JP4646134B2 - Evaluation method of delayed fracture resistance of high strength steel sheet - Google Patents

Evaluation method of delayed fracture resistance of high strength steel sheet Download PDF

Info

Publication number
JP4646134B2
JP4646134B2 JP2006017550A JP2006017550A JP4646134B2 JP 4646134 B2 JP4646134 B2 JP 4646134B2 JP 2006017550 A JP2006017550 A JP 2006017550A JP 2006017550 A JP2006017550 A JP 2006017550A JP 4646134 B2 JP4646134 B2 JP 4646134B2
Authority
JP
Japan
Prior art keywords
steel sheet
delayed fracture
strength steel
test piece
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006017550A
Other languages
Japanese (ja)
Other versions
JP2007198895A (en
Inventor
潤一郎 衣笠
文雄 湯瀬
公一 杉本
陽一 向井
伸二 上妻
宏 赤水
康二 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006017550A priority Critical patent/JP4646134B2/en
Publication of JP2007198895A publication Critical patent/JP2007198895A/en
Application granted granted Critical
Publication of JP4646134B2 publication Critical patent/JP4646134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、高強度鋼板の耐遅れ破壊性の評価方法に関し、自動車のプレス部品などとして用いられる、引張強度1180MPa以上の高強度鋼板の耐遅れ破壊性の評価方法に関するものである。   The present invention relates to a method for evaluating delayed fracture resistance of a high-strength steel sheet, and relates to a method for evaluating delayed fracture resistance of a high-strength steel sheet having a tensile strength of 1180 MPa or more, which is used as a press part of an automobile.

本発明は、前記高強度鋼板として、特に、これまでにない高い伸びの領域で加工されてプレス部品化され、かつ、これまでは加工限界から使用されなかったプレス部品に適用されるTRIP鋼板(フェライト、ベイナイト、残留オーステナイトの混合組織からなる、変態誘起塑性鋼板)の耐遅れ破壊性評価に適用されて好ましい。   The present invention is a TRIP steel sheet applied to a pressed part that has been processed as a high-strength steel sheet, in particular, into a press part that has been processed in an unprecedented region of high elongation, and that has not been used from the processing limit so far. It is preferably applied to the evaluation of delayed fracture resistance of a transformation-induced plastic steel sheet comprising a mixed structure of ferrite, bainite and retained austenite.

自動車鋼板の軽量化に伴う燃費の軽減を図り、衝突時の安全性確保を主な背景として、高強度鋼板の需要は益々増大しており、最近では、排ガス低減による地球環境保全の観点からもその需要が一層高まっている。   Demand for high-strength steel sheets is increasing more and more with the main background of ensuring safety in the event of a collision while reducing the fuel consumption associated with the reduction in weight of automobile steel sheets. The demand is further increasing.

しかしながら、高強度鋼板といえども成形性に対する要求は強く、夫々の用途に応じ、適切な成形性を兼ね備えていることが求められている。特に複雑形状のプレス成形加工が施される自動車パネルやフレーム用途においては、張り出し成形性(延性=伸び)と、伸びフランジ性[穴拡げ性(局部的な延性)]の両方を兼備した高強度鋼板の提供が切望されている。   However, even for a high-strength steel sheet, there is a strong demand for formability, and it is required to have an appropriate formability according to each application. Especially for automotive panels and frames that are subjected to press molding with complex shapes, high strength that combines both stretch formability (ductility = elongation) and stretch flangeability [hole expandability (local ductility)]. There is a strong demand for steel sheets.

この様な優れた強度と延性を兼ね備えている要求特性を具備しつつ、自動車の衝撃安全性及び軽量化を目的として開発された高強度高延性鋼板の一つとして、TRIP鋼板(TRansformation Induced Plasticity;変態誘起塑性鋼板)が挙げられる。このTRIP鋼板は、組織中に残留オーステナイト(γR)を生成させた、フェライト、ベイナイト、残留オーステナイトの混合組織からなる。そして、マルテンサイト変態開始温度(Ms点)以上の温度で加工変形させると、応力によって残留オーステナイト(γR )がマルテンサイトに誘起変態して大きな伸びが得られる鋼板である。   As one of high-strength and high-ductility steel sheets developed for the purpose of reducing the impact safety and weight of automobiles while having the required properties that combine such excellent strength and ductility, TRIP steel sheets (Transformation Induced Plasticity; Transformation induced plastic steel sheet). This TRIP steel sheet is composed of a mixed structure of ferrite, bainite, and retained austenite in which retained austenite (γR) is generated in the structure. When the steel is deformed at a temperature equal to or higher than the martensite transformation start temperature (Ms point), the retained austenite (γR) is induced and transformed into martensite by stress, thereby obtaining a large elongation.

例えば、ポリゴナル・フェライトを母相とし、残留オーステナイトを含むTRIP型複合組織鋼(TPF鋼)、焼戻マルテンサイトを母相とし、残留オーステナイトを含むTRIP型焼戻マルテンサイト鋼(TAM鋼)、ベイニティック・フェライトを母相とし、残留オーステナイトを含むTRIP型ベイナイト鋼(TBF鋼)等が知られている。   For example, TRIP type composite structure steel (TPF steel) containing polygonal ferrite as a parent phase and containing retained austenite, TRIP type tempered martensite steel (TAM steel) containing tempered martensite as a parent phase and containing retained austenite, bay TRIP bainite steel (TBF steel) containing nitrite ferrite as a parent phase and containing retained austenite is known.

一方、鋼板の高強度化に伴い、水素脆化起因の遅れ破壊が懸念される。これに対して、従来から高強度化が進められてきたボルト、PC鋼線やラインパイプといった部材分野では、非特許文献1や特許文献1にあるように様々な水素脆化評価法が存在する。   On the other hand, there is a concern about delayed fracture due to hydrogen embrittlement as the strength of steel sheets increases. On the other hand, various hydrogen embrittlement evaluation methods exist in non-patent literature 1 and patent literature 1 in the field of members such as bolts, PC steel wires, and line pipes that have been improved in strength. .

例えば、特許文献1では、引張試験片に張力を加えて、電解質を含む水溶液の中に対極と共に配置して、負の電位を付与し、前記水溶液の電解にて発生する水素により、前記引張試験片が水素脆化するまでの時間で、鋼材の耐遅れ破壊性を評価している。   For example, in Patent Document 1, tension is applied to a tensile test piece, and the tensile test piece is arranged with a counter electrode in an aqueous solution containing an electrolyte, a negative potential is applied, and the tensile test is performed by hydrogen generated by electrolysis of the aqueous solution. The time until a piece becomes hydrogen embrittled, and the delayed fracture resistance of a steel material is evaluated.

しかし、特許文献2でも記載されている通り、薄鋼板の分野における水素脆化評価法と、前記ボルト、PC鋼線やラインパイプといった部材での水素脆化評価法とは異なる。即ち、ボルトなどの部材は、製品ままで使用されるため、評価に際し加工度や残留応力の影響、端面状態の影響などを考慮する必要が無い。これに対し、薄鋼板ではプレスなどの加工を行ってから部材として使用される。したがって、薄鋼板の水素脆化評価法では、この加工度の影響や、残留応力の影響も加味した評価を行わなければ正確な評価とはならない。   However, as described in Patent Document 2, the hydrogen embrittlement evaluation method in the field of thin steel sheets is different from the hydrogen embrittlement evaluation method for members such as bolts, PC steel wires, and line pipes. That is, since a member such as a bolt is used as it is, it is not necessary to consider the influence of the processing degree, the residual stress, the influence of the end face state, etc. in the evaluation. On the other hand, thin steel plates are used as members after processing such as pressing. Therefore, in the hydrogen embrittlement evaluation method for a thin steel sheet, an accurate evaluation is not possible unless an evaluation is performed in consideration of the influence of the degree of work and the influence of residual stress.

さらに、使用時には溶接や組み付けなどによる応力や、実際に使用に際し部材として受け持つ応力があることから、薄鋼板では使用時の付加応力を一義的に決定する事は不可能であるので、付加応力レベルを自由に変えられる評価法でなくてはならない。   Furthermore, since there is stress due to welding or assembly during use, or stress that is actually taken as a member during use, it is impossible to uniquely determine additional stress during use with thin steel sheets. It must be an evaluation method that can be changed freely.

このため、薄鋼板の分野でも、いまだ確立されていないものの、種々の水素脆化評価法が提案されている。例えば、前記特許文献2では、薄鋼板における使用環境を考慮し、付加応力・残留応力・端面影響・曲げRの影響などによる水素脆化特性を正当に評価できる装置および方法を提案している。具体的に、特許文献2では、薄鋼板試験片をU形状に予め曲げ加工後、ボルトにて応力付加し、酸性溶液中で電解チャージすることにより、高強度鋼板の耐水素脆化特性評価を行なっている。   For this reason, various hydrogen embrittlement evaluation methods have been proposed in the field of thin steel sheets, though not yet established. For example, Patent Document 2 proposes an apparatus and method that can legitimately evaluate hydrogen embrittlement characteristics due to applied stress, residual stress, end face effect, bending R, and the like in consideration of the use environment in thin steel sheets. Specifically, in Patent Document 2, a thin steel plate test piece is previously bent into a U shape, stressed with a bolt, and subjected to electrolytic charging in an acidic solution, thereby evaluating hydrogen embrittlement resistance of a high strength steel plate. Is doing.

また、特許文献3では、高張力鋼板の遅れ破壊特性を評価する方法として、長手方向両端部付近に穴を開けた短冊状試験片をU型に曲げ、この曲げ加工後に加工部表面に歪ゲージを貼り、その後、前記穴にボルトを通し、該歪ゲージで歪を観察しながら、このボルトを締めることにより所望の応力を付加し、ついで該試験片に希硫酸中で負の電圧を付与し、該歪ゲージの値に変化が現れるまでの時間を測定することが提案されている。
「遅れ破壊」(日本工業新聞社、1989年8月31日発行) 特開2004−309197号公報(全文) 特開2005−134152号公報(全文) 特開平7−146225号公報(全文)
In Patent Document 3, as a method for evaluating delayed fracture characteristics of a high-tensile steel plate, a strip-shaped test piece having holes in the vicinity of both ends in the longitudinal direction is bent into a U shape, and a strain gauge is formed on the surface of the processed portion after this bending process. Then, a bolt is passed through the hole, and while observing the strain with the strain gauge, a desired stress is applied by tightening the bolt, and then a negative voltage is applied to the test piece in dilute sulfuric acid. It has been proposed to measure the time until a change appears in the value of the strain gauge.
"Delayed destruction" (Nippon Kogyo Shimbun, issued August 31, 1989) JP 2004-309197 A (full text) Japanese Patent Laying-Open No. 2005-134152 (full text) Japanese Patent Laid-Open No. 7-146225 (full text)

これらの技術では、通常の高強度鋼板や高張力鋼板の遅れ破壊特性を評価することはできる。しかしながら、引張強度1180MPa以上の変態誘起塑性を特徴とする前記TRIP鋼板などの高強度鋼板の耐遅れ破壊特性(水素脆化特性)の評価方法としては十分とは言えない。   These techniques can evaluate the delayed fracture characteristics of normal high-strength steel sheets and high-tensile steel sheets. However, it cannot be said to be sufficient as a method for evaluating delayed fracture resistance (hydrogen embrittlement characteristics) of high-strength steel sheets such as the TRIP steel sheets characterized by transformation-induced plasticity with a tensile strength of 1180 MPa or more.

