が鋼板中に入り、使用中に突然脆性的に破壊することが
考えられる。更に超高強度薄鋼板の場合は、プレス成形
或いはロール成形などの加工により成形品として用いら
れるため、著しく高い残留応力の存在、強加工に伴う鋼
板組織内でのボイドやクラックの発生などがあり、水素
脆化がより起こり易い状態にあると考えられる。
[0003] Hydrogen embrittlement occurs in ultra-high-strength steels of 980 N / mm 2 or more, for example, in the textbook of the Japan Screw Association “Design and Practice of Screw Fastening” training course (October 1990).
18). Therefore, even in an ultra-high strength thin steel sheet, it is conceivable that hydrogen generated by a corrosion reaction in an atmospheric environment enters the steel sheet and is suddenly brittlely broken during use. Furthermore, in the case of ultra-high strength thin steel sheets, since they are used as molded products by processing such as press forming or roll forming, there is the existence of extremely high residual stress, and the occurrence of voids and cracks in the steel sheet structure due to strong processing. It is considered that hydrogen embrittlement is more likely to occur.

【0004】しかし、これまでのバンパー、ドアの補強
部材用超高強度薄鋼板は、例えば、特開平4−2680
16号公報や特開平4−365814号公報のように、
主として加工性や焼付硬化性、成形品としての圧壊特性
の向上を狙っており、使用過程で発生が予想される水素
脆性の問題について対策を講じておくことは非常に少な
く、例えば、特開平4−268053号公報などに見ら
れる程度である。
[0004] However, conventional ultra-high strength thin steel sheets for bumper and door reinforcing members are disclosed in, for example, Japanese Patent Application Laid-Open No. H4-2680.
No. 16, JP-A-4-365814,
It mainly aims at improving workability, baking hardenability, and crushing properties as a molded product, and it is very rare to take measures against the problem of hydrogen embrittlement that is expected to occur during the use process. It is a degree that is found in -268053 and the like.

【0005】特開平4−268053号公報に記載され
ている方法は、鋼中にSiを添加し、鋼板中への水素原
子の侵入を抑制することによって水素脆化の発生を防止
する方法である。しかし、実際には、水素脆化の防止に
対して、Si添加によって鋼板中への水素原子の侵入を
抑制するだけでは不十分であり、鋼板そのものを、侵入
した水素に対して脆性を生じにくい組織、成分にしてお
くことが重要である。
[0005] The method described in JP-A-4-268053 is a method in which Si is added to steel to suppress the intrusion of hydrogen atoms into the steel sheet to thereby prevent the occurrence of hydrogen embrittlement. . However, in actuality, it is not enough to prevent hydrogen embrittlement by merely suppressing the intrusion of hydrogen atoms into the steel sheet by adding Si, and the steel sheet itself is unlikely to be brittle against the invading hydrogen. It is important to keep the structure and components.

【0006】水素脆性防止の観点から鋼の組織や成分を
検討することについては、条鋼の分野では、例えば、特
開昭60−155644号公報に記載されているよう
に、マルテンサイト組織を400℃以上で焼戻し、Fe
−C系化合物を十分に析出させて防止する方法が知られ
ている。
In order to examine the structure and composition of steel from the viewpoint of preventing hydrogen embrittlement, in the field of strip steel, for example, as described in JP-A-60-155644, a martensitic structure is reduced to 400 ° C. Tempering, Fe
There is known a method of sufficiently precipitating and preventing a -C-based compound.