TRIP鋼板は、γRによる優れた強度・延性のバランスを維持しつつ、しかも、伸びフランジ性(穴広げ性)等の成形性にも優れている。このために、通常の高強度鋼板や高張力鋼板に比して、これまでにない高い伸びの領域で加工されてプレス部品化され、かつ、これまでは加工限界から使用されなかったプレス部品に適用される。   The TRIP steel sheet is excellent in formability such as stretch flangeability (hole expanding property) while maintaining an excellent balance of strength and ductility by γR. For this reason, compared to ordinary high-strength steel sheets and high-tensile steel sheets, it is processed into a press part that has been processed in a region of high elongation that has never been seen before. Applied.

したがって、前記した、ボルトなどの部材での水素脆化評価法と、薄鋼板の分野における水素脆化評価法との違いの通り、TRIP鋼板は、前記した、通常の高強度鋼板や高張力鋼板の水素脆化評価法では、正確な評価はできない。言い換えると、TRIP鋼板の水素脆化評価法では、TRIP鋼板の加工度の影響や、残留応力の影響も加味した評価を行わなければ、正確な評価とはならない。   Therefore, as described above, the difference between the hydrogen embrittlement evaluation method in the members such as bolts and the hydrogen embrittlement evaluation method in the field of thin steel plates, the TRIP steel plates are the above-described normal high-strength steel plates and high-tensile steel plates. In the hydrogen embrittlement evaluation method, accurate evaluation cannot be performed. In other words, in the hydrogen embrittlement evaluation method for TRIP steel sheets, the evaluation is not accurate unless evaluation is performed in consideration of the effects of the degree of processing of the TRIP steel sheets and the effects of residual stress.

本発明はこのような事情に鑑みてなされたものであって、その目的は、特にTRIP鋼板など、これまでにない高い伸びの領域で加工されてプレス部品化され、かつ、これまでは加工限界から使用されなかったプレス部品に適用される、高強度鋼板の耐遅れ破壊性の評価方法(水素脆化評価法)を提供しようとするものである。   The present invention has been made in view of such circumstances, and the object thereof is processed into a press part by processing an unprecedented high elongation region such as a TRIP steel sheet, and has been processed so far. Therefore, an object of the present invention is to provide a delayed fracture resistance evaluation method (hydrogen embrittlement evaluation method) for high-strength steel sheets, which is applied to pressed parts that have not been used.

上記目的を達成するための本発明の要旨は、引張強度1180MPa以上の高強度鋼板の耐遅れ破壊性の評価方法であって、前記高強度鋼板の試験片に対して、この高強度鋼板の伸び量に対して20〜80%の塑性歪みを伴う引張加工を加えた後に、曲げ部の半径が5〜30mmとなるようなU曲げ加工か、曲げ部の角度が30〜90度となるようなV曲げ加工のいずれかを加え、更に、この曲げ加工を加えた試験片の両辺部分に対して500〜2000MPaの圧縮応力を付加した状態で、電解溶液に陰極として浸漬し、陰極及び陽極に定電流を通電して水素チャージを行い、陰極試験片に割れが生じるまでの時間で高強度鋼板の耐遅れ破壊性を評価することである。   The gist of the present invention for achieving the above object is a method for evaluating delayed fracture resistance of a high-strength steel sheet having a tensile strength of 1180 MPa or more, and the elongation of the high-strength steel sheet relative to a test piece of the high-strength steel sheet. After applying a tensile process with a plastic strain of 20 to 80% of the amount, a U-bending process in which the radius of the bent part is 5 to 30 mm, or an angle of the bent part is 30 to 90 degrees One of the V-bending processes is added, and further, a compressive stress of 500 to 2000 MPa is applied to both sides of the test piece to which the bending process is applied. This is to evaluate the delayed fracture resistance of the high-strength steel sheet by the time until the cathode test piece is cracked by energizing the current and charging the hydrogen.

このような要旨の本発明は、引張強度1180MPa以上の高強度鋼板で、特に加工性の優れたTRIP鋼板(前記高強度鋼板が、フェライト、ベイナイト、残留オーステナイトの混合組織からなる、変態誘起塑性鋼板)に適用されて好ましい。   The present invention as described above is a high-strength steel plate having a tensile strength of 1180 MPa or more, particularly a TRIP steel plate with excellent workability (the transformation-induced plastic steel plate, wherein the high-strength steel plate is composed of a mixed structure of ferrite, bainite, and retained austenite. ) Is preferred.

また、本発明評価方法は、前記陰極試験片に割れが生じるまでの時間が、下記遅れ破壊パラメータ式で500〜10000の範囲を満足することが好ましい。遅れ破壊パラメータ式=〔(前記高強度鋼板の引張強度:MPa)/1180〕×(締め付けによる付加応力)×〔100/(100−前記塑性歪み:%)〕×〔(前記高強度鋼板の板厚:mm)/(前記陰極試験片の曲げ部の半径:mm)もしくは(前記陰極試験片の曲げ部の角度:度)1/2〕×〔1/(前記陰極試験片にわれが生じるまでの時間:hr)〕×100 In the evaluation method of the present invention, it is preferable that the time until a crack occurs in the cathode test piece satisfies the range of 500 to 10,000 in the following delayed fracture parameter formula. Delayed fracture parameter formula = [(tensile strength of the high-strength steel plate: MPa) / 1180] × (additional stress due to tightening) × [100 / (100−plastic strain:%)] × [(plate of the high-strength steel plate) (Thickness: mm) / (radius of the bent portion of the cathode test piece: mm) or (angle of the bent portion of the cathode test piece: degree) 1/2 ] × [1 / (until the cathode test piece is cracked) Time: hr)] × 100

本発明評価方法では、評価対象とする高強度鋼板の試験片に対して上記特定の引張加工を加えた上で、更に、特定の曲げ加工を、予め加える。これによって、TRIP鋼板など、優れた強度・延性バランスや伸びフランジ性を有するために、これまでにない高い伸びの領域で加工されてプレス部品化され、かつ、これまでは加工限界から使用されなかったプレス部品に適用される高強度鋼板の、これらプレス加工度の影響や、残留応力の影響も加味した、耐遅れ破壊性の評価を行うことができる。   In this invention evaluation method, after adding the said specific tension process with respect to the test piece of the high strength steel plate made into evaluation object, a specific bending process is further added previously. Due to this, in order to have excellent strength / ductility balance and stretch flangeability, such as TRIP steel sheet, it is processed into a press part that has never been used in the region of high elongation, and has not been used from the processing limit until now. It is possible to evaluate delayed fracture resistance of high-strength steel sheets applied to pressed parts, taking into account the effects of these press working degrees and the effects of residual stress.

したがって、特にTRIP鋼板など、これまでにない高い伸びの領域で加工されてプレス部品化され、かつ、これまでは加工限界から使用されなかったプレス部品に適用される、高強度鋼板の正確な耐遅れ破壊性の評価方法(水素脆化評価法)を提供できる。   Therefore, the precise durability of high-strength steel sheets, such as TRIP steel sheets, applied to pressed parts that have been processed in a region of high elongation that has never been seen before, and that have been used so far due to processing limitations. A delayed fracture property evaluation method (hydrogen embrittlement evaluation method) can be provided.

本発明の耐遅れ破壊性の評価方法の概要は以下に示す通りである。
本発明評価方法では、前記した通り、評価対象とする高強度鋼板の試験片に対して、高強度鋼板のプレス加工度の影響や、残留応力の影響も加味するために、上記特定の引張加工を加えた上で、更に、特定の曲げ加工を予め加える。
The outline of the method for evaluating delayed fracture resistance of the present invention is as follows.
In the evaluation method of the present invention, as described above, in order to take into account the influence of the press working degree of the high-strength steel sheet and the residual stress on the test piece of the high-strength steel sheet to be evaluated, In addition, a specific bending process is added in advance.

(引張加工)
先ず、評価対象となる高強度鋼板の試験片に対して、この高強度鋼板の伸び量に対して20〜80%の塑性歪みを伴う引張加工を加える。この高強度鋼板の伸び量に対する20〜80%の塑性歪みは、高強度鋼板の実際の絞りや張出のプレス成形における加工度に対応するためのものである。
(Tensile processing)
First, with respect to the test piece of the high-strength steel plate to be evaluated, a tensile process with a plastic strain of 20 to 80% is applied to the amount of elongation of the high-strength steel plate. The plastic strain of 20 to 80% with respect to the amount of elongation of the high-strength steel plate corresponds to the degree of processing in the actual drawing or overhang press forming of the high-strength steel plate.

この引張加工の際の塑性歪みが高強度鋼板の伸び量に対して20%未満では、前記した、これまでにない高い伸びの領域で加工されてプレス部品化される際や、これまでは加工限界から使用されなかったプレス部品に加工される際に、高強度鋼板に付加される塑性歪みに比して小さ過ぎる。このため、耐遅れ破壊性の評価条件が、これらの絞りや張出のプレス成形における加工度に対応できなくなるため、耐遅れ破壊性の評価方法の信頼性や再現性、あるいは実際の耐遅れ破壊性との相関性が低下する。   If the plastic strain at the time of tensile processing is less than 20% of the elongation of the high-strength steel sheet, it will be processed when it is processed into a press part by being processed in the above-described region of high elongation, or until now. When processed into a pressed part that has not been used from the limit, it is too small compared to the plastic strain applied to the high-strength steel sheet. For this reason, the evaluation conditions for delayed fracture resistance cannot correspond to the degree of processing in these press forming and overhang press forming, so the reliability and reproducibility of the delayed fracture resistance evaluation method, or the actual delayed fracture resistance The correlation with gender decreases.

一方、これらの絞りや張出のプレス成形における塑性歪みは、実績的に、高強度鋼板の伸び量に対して80%を越えて大きくなることは無い。したがって、試験片の引張加工における塑性歪みを、高強度鋼板の伸び量に対して80%を越えて大きくする必要は無い。   On the other hand, the plastic strain in the press forming of these drawing and overhanging does not increase beyond 80% with respect to the amount of elongation of the high-strength steel sheet. Therefore, it is not necessary to increase the plastic strain in the tensile processing of the test piece beyond 80% with respect to the elongation amount of the high-strength steel plate.

図1に、試験片1の引張加工を示す。図1において、試験片1に対し、その長手方向(圧延方向)に引張加工Fを施し、塑性歪みを与える。試験片1の形状は長方形とし、その大きさは特に問わないが、例えば、長手方向(圧延方向)の長さを100mm、幅を30mmとする。   FIG. 1 shows the tensile processing of the test piece 1. In FIG. 1, the test piece 1 is subjected to tensile processing F in the longitudinal direction (rolling direction) to give plastic strain. The shape of the test piece 1 is rectangular, and the size is not particularly limited. For example, the length in the longitudinal direction (rolling direction) is 100 mm and the width is 30 mm.

図2に、試験片1への後述する圧縮応力付加のための、ボルト装着用の孔2、2を設けた(孔開け加工した)態様を示す。貫通孔2、2は、試験片1の両端部1b、1bから9mmの部分に、Φ12mmで設けている。   FIG. 2 shows a mode in which bolt mounting holes 2 and 2 for applying a compressive stress to be described later to the test piece 1 are provided (perforated). The through-holes 2 and 2 are provided in a portion of 9 mm from both ends 1b and 1b of the test piece 1 with a diameter of 12 mm.

(曲げ加工)
次ぎに、試験片に対し、上記特定の引張加工を加えた後に、曲げ部の半径が5〜30mmとなるようなU曲げ加工か、曲げ部の角度が30〜90度となるようなV曲げ加工のいずれかを加える。この曲げ加工も、高強度鋼板のプレス加工度、例えば、自動車アウタパネルにおける、絞りや張出のプレス成形後の、実際のヘム加工などの曲げ加工に対応するためのものである。
(Bending)
Next, after applying the above-mentioned specific tensile process to the test piece, the U-bending process in which the radius of the bent part becomes 5 to 30 mm, or the V-bend in which the angle of the bent part becomes 30 to 90 degrees. Add any of the processing. This bending process is also to cope with a bending process such as an actual hemming process after a press forming of a high strength steel sheet, for example, a drawing or an overhang press forming in an automobile outer panel.

図3(a)にV曲げ加工、図3(b)にU曲げ加工した、試験片1の態様を各々示す。図3(a)においてθがV曲げ部の角度、図3(b)においてRがU曲げ部の半径である。   The aspect of the test piece 1 which carried out the V bending process in Fig.3 (a) and U-bending process in FIG.3 (b) is each shown. In FIG. 3A, θ is the angle of the V-bend portion, and in FIG. 3B, R is the radius of the U-bend portion.

この曲げ加工の際の、曲げ部の半径Rが30mmを越えるU曲げ加工や、曲げ部の角度θが90度を越えるV曲げ加工では、絞りや張出のプレス成形後の、ヘム加工などの曲げ加工の際に、高強度鋼板に付加される曲げ加工に比して小さ過ぎる。このため、成形された鋼板が水素脆化しにくい緩やかな条件となって、耐遅れ破壊性の評価条件が、これらの実際のプレス加工度(曲げ加工度)に対応できなくなるため、耐遅れ破壊性の評価方法の信頼性や再現性、あるいは実際の耐遅れ破壊性との相関性が低下する。   In this bending process, in the U bending process in which the radius R of the bent part exceeds 30 mm and the V bending process in which the angle θ of the bent part exceeds 90 degrees, the hem process or the like after the press forming of the drawing or the overhang is performed. In bending, it is too small as compared with bending applied to a high-strength steel plate. For this reason, the formed steel sheet is mildly resistant to hydrogen embrittlement, and the evaluation conditions for delayed fracture resistance cannot correspond to these actual press working degrees (bending degree). This reduces the reliability and reproducibility of the evaluation method, or the correlation with the actual delayed fracture resistance.

一方、これら絞りや張出のプレス成形後の、ヘム加工などの曲げ加工の塑性歪みは、実績的に、曲げ部の半径が5mm未満のU曲げ加工や、曲げ部の角度が30度未満のV曲げ加工となることは無い。したがって、試験片の上記各曲げ加工における、U曲げ部の半径Rを5mm未満、V曲げ部の角度θを30度未満とする必要は無い。   On the other hand, the plastic strain of bending processing such as hem processing after the press forming of squeezing or overhanging has proven that U-bending processing where the radius of the bending portion is less than 5 mm or the angle of the bending portion is less than 30 degrees. There is no V bending. Therefore, it is not necessary to set the radius R of the U-bend portion to less than 5 mm and the angle θ of the V-bend portion to less than 30 degrees in each of the bending processes of the test piece.

(圧縮応力付加)
更に、これら引張加工および曲げ加工を加えた試験片の、曲げ部とは反対側の2つの両辺部分に対して、500〜2000MPaの圧縮応力を付加(負荷と同じ意味)する。これによって、これら引張加工および曲げ加工による残留応力の影響(曲げ加工後のスプリングバックの影響など)を加味できる。また、プレス成形品としての使用状態における付加応力の影響を加味できる(付加荷重やボルト締め付け力など)。
(Compressive stress added)
Further, a compressive stress of 500 to 2000 MPa is applied (same meaning as a load) to the two side portions opposite to the bent portion of the test piece subjected to the tensile processing and bending processing. As a result, the influence of residual stress (such as the effect of spring back after bending) due to these tensile and bending processes can be taken into account. Moreover, the influence of the additional stress in the use state as a press-molded product can be taken into account (additional load, bolt tightening force, etc.).

図4(a)にU曲げ加工、図3(b)にV曲げ加工した試験片1に対し、圧縮応力付加のためのボルトを装着した態様を各々示す。図4(a)、(b)において、3が、試験片1の各辺1a、1aに設けた貫通孔2、2を貫通させて装着したボルト3、3を示す。   FIG. 4 (a) shows a state in which a bolt for applying compressive stress is attached to the test piece 1 subjected to U bending and FIG. 3 (b) is subjected to V bending. 4 (a) and 4 (b), reference numeral 3 denotes bolts 3 and 3 that are attached by penetrating through holes 2 and 2 provided in the sides 1a and 1a of the test piece 1. FIG.

ここで、ボルト3、3の試験片1の各辺1a、1aに対する締めつけ力(圧縮応力)は、500〜2000MPaの範囲とする。締めつけ力が500MPa未満では、これら引張加工および曲げ加工による残留応力の影響を加味できない。また、プレス成形品としての使用状態における付加応力の影響を加味できない。一方、これら残留応力や付加応力は、実績的には2000MPaを越えることは無いので、ボルト3、3の試験片1の各辺1a、1aに対する響締めつけ力を2000MPaを越えて大きくする必要はない。   Here, the fastening force (compressive stress) with respect to each side 1a, 1a of the test piece 1 of the bolts 3 and 3 is set to a range of 500 to 2000 MPa. If the tightening force is less than 500 MPa, the influence of residual stress due to these tensile processing and bending processing cannot be taken into consideration. Moreover, the influence of the additional stress in the use condition as a press-molded product cannot be considered. On the other hand, since these residual stresses and additional stresses do not actually exceed 2000 MPa, it is not necessary to increase the sound tightening force for each side 1a, 1a of the test piece 1 of the bolts 3, 3 beyond 2000 MPa. .

(試験片浸漬)
この状態で、図5に示すように、前記U曲げ加工あるいはV曲げ加工した試験片1を、試験槽13内の電解溶液19に陰極11として浸漬する。なお、陰極11は、支持棒17に架け渡されたリード線10に接続され、陰極11への電流の印加が可能なクリップ18により挟持されて支持され、電解溶液19に浸漬される。そして、この陰極11及び陽極12に、電源(電流制御装置)14より定電流を通電して水素チャージを行い、陰極試験片11に割れが生じるまでの時間で、高強度鋼板の耐遅れ破壊性を評価する。陰極試験片11の割れ発生は、陰極試験片11の曲げ部に歪みゲージ(割れ感知装置)16を取り付け、割れ発生をこの歪み量の変化として検知しても良い。15は歪みゲージ16の記録計、10は各リード線である。
(Test specimen immersion)
In this state, as shown in FIG. 5, the U-bending or V-bending test piece 1 is immersed in the electrolytic solution 19 in the test tank 13 as the cathode 11. The cathode 11 is connected to a lead wire 10 that is stretched over a support rod 17, is sandwiched and supported by a clip 18 that can apply a current to the cathode 11, and is immersed in an electrolytic solution 19. The cathode 11 and the anode 12 are charged with hydrogen by supplying a constant current from a power source (current control device) 14, and the delayed fracture resistance of the high-strength steel plate is the time until the cathode test piece 11 is cracked. To evaluate. The occurrence of cracks in the cathode test piece 11 may be detected by attaching a strain gauge (break detection device) 16 to the bent portion of the cathode test piece 11 and detecting the occurrence of cracks as a change in the amount of strain. 15 is a recorder of the strain gauge 16 and 10 is each lead wire.

電源16は、ポテンションスタット等の定電流発生装置を使用することができる。また、陽極は白金とする。陽極が白金であると好ましい理由は、陽極を白金とする事で電解液からの腐食が抑えられる上に、優先的に試験片に水素がチャージされるからである。   The power source 16 can use a constant current generator such as a potentiostat. The anode is platinum. The reason why the anode is preferably platinum is that the anode is made of platinum, so that corrosion from the electrolyte is suppressed and hydrogen is preferentially charged to the test piece.

(電流密度)
陰極にチャージする定電流の電流密度は、0.1〜0.01mA/ mm2 とすることが好ましい。電流密度が0.1mA/ mm2 を越えた場合には、鋼中へ一度に大量の水素が吸蔵されるために、鋼種間の陰極試験片1の割れ発生 (破断) 時間の差が把握しにくくなる。一方、電流密度が0.0 1mA/ mm2 未満では、鋼中へ吸蔵される水素が少ないために、評価に多大の時間を要する。
(Current density)
The current density of the constant current charged to the cathode is preferably 0.1 to 0.01 mA / mm 2 . When the current density exceeds 0.1 mA / mm 2 , a large amount of hydrogen is occluded into the steel at one time. It becomes difficult. On the other hand, when the current density is less than 0.01 mA / mm 2 , since much hydrogen is occluded in the steel, much time is required for evaluation.

(電解溶液)
電解溶液13は、定電流の付与によって、鋼中へ水素を効果的に吸蔵させるために、pHが6以下の水溶液であることが好ましい。pHが6を超えると効率的に水素が鋼材に侵入することができず、適正な評価ができないので、電解溶液13のpHは6以下とする。
(Electrolytic solution)
The electrolytic solution 13 is preferably an aqueous solution having a pH of 6 or less in order to effectively occlude hydrogen into the steel by applying a constant current. If the pH exceeds 6, hydrogen cannot efficiently enter the steel material, and proper evaluation cannot be performed. Therefore, the pH of the electrolytic solution 13 is set to 6 or less.

電解溶液として、好ましくは、鋼中への水素吸蔵の触媒作用があり、水素を鋼中へチャージをしやすい溶液として知られている、チオシアン酸塩(チオシアン酸カリウム、チオシアン酸アンモニウムなど)の水溶液を使用する。この水溶液のpHは約5.5程度である。したがって、この水溶液に硫酸を添加して、上記pH範囲の酸性電解溶液とする。この酸性電解溶液におけるチオシアン酸塩の濃度は、高過ぎると、陰極試験片1の腐食による溶出の可能性があり誤差となるため、測定の再現性を持たせるために、1M以下、より好ましくは0.5M以下とする。   As an electrolytic solution, preferably, an aqueous solution of thiocyanate (potassium thiocyanate, ammonium thiocyanate, etc.) known as a solution that has a catalytic action of storing hydrogen in steel and easily charges hydrogen into steel. Is used. The pH of this aqueous solution is about 5.5. Therefore, sulfuric acid is added to this aqueous solution to obtain an acidic electrolytic solution in the above pH range. If the concentration of thiocyanate in the acidic electrolytic solution is too high, there is a possibility of elution due to corrosion of the cathode test piece 1 and an error occurs. Therefore, in order to have reproducibility of measurement, 1M or less, more preferably 0.5M or less.

なお、陰極試験片1の破断時の鋼中水素量の測定はガスクロマトグラフィーにて測定できる。このように破断時の鋼中水素量を測定することで、ある付加応力での鋼の破断に至る限界水素量を求めることができ、水素に起因する鋼種間の耐遅れ破壊性(耐水素脆化特性)を比較することができる。   In addition, the measurement of the amount of hydrogen in steel when the cathode test piece 1 is broken can be measured by gas chromatography. By measuring the amount of hydrogen in the steel at the time of fracture in this way, it is possible to determine the critical hydrogen amount that leads to the fracture of the steel at a certain applied stress, and the delayed fracture resistance between the steel types due to hydrogen (hydrogen brittleness resistance). Can be compared.

(遅れ破壊パラメータ式)
本発明評価方法は、評価方法として重要な再現性や所要時間の最適化のために、前記陰極試験片に割れが生じるまでの時間が、下記遅れ破壊パラメータ式で500〜10000の範囲を満足することが好ましい。言い換えると、この遅れ破壊パラメータ式が500〜10000の範囲を満足するように、前記陰極試験片の各加工条件(引張加工、曲げ加工、圧縮応力)を選択することが好ましい。
(Delayed fracture parameter formula)
In the evaluation method of the present invention, the time until cracking occurs in the cathode test piece satisfies the range of 500 to 10,000 in the following delayed fracture parameter formula in order to optimize reproducibility and time required as an evaluation method. It is preferable. In other words, it is preferable to select each processing condition (tensile processing, bending processing, compressive stress) of the cathode test piece so that this delayed fracture parameter formula satisfies the range of 500 to 10,000.