【0007】しかし、このような鋼は、プレス成形やロ
ール成形などの加工を行う薄鋼板とは異なり、加工性の
点では劣っている。また、上記したように、残留応力の
存在や強加工に伴う鋼板組織内でのボイドやクラックの
発生などにより水素脆化が発生し易くなると考えられる
点については考慮されていない。また、通常連続焼鈍法
で製造される超高強度鋼板は、比較的低いC、Mn量の
鋼を均熱処理後、比較的速い冷却速度でマルテンサイト
変態点以下まで冷却し、400℃以下で焼戻して製造さ
れるが、この製造方法は条鋼で知られている方法とは全
く異なる製造方法であり、条鋼の分野とは異なる対策が
必要である。
[0007] However, such a steel is inferior in workability, unlike a thin steel sheet subjected to processing such as press forming or roll forming. Further, as described above, no consideration is given to the point that hydrogen embrittlement is likely to occur due to the presence of residual stress or the occurrence of voids and cracks in the steel sheet structure due to heavy working. In addition, ultra-high-strength steel sheets usually manufactured by the continuous annealing method, after soaking a steel having a relatively low C and Mn content, are cooled at a relatively high cooling rate to below the martensitic transformation point and tempered at 400 ° C or less. However, this manufacturing method is completely different from the method known for bar steel, and requires different measures from the field of bar steel.

【0008】本発明は、上記従来技術の問題点を解決し
て、引張強度が980〜1670N/mm2の超高強度
で耐水素脆化特性の優れた加工用超高強度薄鋼板並びに
その製造方法を提供することを目的としている。
The present invention solves the above-mentioned problems of the prior art, and provides an ultra-high-strength steel sheet for processing having an ultra-high strength of 980 to 1670 N / mm 2 and excellent hydrogen embrittlement resistance and its production. It is intended to provide a way.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、C:0.05〜0.17%、
Si:0.2〜1.5%、Mn:1.7〜3.5%、P
≦0.030%、S≦0.010%、Al:0.025
〜0.120%、N≦0.0100%、Ti:3.43
×N〜0.150%を含み、必要に応じて更にMo≦
1.0%を含む、残部が鉄及び不可避的不純物からなる
ことを特徴とする引張強度が980〜1670N/mm2
で耐水素脆化特性の優れた超高強度冷延鋼板を要旨とし
ている。
Means for Solving the Problems As means for solving the above problems, the present invention provides C: 0.05 to 0.17%,
Si: 0.2 to 1.5%, Mn: 1.7 to 3.5%, P
≦ 0.030%, S ≦ 0.010%, Al: 0.025
0.10.120%, N ≦ 0.0100%, Ti: 3.43
× N-0.150%, and if necessary, Mo ≦
A tensile strength of 980 to 1670 N / mm 2 , characterized in that the balance comprises iron and unavoidable impurities, including 1.0%.
The gist is an ultra-high strength cold rolled steel sheet having excellent hydrogen embrittlement resistance.

【0010】また、その製造方法は、上記の化学成分を
有する鋼スラブを常法により熱間圧延し、酸洗後、冷間
圧延して連続焼鈍するに際して、Ac3点〜1000℃で
均熱した後、徐冷し、Ar3点−30℃以上の温度から7
0℃/sec以上の冷却速度でMs点以下まで冷却して、マ
ルテンサイト変態を生ぜしめ、以後、再加熱し若しくは
そのまま、150〜300℃で1〜15minの焼戻し処
理を行うことを特徴としている。
[0010] In addition, the method of producing the steel sheet is such that when a steel slab having the above-mentioned chemical composition is hot-rolled by a conventional method, pickled, cold-rolled and continuously annealed, the steel is soaked at an Ac temperature of 3 to 1000 ° C. After that, the temperature was gradually cooled, and the temperature was changed from Ar 3 points −30 ° C. or more to 7 °
It is characterized by cooling to a Ms point or less at a cooling rate of 0 ° C./sec or more to cause martensitic transformation, and thereafter reheating or performing a tempering treatment at 150 to 300 ° C. for 1 to 15 minutes. .

【0011】[0011]

【作用】以下に本発明を更に詳細に説明する。まず、本
発明における鋼の化学成分の限定理由について説明す
る。
The present invention will be described below in more detail. First, the reasons for limiting the chemical components of steel in the present invention will be described.