この遅れ破壊パラメータ式は、〔(前記高強度鋼板の引張強度:MPa)/1180〕×(締め付けによる付加応力)×〔100/(100−前記塑性歪み:%)〕×〔(前記高強度鋼板の板厚:mm)/(前記陰極試験片の曲げ部の半径:mm)もしくは(前記陰極試験片の曲げ部の角度:度)1/2 〕×〔1/(前記陰極試験片にわれが生じるまでの時間:hr)〕×100で表される。
この遅れ破壊パラメータ式において、〔(前記高強度鋼板の引張強度:MPa)/1180〕の項は強度のパラメータを表す。
また、(締め付けによる付加応力)×〔100/(100−前記塑性歪み:%)〕×〔(前記高強度鋼板の板厚:mm)/(前記陰極試験片の曲げ部の半径:mm)もしくは(前記陰極試験片の曲げ部の角度:度)1/2 〕の項は前記陰極試験片の加工条件のパラメータを表す。
更に、〔1/(前記陰極試験片に割れが生じるまでの時間:hr)〕の項は割れ時間のパラメータを表す。
The delayed fracture parameter formula is [(tensile strength of the high-strength steel plate: MPa) / 1180] × (additional stress due to tightening) × [100 / (100−plastic strain:%)] × [(the high-strength steel plate Plate thickness: mm) / (radius of the bent portion of the cathode test piece: mm) or (angle of the bent portion of the cathode test piece: degree) 1/2 ] × [1 / (the crack in the cathode test piece Time until generation: hr)] × 100.
In this delayed fracture parameter equation, the term [(tensile strength of the high-strength steel plate: MPa) / 1180] represents a strength parameter.
Also, (additional stress due to tightening) × [100 / (100−plastic strain:%)] × [(plate thickness of the high-strength steel plate: mm) / (radius of the bent portion of the cathode test piece: mm) or The term “(angle of the bent portion of the cathode test piece: degree) 1/2 ] represents a parameter of processing conditions of the cathode test piece.
Furthermore, the term [1 / (time until crack occurs in the cathode test piece: hr)] represents a parameter of crack time.

前記陰極試験片に割れが生じるまでの時間が、上記遅れ破壊パラメータ式で500未満では、前記陰極試験片の加工条件によっては、試験開始から100時間以内には前記陰極試験片に割れが発生せず、時間がかかり過ぎて、評価方法として適さない場合がある。また、前記陰極試験片に割れが生じるまでの時間が、上記遅れ破壊パラメータ式で10000を越えた場合、前記陰極試験片の加工条件が厳し過ぎて、前記陰極試験片に割れが生じるまでの時間が全ての例で早まるため、却って、遅れ破壊の優劣の判断ができにくくなる。   When the time until the cathode test piece is cracked is less than 500 in the delayed fracture parameter formula, the cathode test piece may crack within 100 hours depending on the processing conditions of the cathode test piece. In some cases, it takes too much time and is not suitable as an evaluation method. In addition, when the time until the cathode test piece is cracked exceeds 10,000 in the delayed fracture parameter formula, the time until the cathode test piece is cracked due to excessive processing conditions of the cathode test piece. However, it is difficult to judge the superiority or inferiority of delayed destruction.

(TRIP鋼板)
ここで、本発明が主たる評価対象とする、引張強度1180MPa以上の高強度鋼板であって、優れた強度・延性バランスや伸びフランジ性を有するTRIP鋼板について、以下に説明する。
(TRIP steel sheet)
Here, the TRIP steel plate which is a high strength steel plate having a tensile strength of 1180 MPa or more and having an excellent strength / ductility balance and stretch flangeability, which is a main evaluation object of the present invention, will be described below.

本発明が主たる評価対象とするTRIP鋼板(冷延鋼板)は、前提として、1180MPa以上の高強度において、優れた伸びと伸びフランジ性を確保するために、鋼組織を、前記TPF鋼と称される、鋼組織占積率で、ポリゴナルフェライトが80%以上、残留オーステナイトが1〜15%、残部がベイナイトおよび/またはマルテンサイトからなる、TRIP型複合組織とすることが好ましい。 また、鋼組織を、好ましくは、前記TAM鋼と称される、鋼組織占積率で、焼戻マルテンサイトが80%以上、残留オーステナイトが1〜15%、残部がベイナイトおよび/またはマルテンサイトからなる、TRIP型複合組織としても良い。
更にまた、鋼組織を、好ましくは、前記TBF鋼と称される、鋼組織占積率で、ベイニティックフェライトが80%以上、残留オーステナイトが1〜15%、残部がベイナイトおよび/またはマルテンサイトからなる、TRIP型複合組織としても良い。
The TRIP steel sheet (cold-rolled steel sheet), which is the main evaluation object of the present invention, is based on the premise that the steel structure is referred to as the TPF steel in order to ensure excellent elongation and stretch flangeability at a high strength of 1180 MPa or more. It is preferable to use a TRIP type composite structure with a steel structure space factor of 80% or more of polygonal ferrite, 1 to 15% of retained austenite, and the balance of bainite and / or martensite. Further, the steel structure is preferably a steel structure space factor referred to as the TAM steel, tempered martensite is 80% or more, retained austenite is 1 to 15%, and the balance is bainite and / or martensite. It is good also as a TRIP type composite organization.
Furthermore, the steel structure is preferably a steel structure space factor called the TBF steel, bainitic ferrite is 80% or more, residual austenite is 1 to 15%, and the balance is bainite and / or martensite. It is good also as a TRIP type composite organization which consists of.

上記TRIP鋼板組織における主相であるポリゴナルフェライトが、占積率で80%未満では、ポリゴナルフェライトによる、1180MPa以上の高強度における伸びと伸びフランジ性確保の効果が発揮されない。したがって、伸びと、伸びフランジ性の確保のために、ポリゴナルフェライトの全組織に対する占積率は80%以上とすることが好ましい。同様に、1180MPa以上の高強度における伸びと伸びフランジ性を確保する理由で、前記TAM鋼においても、主相である焼鈍マルテンサイトの全組織に対する占積率が80%以上、また前記TBF鋼においても、主相であるベイニティックフェライトの全組織に対する占積率が80%以上とすることが好ましい。   If the polygonal ferrite, which is the main phase in the TRIP steel sheet structure, has a space factor of less than 80%, the effect of securing elongation and stretch flangeability at a high strength of 1180 MPa or more by the polygonal ferrite is not exhibited. Therefore, in order to ensure elongation and stretch flangeability, the space factor of the polygonal ferrite with respect to the entire structure is preferably 80% or more. Similarly, in the TAM steel, the space factor for the entire structure of the annealed martensite, which is the main phase, is 80% or more, and in the TBF steel, for the reason of securing the elongation at a high strength of 1180 MPa or more and the stretch flangeability. However, it is preferable that the space factor of the main phase of bainitic ferrite with respect to the entire structure is 80% or more.

ポリゴナルフェライトは、多角体の塊状フェライトであるが、転位密度がないか或いは極めて少ない下部組織を有し、転位密度の高い下部組織(ラス状組織は、有していても有していなくても良い)を持った板状のフェライトであるベイニティック・フェライトや、細かいサブグレイン等の下部組織を持った準ポリゴナル・フェライト組織とも異なっている(日本鉄鋼協会 基礎研究会 発行『鋼のベイナイト写真集−1』参照)。ポリゴナルフェライトは、上記特徴によって、ベイニティック・フェライトや、準ポリゴナル・フェライトとは、走査型電子顕微鏡(SEM)観察によって、明瞭に区別される。即ち、ポリゴナル・フェライトは、SEM組織写真において黒色であり、多角形の形状で、内部に、残留オーステナイトやマルテンサイトを含まない。一方、ベイニティック・フェライトは、SEM組織写真では濃灰色を示し、ベイニティック・フェライトと、ベイナイトや残留オーステナイトやマルテンサイトとを分離区別できない場合も多い。焼戻マルテンサイトはラスマルテンサイトを有し、ほぼ同じ結晶学的方位関係を持つマルテンサイトラス、それが集まってブロックを、またいくつかのブロックが集まってパケットを形成している。ベイニティックフェライトは板状のフェライトであり、転位密度が高い下部組織を意味し、転位がないか、あるいは極めて少ない下部組織を有するポリゴナルフェライトとは明瞭に区別される。   Polygonal ferrite is a polyhedral massive ferrite, but has a substructure with little or no dislocation density, and a substructure with a high dislocation density (a lath structure does not have to have It is also different from bainitic ferrite, which is a plate-like ferrite with a fine structure, and quasi-polygonal ferrite structure with a substructure such as fine subgrains. See Photobook-1). Polygonal ferrite is clearly distinguished from bainitic ferrite and quasi-polygonal ferrite by scanning electron microscope (SEM) observation due to the above characteristics. That is, polygonal ferrite is black in the SEM structure photograph, has a polygonal shape, and does not contain retained austenite or martensite inside. On the other hand, bainitic ferrite shows a dark gray color in SEM structural photographs, and bainitic ferrite and bainite, retained austenite, and martensite cannot often be separated and distinguished. Tempered martensite has lath martensite, martensite lath having almost the same crystallographic orientation relationship, which gathers to form a block, and several blocks gather to form a packet. Bainitic ferrite is a plate-like ferrite and means a substructure having a high dislocation density, and is clearly distinguished from polygonal ferrite having no substructure or having a very small substructure.

ポリゴナルフェライトや、その他のベイナイト、マルテンサイトなどの変態組織の占積率は、鋼板の1/4の厚さ部分のSEM観察(倍率4000倍)により組織観察したのち、市販の画像ソフト[汎用画像処理ソフト「Image−Pro Plus」(Media,Cybernetics社製)]などを用いた画像解析によって、面積率として占積率を測定する。   The space factor of transformation structure such as polygonal ferrite, other bainite, martensite, etc. is observed by SEM observation (magnification 4000 times) of 1/4 thickness part of the steel sheet, and then commercially available image software [general purpose The space factor is measured as an area ratio by image analysis using image processing software “Image-Pro Plus” (Media, manufactured by Cybernetics).

(残留オーステナイト)
残留γは、TRIP(変態誘起塑性)効果を発揮するための本質的な組織であり、伸び(延性)の向上に有用である。この様な作用を有効に発揮させるには、残留γを全組織に対する占積率で1%以上とする。一方、15%を超えて存在すると局部変形能や伸びフランジ性が劣化する。したがって、残留γは、比較的少ないレベルでの一定の占積率とし、1〜15%とする。この占積率(%)は、公知の飽和磁化測定装置および飽和磁化測定法により、体積率(体積分率)として、一定の形状を有する測定対象試料の飽和磁化量(I)、および測定対象試料と実質的に同一成分であってγRが体積率で0%である場合の飽和磁化量(Is)を実測または計算により求め、γR(体積%)=(1−I/Is)×100の式に基づき、算出するものである。
(Residual austenite)
Residual γ is an essential structure for exerting the TRIP (transformation-induced plasticity) effect, and is useful for improving elongation (ductility). In order to effectively exhibit such an action, the residual γ is set to 1% or more as a space factor with respect to the entire tissue. On the other hand, if it exceeds 15%, local deformability and stretch flangeability deteriorate. Therefore, the residual γ is a constant space factor at a relatively small level, which is 1 to 15%. This space factor (%) is determined by using a known saturation magnetization measuring apparatus and saturation magnetization measuring method as the volume fraction (volume fraction), the saturation magnetization amount (I) of the sample to be measured having a certain shape, and the measurement subject. The saturation magnetization amount (Is) when the component is substantially the same as the sample and γR is 0% in volume ratio is obtained by actual measurement or calculation, and γR (volume%) = (1−I / Is) × 100 It is calculated based on the formula.

TRIP鋼板では、鋼組織において、上記ポリゴナルフェライト/もしくは焼戻マルテンサイト/もしくはベイニティックフェライトと残留オーステナイトとの占積率を満たせば、残部の組織に、ベイナイトおよび/またはマルテンサイトが含まれる複合組織であって良い。また、伸びフランジ性と伸びを確実に改善するために、この複合組織中の、残留オーステナイトとマルテンサイトとの第2相組織の内、粗大な塊状の第2相組織を少なくすることが好ましい。   In the TRIP steel sheet, the bainite and / or martensite is included in the remaining structure as long as the steel structure satisfies the above-mentioned polygonal ferrite / or tempered martensite / or bainitic ferrite and retained austenite. It may be a complex organization. In order to improve stretch flangeability and elongation without fail, it is preferable to reduce the coarse massive second phase structure of the second phase structure of retained austenite and martensite in the composite structure.

(TRIP鋼板成分)
次に、TRIP鋼板を構成する基本成分について説明する。以下、化学成分の単位はすべて質量%である。TRIP鋼板では、上記した組織と、伸びフランジ性と伸びなどの特性を保障するために、基本的には、C:0.05〜0.4%、Si:1.0〜3.0%、Mn:1.0〜3.5%を含有し、残部Feおよび不可避的不純物からなる冷延鋼板とすることが好ましい。なお、これら%は、全て質量%の意味である。
(TRIP steel plate component)
Next, basic components constituting the TRIP steel plate will be described. Hereinafter, all the units of chemical components are mass%. In the TRIP steel sheet, in order to ensure the above-described structure and properties such as stretch flangeability and elongation, basically, C: 0.05 to 0.4%, Si: 1.0 to 3.0%, It is preferable to make a cold-rolled steel sheet containing Mn: 1.0 to 3.5% and comprising the balance Fe and inevitable impurities. In addition, these% all mean the mass%.

また、上記成分塑性を前提に、TRIP鋼板の特性を損なわない範囲で、以下の許容成分を更に含有することができる。
Tiおよび/またはV、Zr、Wを合計で0.003〜1.0%、あるいはNb:0.1%以下(0%を含まない)(析出強化および組織微細化作用による高強度化効果狙い)。
Mo:1.0%以下(0%を含まない)、Ni:0.003〜1.5%、Cu:0.003〜1.0%、の一種または二種以上(鋼の強化、オーステナイト安定化、γRの生成寄与などの効果狙い)。
Ca:0.003%以下(0%を含まない)、REM:0.003%以下(0%を含まない)の一種または二種(鋼中の硫化物形態制御による加工性向上効果狙い)。
Moreover, on the assumption of the said component plasticity, the following allowable components can further be contained in the range which does not impair the characteristic of a TRIP steel plate.
Ti and / or V, Zr, W in total 0.003 to 1.0%, or Nb: 0.1% or less (not including 0%) (Aiming at high strength effect by precipitation strengthening and microstructure refining action) ).
One or more of Mo: 1.0% or less (excluding 0%), Ni: 0.003-1.5%, Cu: 0.003-1.0% (strengthening of steel, stable austenite And aim for effects such as contribution to generation of γR).
Ca: 0.003% or less (not including 0%), REM: 0.003% or less (not including 0%) or two types (aiming to improve workability by controlling sulfide morphology in steel).

Cは、鋼板の強度及びγRを確保する。Cの含有量が少ないと、鋼板中に存在するγRが極めて少なくなり、全組織に対する占積率で1%以上を確保できない。このため、γRによる所望のTRIP効果が充分得られない。一方、Cの含有量が多過ぎると、粗大な塊状の第2相の生成が多くなり、破壊の起点が増す為、伸びおよび伸びフランジ性が低下する。したがって、C含有量は0.05〜0.4%の範囲とする。また0.05%以下であると残留オーステナイト中の炭素濃度が低くなり、残留オーステナイトが不安定になり、良好な伸びを確保できない。   C ensures the strength and γR of the steel sheet. When the C content is small, γR present in the steel sheet is extremely small, and a space factor of 1% or more cannot be ensured with respect to the entire structure. For this reason, the desired TRIP effect by γR cannot be obtained sufficiently. On the other hand, when the content of C is too large, the generation of coarse massive second phase increases, and the starting point of fracture increases, so that elongation and stretch flangeability deteriorate. Therefore, the C content is in the range of 0.05 to 0.4%. If it is 0.05% or less, the carbon concentration in the retained austenite becomes low, the retained austenite becomes unstable, and good elongation cannot be secured.

SiはγRが分解して炭化物が生成するのを抑制する。また、固溶強化元素としても有用である。Siの含有量が少な過ぎると、γRが極めて少なくなり、全組織に対する占積率で1%以上を確保できない。このため、γRによる所望のTRIP効果が充分得られない。一方、Siの含有量が多くなり過ぎると、その効果は飽和し、却って、熱間脆性を起こして圧延中に割れやすくなる。したがって、Siの含有量は1.0〜3.0%の範囲とする。またこれ以上であると、熱間圧延でのスケール形成が顕著になり、またキズの除去にコストがかかってしまう。   Si suppresses the formation of carbides by decomposition of γR. It is also useful as a solid solution strengthening element. If the Si content is too small, γR becomes extremely small, and a space factor of 1% or more cannot be ensured for the entire structure. For this reason, the desired TRIP effect by γR cannot be obtained sufficiently. On the other hand, if the Si content is too large, the effect is saturated, and on the other hand, hot brittleness is caused and the steel is easily cracked during rolling. Therefore, the Si content is in the range of 1.0 to 3.0%. If it is more than this, scale formation by hot rolling becomes remarkable, and cost is required for removing scratches.

Mnはオーステナイトを安定化させ、γRの生成に寄与する。Mnの含有量が少な過ぎると、鋼板中に存在するγRが極めて少なくなり、全組織に対する占積率で1%以上を確保できない。このため、γRによる所望のTRIP効果が充分得られない。一方、Mnの含有量が多くなり過ぎると、上記効果が飽和し、また、鋳片の割れなどの悪影響が生じる。したがって、Mn含有量は1.0〜3.5%の範囲とする。   Mn stabilizes austenite and contributes to the generation of γR. If the Mn content is too small, γR present in the steel sheet becomes extremely small, and a space factor of 1% or more cannot be ensured with respect to the entire structure. For this reason, the desired TRIP effect by γR cannot be obtained sufficiently. On the other hand, when the content of Mn is too large, the above effect is saturated, and adverse effects such as cracking of the slab occur. Therefore, the Mn content is in the range of 1.0 to 3.5%.

これ以外の元素は不純物であり、その含有量は少なくすることが好ましい。
例えば、Pは粒界偏析を助長する元素であるため0.15%以下とすることが好ましい。Sは腐食環境下で水素吸蔵を助長する元素であるため0.02%以下とすることが好ましい。Nは0.02%以下とすることが好ましい。
Other elements are impurities, and it is preferable to reduce the content thereof.
For example, since P is an element that promotes grain boundary segregation, the content is preferably 0.15% or less. S is an element that promotes hydrogen storage in a corrosive environment, so 0.02% or less is preferable. N is preferably 0.02% or less.

(TRIP鋼板製造方法)
TRIP鋼板を製造する好ましい方法は、熱延工程としては、Ar3点以上で熱延終了後、平均冷却速度約30℃/sで冷却し、約500〜600℃の温度で巻取る等の条件を採用することが好ましい。また、冷延は約30〜70%の冷延率を施すことが推奨される。冷延鋼板の連続焼鈍条件は、鋼組織を、上記組織占積率の複合組織鋼板とするために、冷延鋼板をA3点以上のオーステナイト(γ)温度域に加熱した後、ベイナイト変態域へ平均冷却速度30℃/s以上のできるだけ速い冷却速度で、急冷する。このγ域からの過冷却によって、フェライト変態の核が増加し、通常の2相域(A1点〜A3点)での加熱と、その2相域からの冷却に比較して、フェライトの粒成長も均一に起こりやすく、第2相を微細にすることができる。
(TRIP steel sheet manufacturing method)
A preferable method for producing a TRIP steel sheet is that the hot rolling process is performed at a temperature of about 500 to 600 ° C. after cooling at an average cooling rate of about 30 ° C./s after completion of hot rolling at an Ar 3 point or higher. It is preferable to adopt. Further, it is recommended that the cold rolling is performed at a cold rolling rate of about 30 to 70%. The condition for continuous annealing of the cold-rolled steel sheet is that after the cold-rolled steel sheet is heated to an austenite (γ) temperature range of A3 or higher in order to make the steel structure a composite-structure steel sheet having the above-mentioned structure space factor, to the bainite transformation range. Rapid cooling is performed at a cooling rate as fast as possible with an average cooling rate of 30 ° C./s or more. This supercooling from the γ region increases the number of ferrite transformation nuclei. Compared to heating in the normal two-phase region (A1 to A3 points) and cooling from the two-phase region, ferrite grain growth Can easily occur uniformly, and the second phase can be made fine.

連続焼鈍された冷延鋼板は、表面処理されない冷延鋼板ままか、必要により、電気めっきや溶融めっき、あるいは化学的な表面処理や表面被覆、また各種塗装処理、塗装下地処理、有機皮膜処理等の表面処理されて、製品冷延鋼板とされる。   Cold-rolled steel sheet that has been continuously annealed remains as a cold-rolled steel sheet that is not surface-treated, or if necessary, electroplating, hot-dip plating, or chemical surface treatment or surface coating, as well as various coating treatments, paint substrate treatments, organic coating treatments, etc. The product is made into a product cold-rolled steel sheet.

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this example, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

表1に記載の化学成分組成と、表2に記載の組織および機械的な特性を有する各鋼板につき、本発明評価方法によって、耐遅れ破壊性を評価した。機械的な特性は、JIS5号引張試験片を用いて、引張強度(TS:MPa)、全伸び(T−EL:%)とを測定している。   With respect to each steel plate having the chemical composition shown in Table 1 and the structure and mechanical properties shown in Table 2, delayed fracture resistance was evaluated by the evaluation method of the present invention. Mechanical properties are measured using a JIS No. 5 tensile test piece for tensile strength (TS: MPa) and total elongation (T-EL:%).

これら各鋼板の耐遅れ破壊性は、予め評価し、表2に記載の通りの順位を付けておいた。即ち、耐遅れ破壊性は、Dの990MPa高強度鋼板が最も優れ(1位)、以下、Bの1191MPaTRIP鋼板(2位)、Aの1479MPaTRIP鋼板(3位)、Cの1510MPa高強度鋼板(4位)の順である。   The delayed fracture resistance of each of these steel plates was evaluated in advance and given the order shown in Table 2. That is, the delayed fracture resistance of D is 990 MPa high-strength steel plate (1st), and below, B 1191 MPa TRIP steel plate (2nd), A 1479 MPa TRIP steel plate (3rd), C 1510 MPa high-strength steel plate (4) Order).