【0012】C: Cはマルテンサイトを生成し高強度化には必須の元素で
あり、980N/mm2以上の強度を得るためには0.0
5%以上が必要であるが、多くなると水素脆性を生じ易
くなる。本発明では特に、必要な超高強度を得る際に加
工性及びスポット溶接性を考慮して上限を0.17%と
するが、980〜1670N/mm2の引張強度を得るに
はこのC量で十分である。
C: C is an element which forms martensite and is indispensable for increasing the strength. In order to obtain a strength of 980 N / mm 2 or more, C is required.
5% or more is necessary, but when it is increased, hydrogen embrittlement is likely to occur. In the present invention, in particular, the upper limit is set to 0.17% in consideration of workability and spot weldability when obtaining the required ultra-high strength. However, in order to obtain a tensile strength of 980 to 1670 N / mm 2 , the amount of C Is enough.

【0013】Si:Siは延性を劣化させることなく鋼を
強化するために有効な元素であり、本発明では0.2%
以上を添加する。しかし、1.5%を超えるとその効果
が飽和するのみならず、冷間圧延での圧延機の負荷が大
きくなるなどの問題があるため、1.5%以下に規定す
る。
Si: Si is an element effective for strengthening steel without deteriorating ductility, and is 0.2% in the present invention.
Add the above. However, when the content exceeds 1.5%, not only the effect is saturated, but also there is a problem that the load of the rolling mill in the cold rolling becomes large, so that the content is specified to 1.5% or less.

【0014】Mn:Mnは鋼の焼入れ性を高める元素で、
連続焼鈍設備で安定してマルテンサイト組織を得るため
には1.7%以上が必要である。しかし、3.5%を超え
るとその効果が飽和するのみならず、偏析が大きくな
り、組織が不均一となって加工性が低下するため、3.
5%を上限とする。
Mn: Mn is an element that enhances the hardenability of steel.
In order to obtain a martensitic structure stably with the continuous annealing equipment, 1.7% or more is required. However, when the content exceeds 3.5%, not only the effect is saturated, but also segregation increases, the structure becomes non-uniform, and the workability deteriorates.
The upper limit is 5%.

【0015】P:Pは鋼を強化し延性を高めるために有
効な元素であるが、粒界に偏析し易く脆化が起こり易く
なるため、0.030%以下とする。
P: P is an effective element for strengthening the steel and increasing the ductility. However, P is set to 0.030% or less because it is liable to segregate at the grain boundaries and easily become brittle.

【0016】S:Sは介在物を形成して曲げ加工性など
を劣化させるため、0.010%以下に抑制する。
S: Since S forms inclusions and deteriorates bending workability and the like, S is suppressed to 0.010% or less.

【0017】Al:Alは脱酸のために0.025%以上
を添加するが、表面性状の観点から、その上限を0.1
20%と規定する。
Al: Al is added in an amount of 0.025% or more for deoxidation. From the viewpoint of surface properties, the upper limit is 0.1.
Defined as 20%.

【0018】N:Nは特に添加しなくても製鋼時に大気
中から侵入する。このNは鋼中に固溶状態で存在すると
著しく脆化を促進する。そこで、本発明ではTiの添加
によって析出物としてNを無害化する。しかし、Nが
0.0100%を超えると、添加する必要のあるTi量が
増大し、コストアップになるのみならず加工性が劣化す
るので、0.0100%以下に抑制する。
N: N enters from the atmosphere at the time of steel making without any particular addition. When N is present in a solid solution state in steel, it significantly promotes embrittlement. Therefore, in the present invention, N is rendered harmless as a precipitate by adding Ti. However, if N exceeds 0.0100%, the amount of Ti that needs to be added increases, which not only increases the cost but also deteriorates the workability.

【0019】Ti:一方、TiはNの析出固定を目的とす
るため、少なくともNの当量(3.43×N)以上の添加
を必要とするが、あまりにも多すぎると鋼の強化に必要
なCと析出物を形成して軟質化するので、その上限を
0.150%と規定する。
Ti: On the other hand, since Ti aims to precipitate and fix N, it is necessary to add at least the equivalent of N (3.43 × N) or more. If it is too much, it is necessary to strengthen the steel. Since C forms a precipitate and softens, the upper limit is defined as 0.150%.

【0020】Mo:Moは鋼の焼入れ性を高め連続焼鈍設
備で安定してマルテンサイトを得るために有効な元素で
あるだけでなく、粒界を強化し水素脆性の発生を抑制す
る効果があり、必要に応じて添加する。添加する場合、
1.0%を超えると効果が飽和するため、1.0%以下と
する。
Mo: Mo is not only an element effective for improving the hardenability of steel and stably obtaining martensite in continuous annealing equipment, but also has the effect of strengthening grain boundaries and suppressing the occurrence of hydrogen embrittlement. , If necessary. When adding
If the content exceeds 1.0%, the effect is saturated, so the content is set to 1.0% or less.

【0021】次に本発明の製造方法について述べる。Next, the manufacturing method of the present invention will be described.

【0022】上記化学成分を有する鋼スラブは、常法に
より連続鋳造や造塊法によって製造され、熱間圧延が行
われるが、これらの製造条件は特に制限されない。な
お、熱間圧延するに際しては、所定の圧延温度以上の温
度に加熱する必要があるが、鋳造後一旦常温付近まで冷
却後、再加熱しても、或いは高温のまま加熱炉に挿入し
ても、また鋳造後直接圧延しても特に問題はない。熱間
圧延はAr3変態点以上の温度で仕上げればよく、その後
の冷却条件、巻取温度についても特に限定されず、通常
の方法どおり、例えば、冷却は平均で30〜100℃/
secの範囲で、巻取りは750〜400℃で行えばよ
い。
The steel slab having the above-mentioned chemical components is manufactured by a conventional method by continuous casting or an ingot-making method and is subjected to hot rolling, but the manufacturing conditions are not particularly limited. In hot rolling, it is necessary to heat to a temperature equal to or higher than a predetermined rolling temperature, but after casting, once cooled to around normal temperature, re-heated, or inserted into a heating furnace at a high temperature. Also, there is no particular problem even if rolling is performed directly after casting. The hot rolling may be finished at a temperature equal to or higher than the Ar 3 transformation point, and the cooling conditions and the winding temperature thereafter are not particularly limited. For example, cooling is performed at an average of 30 to 100 ° C. as usual.
The winding may be performed at 750 to 400 ° C. within the range of sec.

【0023】熱間圧延後は、酸洗し、冷間圧延を行う
が、冷間圧延率は例えば25〜70%程度でよい。次い
で連続焼鈍を施し、所定の強度の鋼板とするが、連続焼
鈍は以下の条件に規定する。
After hot rolling, pickling and cold rolling are performed. The cold rolling rate may be, for example, about 25 to 70%. Next, continuous annealing is performed to obtain a steel sheet having a predetermined strength. The continuous annealing is defined under the following conditions.

【0024】連続焼鈍の均熱はAc3変態点以上1000
℃以下で行なう必要がある。Ac3変態点未満の温度では
均熱過程でフェライト組織が生成し、強度の確保が困難
になる。フェライト組織の存在は水素脆性の観点からは
有利であるが、均熱過程で化学成分に応じて所定量のフ
ェライト生成を制御するのは現実には困難なため、後述
するように冷却過程で生成させる方が容易である。一
方、1000℃を超える温度で加熱してもオーステナイ
ト単相組織であれば特に問題はないが、いたずらに高温
に加熱しても結晶粒径が大きくなり、コストアップにも
なるので、1000℃を上限とする。
The soaking in continuous annealing is 1000 or more at the transformation point of Ac 3
It is necessary to carry out at a temperature of not more than ° C. At a temperature lower than the Ac 3 transformation point, a ferrite structure is formed during the soaking process, and it is difficult to secure strength. Although the existence of a ferrite structure is advantageous from the viewpoint of hydrogen embrittlement, it is actually difficult to control the formation of a predetermined amount of ferrite in accordance with the chemical composition in the soaking process. It is easier to do it. On the other hand, even if it is heated at a temperature exceeding 1000 ° C., there is no particular problem as long as it is an austenitic single phase structure, but if it is unnecessarily heated to a high temperature, the crystal grain size becomes large and the cost increases. Upper limit.