これら各鋼板の耐遅れ破壊性の試験は、実プレス部品化を模擬して、各鋼板を絞り比2.0で周囲にフランジ部を有するカップ形状に絞るとともに、フランジ部の一部を180度曲げ加工して行なった。このカップ全体に塩水噴霧を継続して行い、180度曲げ加工された曲げ部に割れが生じるまでの時間の長さで順位を評価した。   The test of delayed fracture resistance of each steel sheet simulates actual press parts, narrows each steel sheet into a cup shape having a flange part at a drawing ratio of 2.0, and part of the flange part is 180 degrees. Bending was performed. The salt spray was continuously applied to the entire cup, and the rank was evaluated based on the length of time until a crack occurred in the bent portion bent 180 degrees.

なお、表1に記載の高強度鋼板は常法により製造している。また、TRIP鋼板は、転炉溶製および連続鋳造して得られたスラブを1200℃で加熱し、900℃で仕上圧延してから冷却し、500℃で巻取って3.2mm厚の熱延鋼板を得た。そして、この熱延鋼板を酸洗後に、冷間圧延により1.2mm厚の冷延鋼板を得た後、連続焼鈍ライン(CAL)にて、オーステナイト(γ)温度域の930℃に加熱して再結晶焼鈍し、焼鈍後、ベイナイト変態域へ平均冷却速度30℃/s以上のできるだけ速い冷却速度で急冷し製造した。   In addition, the high-strength steel plate described in Table 1 is manufactured by a conventional method. In addition, TRIP steel sheets are obtained by heating a slab obtained by converter melting and continuous casting at 1200 ° C., finish rolling at 900 ° C., cooling, winding at 500 ° C., and hot rolling with a thickness of 3.2 mm. A steel plate was obtained. And after pickling this hot-rolled steel sheet, after obtaining a cold-rolled steel sheet having a thickness of 1.2 mm by cold rolling, it is heated to 930 ° C. in the austenite (γ) temperature range in a continuous annealing line (CAL). After recrystallization annealing, after annealing, it was rapidly cooled to the bainite transformation region at an average cooling rate of 30 ° C./s or more as fast as possible.

(本発明評価方法)
本発明評価方法は、上記各鋼板から採取した試験片によって耐遅れ破壊性を評価した。即ち、表3〜5に示す各条件で、評価対象となる試験片に対して、前記図1で示した引張加工、前記図3(a)、(b)で示したU曲げ加工かV曲げ加工、前記図4(a)、(b)で示した応力付加の加工を予め行なった。各例における、これら加工条件の前記遅れ破壊パラメータ式値も表3〜5に示す。
(Evaluation method of the present invention)
In the evaluation method of the present invention, the delayed fracture resistance was evaluated by test pieces collected from the respective steel plates. That is, under each condition shown in Tables 3 to 5, the test piece to be evaluated is subjected to the tensile work shown in FIG. 1, the U-bending work shown in FIGS. 3 (a) and 3 (b), or the V-bending. Processing, stress application processing shown in FIGS. 4A and 4B was performed in advance. Tables 3 to 5 also show the delayed fracture parameter formula values of these machining conditions in each example.

この状態で、前記図5で示したように、各試験片を電解槽内の電解溶液に陰極として浸漬し、白金を陽極として、0.1mA/ mm2 の電流密度の定電流を通電して水素チャージを行い、陰極試験片に割れが生じるまでの時間を調査した。これらの結果も表3〜5に示す。なお、電解溶液は、各例とも共通して、pH1、硫酸濃度:0.5M、チオシアン酸カリウム濃度:0.01Mの水溶液を使用した。 In this state, as shown in FIG. 5, each test piece was immersed in the electrolytic solution in the electrolytic cell as a cathode, and platinum was used as an anode, and a constant current with a current density of 0.1 mA / mm 2 was applied. Hydrogen charging was performed, and the time until the cathode specimen was cracked was investigated. These results are also shown in Tables 3-5. The electrolytic solution used in common with each example was an aqueous solution with pH 1, sulfuric acid concentration: 0.5M, and potassium thiocyanate concentration: 0.01M.

表3〜5における陰極試験片に割れが生じるまでの時間表示において、これらの時間が「100」と記載しているものは、試験開始から100時間(hr)経過後も割れが発生せず、耐遅れ破壊性評価試験(浸漬試験)を途中で中断したものである。また、「−」と記載しているものは、前記図4(a)、(b)で示した応力付加の加工中に破断してしまい、浸漬試験ができなかった例である。これらの例は、互いに比較する例同士で差が出なければ、評価(試験)方法としては良くない(各表に試験法としての個別評価を×と記載)が、互いに比較する例同士で差がでるのであれば、相対的な比較としては使用できる。   In the time display until cracks occur in the cathode test pieces in Tables 3 to 5, those times described as “100” are not cracked even after 100 hours (hr) have elapsed since the start of the test. The delayed fracture resistance evaluation test (immersion test) was interrupted. In addition, what is described as “−” is an example in which the immersion test was not possible because the fracture occurred during the stress-added processing shown in FIGS. 4 (a) and 4 (b). These examples are not good as an evaluation (test) method unless there is a difference between the examples compared with each other (individual evaluation as a test method is indicated as “X” in each table), but there is a difference between the examples compared with each other. Can be used as a relative comparison.

(表3)
表3は、試験片に対して予め行なう加工条件の内、前記図1で示した引張加工の塑性歪み量の影響をみている。即ち、鋼板の伸び量に対して80%、40%、20%と、20〜80%の塑性歪みを伴う引張加工を加えた1〜12までの発明例は、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にある。このため、表3に示す、陰極試験片に割れが生じるまでの各時間が適当に短く最適であり(各表に試験法としての個別評価を○と記載)、かつ互いの時間に差がついている。この結果、本発明評価方法による耐遅れ破壊性(陰極試験片に割れが生じるまでの時間)の順位は、同じ加工条件同士の比較において、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の表2の順位と一致(対応)する順位となっている。なお、比較例4、8、12は、100時間経過後も割れが発生せず、個別の評価方法としては良くないが、上記発明例との相対差がでており、相対的な比較としては使用できる。
(Table 3)
Table 3 shows the influence of the amount of plastic strain in the tensile processing shown in FIG. That is, 80%, 40%, 20% of the amount of elongation of the steel sheet, and the invention examples 1 to 12 to which a tensile process with a plastic strain of 20 to 80% was added are the delayed fracture parameters of these processing conditions. It exists in the range of 500-10000 by a formula value. For this reason, each time until a crack occurs in the cathode test piece shown in Table 3 is appropriately short and optimal (individual evaluation as a test method is described as “◯” in each table), and there is a difference in time between each other. Yes. As a result, the order of delayed fracture resistance according to the evaluation method of the present invention (time until cracks occur in the cathode test piece) was compared with the delay resistance by the salt spray test simulating the actual press parts in the comparison of the same processing conditions. The order is consistent with (corresponding to) the order of Table 2 of the destructive evaluation test. In Comparative Examples 4, 8, and 12, cracks do not occur even after 100 hours, and it is not good as an individual evaluation method. Can be used.

これに対して、引張加工における塑性歪み量が鋼板の伸び量に対して20%未満の例13〜16、あるいは引張加工をしていない例17〜20は、同じ加工条件同士の比較において、試験開始から100時間経過後も割れが発生せず、互いに耐遅れ破壊性の差が出なかった。このため、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の表2の順位と一致(対応)しない。   On the other hand, Examples 13 to 16 in which the amount of plastic strain in tensile processing is less than 20% with respect to the amount of elongation of the steel sheet, or Examples 17 to 20 in which tensile processing is not performed are tested in comparison between the same processing conditions. Cracks did not occur even after 100 hours from the start, and there was no difference in delayed fracture resistance. For this reason, it does not correspond (correspond) with the order of Table 2 of the delayed fracture resistance evaluation test by the salt spray test simulating the actual press parts.

また、引張強度が1180MPa未満のDの990MPa高強度鋼板では、引張強度が1180MPa以上の高強度鋼板A、B、Cに比して、引張加工の塑性歪み量が範囲内であり、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にあっても、試験開始から100時間経過後も割れが発生しない。このため、本発明方法は、引張強度が1180MPa以上の高強度鋼板に対して有効な評価方法であり、引張強度が1180MPa未満の高強度鋼板に対しては、正確な耐遅れ破壊性評価ができないことが分かる。   Further, in a 990 MPa high-strength steel sheet having a tensile strength of less than 1180 MPa, the amount of plastic strain in tensile processing is within the range compared to high-strength steel sheets A, B, and C having a tensile strength of 1180 MPa or more. Even if it is in the range of 500 to 10000 in the delayed fracture parameter formula value, cracks do not occur even after 100 hours from the start of the test. For this reason, the method of the present invention is an effective evaluation method for a high-strength steel sheet having a tensile strength of 1180 MPa or more, and an accurate delayed fracture resistance evaluation cannot be performed for a high-strength steel sheet having a tensile strength of less than 1180 MPa. I understand that.

(表4)
表4は、試験片に対して予め行なう加工条件の内、前記図3(b)で示したU曲げ加工の曲げ半径量の影響をみている。即ち、曲げ半径が30mm、5mmの範囲内であるU曲げ加工を加えた21〜28までの発明例は、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にある。このため、陰極試験片に割れが生じるまでの各時間が適当に短く最適であり(各表に試験法としての個別評価を○と記載)、かつ互いの時間に差がついている。この結果、本発明評価方法は、同じ加工条件同士の比較(陰極試験片に割れが生じるまでの時間)において、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の順位と一致(対応)する順位となっている。なお、比較例24、28は、100時間経過後も割れが発生せず、個別の評価方法としては良くないが、上記発明例との相対差がでており、相対的な比較としては使用できる。
(Table 4)
Table 4 shows the influence of the bending radius amount of the U-bending process shown in FIG. That is, the invention examples from 21 to 28 to which a U-bending process with a bending radius in the range of 30 mm and 5 mm is added are in the range of 500 to 10,000 in terms of the delayed fracture parameter formula values of these processing conditions. For this reason, each time until a cathode test piece cracks is suitably short and optimal (individual evaluation as a test method is described as ◯ in each table), and there is a difference in each other's time. As a result, according to the evaluation method of the present invention, in the comparison of the same processing conditions (time until the cathode test piece is cracked), the rank of the delayed fracture resistance evaluation test by the salt spray test simulating the actual press parts and The order of matching (corresponding). In Comparative Examples 24 and 28, cracks do not occur even after 100 hours have elapsed, and it is not good as an individual evaluation method, but there is a relative difference from the above invention examples, and it can be used as a relative comparison. .

これに対して、曲げ半径が3mmと、下限の5mm未満である例29〜32は前記図4(a)、(b)で示した応力付加の加工中に破断してしまい、浸漬試験ができなかった。また、曲げ加工および応力付加をしていない例33〜36は、同じ加工条件同士の比較において、試験開始から100時間経過後も割れが発生せず、互いに耐遅れ破壊性の差が出なかった。このため、いずれも、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の順位と一致(対応)しない。   On the other hand, Examples 29 to 32 having a bending radius of 3 mm and a lower limit of less than 5 mm were broken during the stress-added processing shown in FIGS. 4A and 4B, and an immersion test was possible. There wasn't. Further, in Examples 33 to 36 in which bending work and stress application were not performed, cracks did not occur even after 100 hours had elapsed from the start of the test in comparison between the same working conditions, and no difference in delayed fracture resistance was observed. . For this reason, none of them agrees (corresponds) with the rank of the delayed fracture resistance evaluation test by the salt spray test simulating the actual press parts.