【0025】均熱後は、急冷開始温度まで徐冷し、次い
で急冷を開始する。徐冷の速度は例えば1〜30℃/se
cでよい。急冷開始温度は、基本的にはオーステナイト
単相の組織の状態から行ない、マルテンサイトを生成さ
せ所定の強度を確保し得る温度である。したがって、急
冷開始温度はAr3変態点以上であることが望ましいが、
水素脆性の観点からはフェライト組織が存在した方が有
利であるので、強度が確保できる範囲であれば、少量の
フェライト組織は生成しても何ら問題はない。したがっ
て、急冷開始温度はAr3変態点−30℃までとする。な
お、ここでいう少量のフェライト組織とは面積率で20
%以下とする。また、急速冷却の速度は70℃/sec以
上であれば低温変態生成物が得られるのでこれを下限と
する。なお、冷却方法については、水焼入れ、水冷ロー
ル冷却、気水冷却ガスジェット冷却などその方法は問わ
ない。
After soaking, the temperature is gradually cooled to a rapid cooling start temperature, and then rapid cooling is started. The slow cooling rate is, for example, 1 to 30 ° C./se.
c is fine. The quenching start temperature is basically a temperature at which austenite single phase structure is formed and martensite is formed to secure a predetermined strength. Therefore, the quenching start temperature is desirably equal to or higher than the Ar 3 transformation point.
From the viewpoint of hydrogen embrittlement, it is more advantageous to have a ferrite structure, so that there is no problem even if a small amount of ferrite structure is formed as long as the strength can be ensured. Therefore, the quenching start temperature is limited to the Ar 3 transformation point of −30 ° C. Note that the small amount of ferrite structure here is 20% in area ratio.
% Or less. If the rapid cooling rate is 70 ° C./sec or more, a low-temperature transformation product can be obtained, and therefore the lower limit is set. The cooling method is not limited, such as water quenching, water-cooled roll cooling, and gas-water cooled gas jet cooling.

【0026】急冷はマルテンサイト変態開始温度(Ms
点)以下まで行い、その後は150〜300℃で1〜1
5minの焼戻し処理を行うことで、所定の強度に調整す
る。この際、急冷終了温度が焼戻し処理温度範囲内であ
ればその温度でそのまま恒温保持すればよく、焼戻し処
理温度より低い場合は再加熱すればよい。焼戻し処理時
間は1min以上でないとその効果が殆ど認められず、一
方、15minより長いと設備が巨大化するのでこれを上
限と規定する。焼戻し処理温度は150℃より低いとそ
の効果が殆どないので、これを下限とする。一方、30
0℃超えでは比較的粗大な炭化物が析出し、大気及び塩
水噴霧などの腐食環境下での水素脆化試験で短時間で粒
界破壊を発生することが本発明者らは確認している。そ
の理由は必ずしも明確ではないが、成形加工時に炭化物
と母材との界面でボイドが生成し、そこに水素原子が集
まり、応力集中を高め、亀裂発生に至るのではないかと
考えられる。したがって、焼戻し処理温度の上限は30
0℃とする。
The quenching is carried out at the martensitic transformation start temperature (Ms).
Point) to the following, and then at 150 to 300 ° C for 1 to 1
The strength is adjusted to a predetermined value by performing a tempering process for 5 minutes. At this time, if the quenching end temperature is within the tempering treatment temperature range, the temperature may be kept constant at that temperature, and if lower than the tempering treatment temperature, reheating may be performed. If the tempering treatment time is not more than 1 min, the effect is hardly recognized. On the other hand, if the tempering treatment time is longer than 15 min, the equipment becomes huge, so this is defined as the upper limit. If the tempering temperature is lower than 150 ° C., there is almost no effect, so this is the lower limit. On the other hand, 30
The present inventors have confirmed that if the temperature exceeds 0 ° C., relatively coarse carbides are precipitated, and a grain boundary fracture occurs in a short time in a hydrogen embrittlement test under a corrosive environment such as air and salt water spray. Although the reason is not clear, it is considered that voids are formed at the interface between the carbide and the base material during the forming process, and hydrogen atoms gather there to increase stress concentration and lead to crack generation. Therefore, the upper limit of the tempering temperature is 30.
0 ° C.

【0027】焼鈍後は、必要に応じて、形状を良好にす
るために調質圧延を施してもよく、また亜鉛などのめっ
き処理を行なっても何ら問題はない。
After annealing, if necessary, temper rolling may be performed to improve the shape, and plating with zinc or the like does not cause any problem.

【0028】次に本発明の実施例を示す。Next, an embodiment of the present invention will be described.

【0029】[0029]

【実施例】【Example】

【0030】表1に示す化学成分の鋼を1200℃に加
熱した後、板厚3.0mmに熱間圧延し、480℃で巻取
った。酸洗後、板厚1.8mmまで冷間圧延し、表2に示
す条件でそれぞれ連続焼鈍を行った。0.3%の調質圧
延を施した後、機械的特性及び耐水素脆化特性を調査し
た。その結果を表3に示す。
After heating steel having the chemical composition shown in Table 1 to 1200 ° C., it was hot-rolled to a thickness of 3.0 mm and wound at 480 ° C. After pickling, the sheet was cold-rolled to a sheet thickness of 1.8 mm and continuously annealed under the conditions shown in Table 2. After subjecting to a 0.3% temper rolling, the mechanical properties and the hydrogen embrittlement resistance were investigated. Table 3 shows the results.

【0031】耐水素脆化特性については、30mm×15
0mmの短冊試験片を曲げ半径9RでU曲げ成形し、板間
が2R(=18mm)になるまで絞め込み、表面に膜厚20
μmの電着塗装を施した後、曲げ頂部にカッタでスリッ
トを入れ、0.5mol/リットルの硫酸+0.0001mol
/リットルのKSCN溶液中でポテンショスタットを用
いて、自然電位より600mV卑である電位を与え、割
れが発生する時間により評価した。
Regarding the hydrogen embrittlement resistance, 30 mm × 15
A 0 mm strip test piece is U-bend-formed at a bending radius of 9R, and squeezed until the distance between the plates becomes 2R (= 18 mm).
After applying an electrodeposition coating of μm, a slit was made at the top of the bend with a cutter, and 0.5 mol / l sulfuric acid + 0.0001 mol
Using a potentiostat in a 1 / liter KSCN solution, a potential 600 mV lower than the natural potential was applied, and the evaluation was made based on the time when cracks occurred.