また、引張強度が1180MPa未満のDの990MPa高強度鋼板では、引張強度が1180MPa以上の高強度鋼板A、B、Cに比して、曲げ半径が範囲内であり、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にあっても、試験開始から100時間経過後も割れが発生しない。このため、本発明方法は、引張強度が1180MPa以上の高強度鋼板に対して有効な評価方法であり、引張強度が1180MPa未満の高強度鋼板に対しては、正確な耐遅れ破壊性評価ができないことが分かる。   Moreover, in the 990 MPa high strength steel sheet of D with a tensile strength of less than 1180 MPa, the bending radius is within a range as compared with the high strength steel sheets A, B and C having a tensile strength of 1180 MPa or more, and the delayed fracture of these processing conditions Even if it is in the range of 500 to 10000 in the parameter formula value, cracking does not occur even after 100 hours from the start of the test. For this reason, the method of the present invention is an effective evaluation method for a high-strength steel sheet having a tensile strength of 1180 MPa or more, and accurate delayed fracture resistance cannot be evaluated for a high-strength steel sheet having a tensile strength of less than 1180 MPa. I understand that.

(表5)
表5は、試験片に対して予め行なう加工条件の内、前記図3(a)で示したV曲げ加工の曲げ角度の影響をみている。即ち、曲げ角度が90度、60度、30度、の範囲内であるV曲げ加工を加えた37〜48までの発明例は、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にある。このため、陰極試験片に割れが生じるまでの各時間が適当に短く最適であり(各表に試験法としての個別評価を○と記載)、かつ互いの時間に差がついている。この結果、本発明評価方法は、同じ加工条件同士の比較(陰極試験片に割れが生じるまでの時間)において、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の順位と一致(対応)する順位となっている。なお、比較例40、44、48は、100時間経過後も割れが発生せず、個別の評価方法としては良くないが、上記発明例との相対差がでており、相対的な比較としては使用できる。
(Table 5)
Table 5 shows the influence of the bending angle of the V-bending process shown in FIG. That is, the invention examples 37 to 48 to which the V-bending process in which the bending angle is in the range of 90 degrees, 60 degrees, and 30 degrees are added are in the range of 500 to 10000 in the delayed fracture parameter formula values of these processing conditions. Is in. For this reason, each time until a cathode test piece cracks is suitably short and optimal (individual evaluation as a test method is described as ◯ in each table), and there is a difference in each other's time. As a result, according to the evaluation method of the present invention, in the comparison of the same processing conditions (time until the cathode test piece is cracked), the rank of the delayed fracture resistance evaluation test by the salt spray test simulating the actual press parts and The order of matching (corresponding). In Comparative Examples 40, 44, and 48, cracks do not occur even after 100 hours, and it is not good as an individual evaluation method, but there is a relative difference from the above invention example, and as a relative comparison, Can be used.

これに対して、曲げ角度が20度と、下限の30度未満である例49〜52は前記図4(a)、(b)で示した応力付加の加工中に破断してしまい、浸漬試験ができなかった。   On the other hand, Examples 49 to 52 having a bending angle of 20 degrees and less than the lower limit of 30 degrees were broken during the process of applying stress shown in FIGS. 4A and 4B, and the immersion test was performed. I could not.

また、引張強度が1180MPa未満のDの990MPa高強度鋼板では、引張強度が1180MPa以上の高強度鋼板A、B、Cに比して、曲げ角度が範囲内であり、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にあっても、試験開始から100時間経過後も割れが発生しない。このため、本発明方法は、引張強度が1180MPa以上の高強度鋼板に対して有効な評価方法であり、引張強度が1180MPa未満の高強度鋼板に対しては、正確な耐遅れ破壊性評価ができないことが分かる。   Moreover, in the 990 MPa high strength steel sheet of D with a tensile strength of less than 1180 MPa, the bending angle is within the range compared to the high strength steel sheets A, B, and C with a tensile strength of 1180 MPa or more, and the delayed fracture of these processing conditions Even if it is in the range of 500 to 10000 in the parameter formula value, cracking does not occur even after 100 hours from the start of the test. For this reason, the method of the present invention is an effective evaluation method for a high-strength steel sheet having a tensile strength of 1180 MPa or more, and accurate delayed fracture resistance cannot be evaluated for a high-strength steel sheet having a tensile strength of less than 1180 MPa. I understand that.

(表6)
表6は、試験片に対して予め行なう加工条件の内、前記図4で示した付加圧縮応力の影響をみている。即ち、2000MPa、500MPaの付加応力を加えた57〜64までの発明例は、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にある。このため、陰極試験片に割れが生じるまでの各時間が適当に短く最適であり(各表に試験法としての個別評価を○と記載)、かつ互いの時間に差がついている。この結果、本発明評価方法は、同じ加工条件同士の比較(陰極試験片に割れが生じるまでの時間)において、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の順位と一致(対応)する順位となっている。なお、比較例59、60は前記遅れ破壊パラメータ式値が10000を越え、比較例59は陰極試験片に割れが生じるまでの時間が短過ぎ、比較例60は応力付加の加工中に破断してしまい、浸漬試験ができなかった。また、比較例64は前記遅れ破壊パラメータ式値が500未満で100時間経過後も割れが発生しなかった。これらの例は、個別の評価方法としては良くないが、上記発明例との相対差がでており、比較例60を除き、相対的な比較としては使用できる(浸漬試験ができなかった比較例60については表2の結果によって便宜的に耐遅れ破壊性の順位付けをしている)。
(Table 6)
Table 6 shows the influence of the additional compressive stress shown in FIG. 4 among the processing conditions preliminarily performed on the test piece. That is, the invention examples from 57 to 64 to which additional stresses of 2000 MPa and 500 MPa are applied are in the range of 500 to 10000 in terms of the delayed fracture parameter formula values of these processing conditions. For this reason, each time until a cathode test piece cracks is suitably short and optimal (individual evaluation as a test method is described as ◯ in each table), and there is a difference in each other's time. As a result, according to the evaluation method of the present invention, in the comparison of the same processing conditions (time until the cathode test piece is cracked), the rank of the delayed fracture resistance evaluation test by the salt spray test simulating the actual press parts and The order of matching (corresponding). In Comparative Examples 59 and 60, the value of the delayed fracture parameter expression exceeds 10,000, and in Comparative Example 59, the time until cracking occurs in the cathode test piece is too short, and Comparative Example 60 breaks during stress application processing. Therefore, the immersion test could not be performed. In Comparative Example 64, the delayed fracture parameter formula value was less than 500, and no cracks occurred even after 100 hours. Although these examples are not good as individual evaluation methods, they have a relative difference from the above-described invention examples, and can be used as a relative comparison except for Comparative Example 60 (Comparative Examples in which an immersion test could not be performed). For 60, the delayed fracture resistance is ranked for convenience according to the results in Table 2).

これに対して、付加応力が2200MPaと、上限2000MPaを越える例53〜56は前記図4(a)、(b)で示した応力付加の加工中に破断してしまい、浸漬試験ができなかった。また、付加応力を加えなかった例65〜68は、同じ加工条件同士の比較において、試験開始から100時間経過後も割れが発生せず、互いに耐遅れ破壊性の差が出なかった。このため、いずれも、前記実プレス部品化を模擬した塩水噴霧試験による耐遅れ破壊性評価試験の順位と一致(対応)しない。   On the other hand, Examples 53 to 56 having an applied stress of 2200 MPa and exceeding the upper limit of 2000 MPa were broken during the stress-added processing shown in FIGS. 4A and 4B, and the immersion test could not be performed. . Further, in Examples 65 to 68 in which no additional stress was applied, cracks did not occur even after 100 hours had elapsed from the start of the test in comparison between the same processing conditions, and there was no difference in delayed fracture resistance. For this reason, none of them agrees (corresponds) with the rank of the delayed fracture resistance evaluation test by the salt spray test simulating the actual press parts.

また、引張強度が1180MPa未満のDの990MPa高強度鋼板では、引張強度が1180MPa以上の高強度鋼板A、B、Cに比して、付加応力が範囲内であり、これら加工条件の前記遅れ破壊パラメータ式値で500〜10000の範囲内にあっても、試験開始から100時間経過後も割れが発生しない。このため、本発明方法は、引張強度が1180MPa以上の高強度鋼板に対して有効な評価方法であり、引張強度が1180MPa未満の高強度鋼板に対しては、正確な耐遅れ破壊性評価ができないことが分かる。   In addition, in a 990 MPa high strength steel sheet of D with a tensile strength of less than 1180 MPa, the applied stress is within the range compared to the high strength steel sheets A, B, and C with a tensile strength of 1180 MPa or more, and the delayed fracture of these processing conditions. Even if it is in the range of 500 to 10000 in the parameter formula value, cracking does not occur even after 100 hours from the start of the test. For this reason, the method of the present invention is an effective evaluation method for a high-strength steel sheet having a tensile strength of 1180 MPa or more, and an accurate delayed fracture resistance evaluation cannot be performed for a high-strength steel sheet having a tensile strength of less than 1180 MPa. I understand that.

以上の結果から、引張強度1180MPa以上の高強度鋼板の耐遅れ破壊性の評価方法としての本発明要件の、鋼板引張強度、試験片に対する引張加工、曲げ加工、付加応力の加工の予めの付与と、これら引張加工の際の塑性歪み量、曲げ部の半径あるいは角度、付加応力などの規定の臨界的な意義が裏付けられる。   From the above results, the requirements of the present invention as a method for evaluating delayed fracture resistance of high-strength steel sheets having a tensile strength of 1180 MPa or more, the provision of the steel sheet tensile strength, tensile processing, bending processing, and additional stress processing on the test piece in advance. The critical significance of the regulations such as the amount of plastic strain, the radius or angle of the bent part, and the applied stress during the tensile process is supported.

Figure 0004646134
Figure 0004646134

Figure 0004646134
Figure 0004646134

Figure 0004646134
Figure 0004646134

Figure 0004646134
Figure 0004646134

Figure 0004646134
Figure 0004646134

Figure 0004646134
Figure 0004646134

本発明は、特にTRIP鋼板など、これまでにない高い伸びの領域で加工されてプレス部品化され、かつ、これまでは加工限界から使用されなかったプレス部品に適用される、高強度鋼板の耐遅れ破壊性の評価方法(水素脆化評価法)を提供することができる。この結果、自動車のプレス部品などとして用いられる引張強度1180MPa以上の高強度鋼板の用途を拡大できる。   The present invention is particularly suitable for high strength steel sheets, such as TRIP steel sheets, which are applied to press parts that have been processed in a region of high elongation unprecedented and formed into press parts and have not been used so far due to processing limitations. A delayed fracture property evaluation method (hydrogen embrittlement evaluation method) can be provided. As a result, it is possible to expand the application of high-strength steel sheets having a tensile strength of 1180 MPa or more used as press parts for automobiles.

本発明耐遅れ破壊性評価方法における試験片の引張加工の態様を示す斜視図である。It is a perspective view which shows the aspect of the tension processing of the test piece in this invention delayed fracture resistance evaluation method. 本発明耐遅れ破壊性評価方法における試験片の孔開け加工の態様を示す斜視図である。It is a perspective view which shows the aspect of the drilling process of the test piece in this invention delayed fracture resistance evaluation method. 本発明耐遅れ破壊性評価方法における試験片の曲げ加工の態様を示す斜視図である。It is a perspective view which shows the aspect of the bending process of the test piece in the delayed fracture resistance evaluation method of this invention. 本発明耐遅れ破壊性評価方法における試験片への応力付加の態様を示す斜視図である。It is a perspective view which shows the aspect of the stress addition to the test piece in the delayed fracture resistance evaluation method of this invention. 本発明耐遅れ破壊性評価方法における試験片の浸漬試験の態様を示す斜視図である。It is a perspective view which shows the aspect of the immersion test of the test piece in this invention delayed fracture resistance evaluation method.