【0032】表3より明らかなように、本発明例(N
o.1、2、3、6、8)は980〜1670N/mm
2の引張強度と良好な加工性を示しており、割れ発生ま
での時間も1000sec以上と長く耐水素脆化特性が
優れている。これらに対し、比較例(No.4、5、
7)は、焼鈍条件が本発明範囲から外れており、また、
比較例(No.10、12)は化学成分が本発明範囲か
ら外れており、それぞれフェライト面積率が高くなりす
ぎ、所定の強度が確保できていない。一方、比較例(N
o.9、11)は化学成分が本発明範囲から外れてお
り、割れ発生までの時間が300〜500secと短
く、本発明例との耐水素脆化特性の差は明らかである。
As is clear from Table 3, the present invention example (N
o. 1, 2, 3, 6, 8) are 980 to 1670 N / mm
It shows a tensile strength of 2 and good workability, and the time to crack generation is as long as 1000 sec or more, and the hydrogen embrittlement resistance is excellent. On the other hand, the comparative examples (Nos. 4, 5,
7) is that the annealing conditions are out of the range of the present invention, and
In Comparative Examples (Nos. 10 and 12), the chemical components are out of the range of the present invention, and the area ratios of the ferrites are too high, and the predetermined strength cannot be secured. On the other hand, the comparative example (N
o. In Nos. 9 and 11), the chemical components are out of the range of the present invention, the time until crack generation is as short as 300 to 500 sec, and the difference in hydrogen embrittlement resistance from the present invention example is apparent.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】以上詳述したように、本発明による冷延
鋼板は、自動車のバンパーやドアインパクトビームなど
の強度部材として最適な980〜1670N/mm2の引
張強度と加工性を有し、また使用時に問題となる水素脆
化に対して優れた耐性を有しており、上記の強度部材、
補強部材などの軽量化に優れた効果を発揮する。
As described above in detail, the cold-rolled steel sheet according to the present invention has a tensile strength and workability of 980 to 1670 N / mm 2 which are optimal as strength members such as bumpers and door impact beams for automobiles. In addition, it has excellent resistance to hydrogen embrittlement that becomes a problem during use, and the above strength member,
Excellent effect for weight reduction of reinforcing members.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−131327(JP,A) 特開 昭63−38520(JP,A) 特開 平6−220576(JP,A) 特開 平7−90488(JP,A) 特開 昭51−88420(JP,A) 特開 平4−99227(JP,A) 長滝ら,超高強度冷延鋼鈑の耐遅れ破 壊特性に及ぼす強度と鋼成分の影響,材 料とプロセス,日本,1993年3月2日, Vol.6,No.3,P.668 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/02 - 8/04 C21D 9/46 - 9/48 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-131327 (JP, A) JP-A-63-38520 (JP, A) JP-A-6-220576 (JP, A) JP-A-7- 90488 (JP, A) JP-A-51-88420 (JP, A) JP-A-4-99227 (JP, A) Nagataki et al. Strength and steel composition affecting delayed fracture resistance of ultra-high strength cold rolled steel sheet , Materials and Processes, Japan, March 2, 1993, Vol. 6, No. 3, p. 668 (58) Fields surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/02-8/04 C21D 9/46-9/48

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、C:0.05
〜0.17%、Si:0.2〜1.5%、Mn:1.7
〜3.5%、P≦0.030%、S≦0.010%、A
l:0.025〜0.120%、N≦0.0100%、
Ti:3.43×N〜0.150%を含み、残部が鉄及
び不可避的不純物からなることを特徴とする引張強度が
980〜1670N/mm2で耐水素脆化特性の優れた超
高強度冷延鋼板。
C. 0.05 in% by weight (hereinafter the same).
0.17%, Si: 0.2-1.5%, Mn: 1.7
33.5%, P ≦ 0.030%, S ≦ 0.010%, A
l: 0.025 to 0.120%, N ≦ 0.0100%,
Ti: contains 3.43 × N to 0.150%, with the balance being iron and unavoidable impurities, and having a tensile strength of 980 to 1670 N / mm 2 and an ultra-high strength excellent in hydrogen embrittlement resistance. Cold rolled steel sheet.
【請求項2】 更にMo≦1.0%を含む請求項1に記
載の冷延鋼板。
2. The cold-rolled steel sheet according to claim 1, further comprising Mo ≦ 1.0%.
【請求項3】 請求項1又は2に記載の化学成分を有す
る鋼スラブを常法により熱間圧延し、酸洗後、冷間圧延
して連続焼鈍するに際して、Ac3点〜1000℃で均
熱した後、徐冷し、Ar3点−30℃以上の温度から7
0℃/sec以上の冷却速度でMs点以下まで冷却して、
マルテンサイト変態を生ぜしめ、以後、再加熱し若しく
はそのまま、150〜300℃で1〜15minの焼戻し
処理を行うことを特徴とする引張強度が980〜167
0N/mm2で耐水素脆化特性の優れた超高強度冷延鋼板
の製造方法。
3. A hot rolling by a conventional method a steel slab having a chemical composition according to claim 1 or 2, pickled, when continuous annealing and cold rolling, soaking in Ac 3 point to 1000 ° C. After heating, it is gradually cooled, and is cooled from a temperature of Ar 3 point −30 ° C. or more to 7 ° C.
Cooling to below the Ms point at a cooling rate of 0 ° C / sec or more,
A martensitic transformation is caused, and thereafter, reheating or tempering at 150 to 300 ° C. for 1 to 15 minutes is performed, and the tensile strength is 980 to 167.
A method for producing an ultra-high strength cold rolled steel sheet excellent in hydrogen embrittlement resistance at 0 N / mm 2 .
JP27315193A 1993-10-05 1993-10-05 Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same Expired - Lifetime JP3330207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27315193A JP3330207B2 (en) 1993-10-05 1993-10-05 Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27315193A JP3330207B2 (en) 1993-10-05 1993-10-05 Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07102341A JPH07102341A (en) 1995-04-18
JP3330207B2 true JP3330207B2 (en) 2002-09-30

Family

ID=17523827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27315193A Expired - Lifetime JP3330207B2 (en) 1993-10-05 1993-10-05 Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3330207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102341B2 (en) * 1988-02-06 1995-11-08 株式会社タイガーカワシマ Sorting control method in vertical grain sorter
CN100410409C (en) * 2004-12-28 2008-08-13 株式会社神户制钢所 High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
JP4646134B2 (en) * 2006-01-26 2011-03-09 株式会社神戸製鋼所 Evaluation method of delayed fracture resistance of high strength steel sheet
JP5291568B2 (en) * 2009-08-06 2013-09-18 株式会社神戸製鋼所 Evaluation method of delayed fracture resistance of steel sheet molded products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
長滝ら,超高強度冷延鋼鈑の耐遅れ破壊特性に及ぼす強度と鋼成分の影響,材料とプロセス,日本,1993年3月2日,Vol.6,No.3,P.668

Also Published As

Publication number Publication date
JPH07102341A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
JP2826058B2 (en) Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method
US20120018058A1 (en) Process for manufacturing a cold rolled trip steel product
CN113840934B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
JP6760520B1 (en) High yield ratio High strength electrogalvanized steel sheet and its manufacturing method
JP3514276B2 (en) Ultra-high strength steel sheet excellent in delayed fracture resistance and method of manufacturing the same
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
WO2002022904A1 (en) Super high tensile cold-rolled steel plate and method for production thereof
CN112955575B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP3448777B2 (en) Ultra-high strength cold rolled steel sheet excellent in delayed fracture resistance and method of manufacturing the same
JP3406094B2 (en) Method for producing ultra-high strength steel sheet with excellent hydrogen embrittlement resistance
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JP3330207B2 (en) Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
JPH07197186A (en) Hot-rolled steel sheet having >=980n/mm2 strength represented by excellent delayed fracture resistant characteristic and its production
JP3286047B2 (en) Manufacturing method of ultra-high strength steel sheet for processing with good hydrogen embrittlement resistance
JP3247909B2 (en) High-strength hot-dip galvanized steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP2003268489A (en) Steel plate for heat treatment and its production method
KR20140086273A (en) High strength galvannealed steel sheet having excellent formability and coating adhesion and method for manufacturing the same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

EXPY Cancellation because of completion of term