Claims (3)

引張強度1180MPa以上の高強度鋼板の耐遅れ破壊性の評価方法であって、前記高強度鋼板の試験片に対して、この高強度鋼板の伸び量に対して20〜80%の塑性歪みを伴う引張加工を加えた後に、曲げ部の半径が5〜30mmとなるようなU曲げ加工か、曲げ部の角度が30〜90度となるようなV曲げ加工のいずれかを加え、更に、この曲げ加工を加えた試験片の両辺部分に対して500〜2000MPaの圧縮応力を付加した状態で、電解溶液に陰極として浸漬し、陰極及び陽極に定電流を通電して水素チャージを行い、陰極試験片に割れが生じるまでの時間で高強度鋼板の耐遅れ破壊性を評価することを特徴とする高強度鋼板の耐遅れ破壊性の評価方法。   A method for evaluating delayed fracture resistance of a high-strength steel sheet having a tensile strength of 1180 MPa or more, wherein the test piece of the high-strength steel sheet is accompanied by a plastic strain of 20 to 80% with respect to the elongation amount of the high-strength steel sheet. After applying the tensile process, either a U-bending process in which the radius of the bending part is 5 to 30 mm or a V-bending process in which the angle of the bending part is 30 to 90 degrees is added. In a state where a compressive stress of 500 to 2000 MPa is applied to both sides of the processed test piece, it is immersed in an electrolytic solution as a cathode, and a constant current is applied to the cathode and the anode to perform hydrogen charging. A method for evaluating delayed fracture resistance of a high-strength steel sheet, wherein the delayed fracture resistance of a high-strength steel sheet is evaluated by the time until cracking occurs. 前記高強度鋼板が、フェライト、ベイナイト、残留オーステナイトの混合組織からなる、変態誘起塑性鋼板である請求項1に記載の高強度鋼板の耐遅れ破壊性の評価方法。   The method for evaluating delayed fracture resistance of a high-strength steel sheet according to claim 1, wherein the high-strength steel sheet is a transformation-induced plastic steel sheet composed of a mixed structure of ferrite, bainite, and retained austenite. 前記陰極試験片に割れが生じるまでの時間が、下記遅れ破壊パラメータ式で500〜10000の範囲を満足する請求項1または2に記載の高強度鋼板の耐遅れ破壊性の評価方法。
遅れ破壊パラメータ式=〔(前記高強度鋼板の引張強度:MPa)/1180〕×(締め付けによる付加応力)×〔100/(100−前記塑性歪み:%)〕×〔(前記高強度鋼板の板厚:mm)/(前記陰極試験片の曲げ部の半径:mm)もしくは(前記陰極試験片の曲げ部の角度:度)1/2 〕×〔1/(前記陰極試験片に割れが生じるまでの時間:hr)〕×100
3. The method for evaluating delayed fracture resistance of a high-strength steel sheet according to claim 1, wherein a time until cracking occurs in the cathode test piece satisfies a range of 500 to 10,000 in the following delayed fracture parameter formula.
Delayed fracture parameter formula = [(tensile strength of the high-strength steel plate: MPa) / 1180] × (additional stress due to tightening) × [100 / (100−plastic strain:%)] × [(plate of the high-strength steel plate) (Thickness: mm) / (radius of the bent portion of the cathode test piece: mm) or (angle of the bent portion of the cathode test piece: degree) 1/2 ] × [1 / (until the cathode test piece is cracked) Time: hr)] × 100
JP2006017550A 2006-01-26 2006-01-26 Evaluation method of delayed fracture resistance of high strength steel sheet Expired - Fee Related JP4646134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017550A JP4646134B2 (en) 2006-01-26 2006-01-26 Evaluation method of delayed fracture resistance of high strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017550A JP4646134B2 (en) 2006-01-26 2006-01-26 Evaluation method of delayed fracture resistance of high strength steel sheet

Publications (2)

Publication Number Publication Date
JP2007198895A JP2007198895A (en) 2007-08-09
JP4646134B2 true JP4646134B2 (en) 2011-03-09

Family

ID=38453643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017550A Expired - Fee Related JP4646134B2 (en) 2006-01-26 2006-01-26 Evaluation method of delayed fracture resistance of high strength steel sheet

Country Status (1)

Country Link
JP (1) JP4646134B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291568B2 (en) * 2009-08-06 2013-09-18 株式会社神戸製鋼所 Evaluation method of delayed fracture resistance of steel sheet molded products
JP5888692B2 (en) * 2011-08-26 2016-03-22 Jfeスチール株式会社 Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP5971058B2 (en) * 2012-09-28 2016-08-17 Jfeスチール株式会社 Specimen for delayed fracture property evaluation of ultra high strength surface treated steel sheet and delayed fracture property evaluation method
KR101489667B1 (en) 2013-11-26 2015-02-04 주식회사 이노테크 Bending Test Apparatus For Flexible Display
JP2015116531A (en) * 2013-12-18 2015-06-25 日本電信電話株式会社 Breaking method
KR101624143B1 (en) * 2014-12-09 2016-05-25 한양대학교 에리카산학협력단 Apparatus and method for testing degradation
JP6575927B2 (en) * 2015-08-24 2019-09-18 東京電力ホールディングス株式会社 Hydrogen embrittlement test solution and test method for steel using ammonium thiocyanate
JP6380423B2 (en) * 2016-02-08 2018-08-29 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets
JP6614197B2 (en) * 2017-04-25 2019-12-04 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets
KR102043517B1 (en) * 2017-12-21 2019-11-12 주식회사 포스코 Hydrogen delayed fracture testing method
JP2019196918A (en) * 2018-05-07 2019-11-14 日本電信電話株式会社 Method, device, and program for estimating fracture starting point in steel material
JP7234544B2 (en) * 2018-09-07 2023-03-08 日本製鉄株式会社 Hydrogen embrittlement property evaluation method
CN110108630B (en) * 2019-05-09 2024-05-03 南京工业大学 Test method for simulating corrosion of oil product containing organic matters to petrochemical equipment
KR102201443B1 (en) * 2019-05-22 2021-01-12 현대제철 주식회사 Evaluation method for hydrogen delayed fracture properties of trip steel
JP7259805B2 (en) * 2019-06-10 2023-04-18 Jfeスチール株式会社 Evaluation method for delayed fracture characteristics
JP7327313B2 (en) * 2020-07-28 2023-08-16 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of metal plate, and method for manufacturing pressed parts
CN114136805A (en) * 2021-10-29 2022-03-04 同济大学 Metal sheet fracture strain determination method, storage medium and electronic device
CN115308046B (en) * 2022-10-10 2022-12-30 南通优尼科高分子材料科技有限公司 Surface whitening color measurement detection device and method for plastic product stress detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119543A (en) * 2001-10-15 2003-04-23 Nippon Steel Corp Steel material for welded structure with little degradation of toughness caused by plastic strain, and manufacturing method therefor
JP2004231992A (en) * 2003-01-28 2004-08-19 Nippon Steel Corp High strength steel sheet with excellent resistance to hydrogen embrittlement, and its manufacturing method
JP2004308002A (en) * 2003-03-26 2004-11-04 Kobe Steel Ltd Ultrahigh strength steel sheet having excellent elongation and hydrogen embrittlement resistance, its production method, and method of manufacturing ultrahigh strength press-formed component using the ultrahigh strength steel sheet
JP2004323951A (en) * 2003-04-28 2004-11-18 Nippon Steel Corp High strength galvanized steel sheet having excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its production method
JP2004332099A (en) * 2003-04-14 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor
JP2004332100A (en) * 2003-04-17 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor
JP2005134152A (en) * 2003-10-28 2005-05-26 Nippon Steel Corp System for evaluating hydrogen embrittlement of thin sheet steel and its evaluation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330207B2 (en) * 1993-10-05 2002-09-30 株式会社神戸製鋼所 Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JPH07146225A (en) * 1993-11-24 1995-06-06 Nippon Steel Corp Delayed fracture characteristic evaluating method for high tensile strength steel plate
JP2826058B2 (en) * 1993-12-29 1998-11-18 株式会社神戸製鋼所 Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method
JPH08120399A (en) * 1994-10-25 1996-05-14 Sumitomo Metal Ind Ltd Steel for machine structure excellent in delayed fracture resistance
JP3406094B2 (en) * 1994-11-10 2003-05-12 株式会社神戸製鋼所 Method for producing ultra-high strength steel sheet with excellent hydrogen embrittlement resistance
JPH08209289A (en) * 1995-02-06 1996-08-13 Sumitomo Metal Ind Ltd Steel for machine structural use excellent in delayed fracture resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119543A (en) * 2001-10-15 2003-04-23 Nippon Steel Corp Steel material for welded structure with little degradation of toughness caused by plastic strain, and manufacturing method therefor
JP2004231992A (en) * 2003-01-28 2004-08-19 Nippon Steel Corp High strength steel sheet with excellent resistance to hydrogen embrittlement, and its manufacturing method
JP2004308002A (en) * 2003-03-26 2004-11-04 Kobe Steel Ltd Ultrahigh strength steel sheet having excellent elongation and hydrogen embrittlement resistance, its production method, and method of manufacturing ultrahigh strength press-formed component using the ultrahigh strength steel sheet
JP2004332099A (en) * 2003-04-14 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor
JP2004332100A (en) * 2003-04-17 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor
JP2004323951A (en) * 2003-04-28 2004-11-18 Nippon Steel Corp High strength galvanized steel sheet having excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its production method
JP2005134152A (en) * 2003-10-28 2005-05-26 Nippon Steel Corp System for evaluating hydrogen embrittlement of thin sheet steel and its evaluation method

Also Published As

Publication number Publication date
JP2007198895A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4646134B2 (en) Evaluation method of delayed fracture resistance of high strength steel sheet
KR102423555B1 (en) High-strength galvanized steel sheet for spot welding and manufacturing method thereof
US20180363109A1 (en) Steel sheet for hot stamping, method for production thereof, and hot stamping steel material
RU2566131C1 (en) Hot galvanised steel sheet and method of its production
JP4466619B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
US9353424B2 (en) High strength steel sheet excellent in delayed fracture resistance and low temperature toughness, and high strength member manufactured using the same
JP6250398B2 (en) Hot-rolled or cold-rolled steel sheets, methods for their production, and their use in the automotive industry
JP6280029B2 (en) High strength steel plate and manufacturing method thereof
EP3135394A1 (en) Method for manufacturing hot press forming part and hot press forming part
EP3018230B1 (en) Cold-rolled steel sheet, galvanized cold-rolled steel sheet, and method for manufacturing the same
JP4317384B2 (en) High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method
JP5000367B2 (en) High strength galvanized bolt with excellent hydrogen embrittlement resistance
JP2004332099A (en) High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor
BR112012013042B1 (en) HIGH STRENGTH STEEL SHEET WITH MAXIMUM TENSILE STRENGTH OF 900 MPA OR MORE AND PRODUCTION METHODS OF THE SAME
JP4317491B2 (en) Steel sheet for hot press
JP5187003B2 (en) High strength steel material excellent in formability and fatigue resistance and method for producing the same
KR102302023B1 (en) Method for producing high-strength steel sheet having high ductility, formability and weldability, and the obtained steel sheet
JP6950826B2 (en) High-strength steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full-hard steel sheet manufacturing method, and high-strength steel sheet manufacturing method
CN111902554A (en) Steel sheet and method for producing same
CN110234781A (en) Drop stamping alloying Al-plated steel sheet and drop stamping component
Kim et al. Diffusible hydrogen behavior and delayed fracture of cold rolled martensitic steel in consideration of automotive manufacturing process and vehicle service environment
JP2004332100A (en) High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor
Berchem et al. The influence of pre-straining on the corrosion fatigue performance of two hot-dip galvanised steels
Mukhopadhyay et al. Strength of spot‐welded steel sheets in corrosive environment
JP5556157B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees