JP5556157B2 - Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more - Google Patents
Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more Download PDFInfo
- Publication number
- JP5556157B2 JP5556157B2 JP2009279021A JP2009279021A JP5556157B2 JP 5556157 B2 JP5556157 B2 JP 5556157B2 JP 2009279021 A JP2009279021 A JP 2009279021A JP 2009279021 A JP2009279021 A JP 2009279021A JP 5556157 B2 JP5556157 B2 JP 5556157B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- precipitates
- ferrite phase
- area ratio
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 46
- 239000010959 steel Substances 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims description 57
- 239000002244 precipitate Substances 0.000 claims description 54
- 238000001816 cooling Methods 0.000 claims description 48
- 239000013078 crystal Substances 0.000 claims description 23
- 229910001563 bainite Inorganic materials 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 5
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車の構造部品に適した高強度熱延鋼板、特に、伸びおよび伸びフランジ特性に優れた引張強度TSが780MPa以上の高強度熱延鋼板およびその製造方法に関する。 The present invention relates to a high-strength hot-rolled steel sheet suitable for structural parts of automobiles, and more particularly to a high-strength hot-rolled steel sheet having a tensile strength TS excellent in elongation and stretch flange characteristics of 780 MPa or more and a method for producing the same.
近年、環境問題に対する関心が高まるなか、自動車用鋼板には、軽量化による燃費向上を目的に一層の高強度-薄肉化が要求されている。現在では、自動車のピラーやメンバーなどの構造部品に主として440MPa級や590MPa級のTSを有する高強度熱延鋼板が使用されるようになっているが、近い将来、780MPa以上のTSを有する高強度熱延鋼板の実用化が予測されている。 In recent years, with increasing interest in environmental issues, steel sheets for automobiles are required to have higher strength and thinner wall thickness for the purpose of improving fuel efficiency through weight reduction. Currently, high-strength hot-rolled steel sheets with 440MPa class or 590MPa class TS are mainly used for structural parts such as automobile pillars and members. In the near future, high strength steel with TS of 780MPa or higher will be used. The practical application of hot-rolled steel sheets is predicted.
そのため、780MPa以上のTSを有する高強度熱延鋼板を対象とした研究開発が活発に行われており、高強度化にともなって劣化する加工性の向上、なかでも伸びおよび伸びフランジ特性の向上を図った種々の高強度熱延鋼板が提案されている。 For this reason, research and development for high-strength hot-rolled steel sheets with TS of 780 MPa or more is actively conducted, improving workability that deteriorates with increasing strength, in particular, improving elongation and stretch flange characteristics. Various high-strength hot-rolled steel sheets have been proposed.
例えば、特許文献1には、ベイナイト相を体積率で5〜70%含み、残部が実質的にフェライト相からなる複合組織を有し、フェライト相中に以下の(1)式を満たす範囲でTiおよびMoを含む析出物が分散析出していることを特徴とするTSが690MPa以上の加工性(伸びおよび伸びフランジ特性)に優れた高強度熱延鋼板が開示されている。
(Mo/96)/{(Ti/48)+(Mo/96)}≧0.25・・・(1)
ただし、(1)式中のTi、Moは析出物中の各成分の重量%を表す。
For example, Patent Document 1 includes a composite structure including a bainite phase in a volume ratio of 5 to 70% and the balance being substantially composed of a ferrite phase, and Ti within a range satisfying the following formula (1) in the ferrite phase. A high-strength hot-rolled steel sheet excellent in workability (elongation and stretch flange characteristics) having a TS of 690 MPa or more, characterized in that precipitates containing Mo and Mo are dispersed and precipitated.
(Mo / 96) / {(Ti / 48) + (Mo / 96)} ≧ 0.25 ... (1)
However, Ti and Mo in the formula (1) represent% by weight of each component in the precipitate.
また、特許文献2には、質量%で、C:0.04〜0.15%、Si:1.5%以下、Mn:0.5〜1.6%、P:0.04%以下、S:0.005%以下、Al:0.04%以下、Ti:0.03〜0.15%、およびMo:0.03〜0.5%を含み、残部がFeおよび不可避的不純物からなる化学組成を有し、析出物の存在するフェライト相と、ベイナイト相および/またはマルテンサイト相からなる第二相と、前記フェライト相および第二相以外のその他の相と、からなる組織を有し、かつ前記析出物の存在するフェライト相の割合が40〜95%、前記その他の相の割合が5%以下である高強度熱延鋼板が開示されている。 Patent Document 2 includes mass%, C: 0.04 to 0.15%, Si: 1.5% or less, Mn: 0.5 to 1.6%, P: 0.04% or less, S: 0.005% or less, Al: 0.04% or less, It contains Ti: 0.03-0.15% and Mo: 0.03-0.5%, and the balance has a chemical composition consisting of Fe and inevitable impurities, and consists of a ferrite phase in which precipitates are present, a bainite phase and / or a martensite phase. And the ferrite phase and the other phase other than the second phase, and the proportion of the ferrite phase in which the precipitate is present is 40 to 95%, the proportion of the other phase Has disclosed a high-strength hot-rolled steel sheet having 5% or less.
さらに、特許文献3には、質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:0.5〜1.6%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.03〜0.20%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、体積占有率で50〜90%がフェライト相で、かつ残部が実質的にベイナイト相であって、フェライト相とベイナイト相の体積占有率の合計が95%以上であり、フェライト相中にはTiを含む析出物が析出し、該析出物の平均直径が20nm以下である組織を有し、かつ、鋼中のTi量の80%以上が析出していることを特徴とする伸び特性、伸びフランジ特性および引張疲労特性に優れたTSが780MPa以上の高強度熱延鋼板が開示されている。 Furthermore, in Patent Document 3, in mass%, C: 0.06 to 0.15%, Si: 1.2% or less, Mn: 0.5 to 1.6%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti: 0.03 to 0.20% contained, the remainder has a composition composed of Fe and inevitable impurities, 50 to 90% by volume occupancy is the ferrite phase, and the remainder is substantially the bainite phase, The total volume occupancy of the ferrite phase and the bainite phase is 95% or more, a precipitate containing Ti is precipitated in the ferrite phase, and the average diameter of the precipitate has a structure of 20 nm or less, and A high-strength hot-rolled steel sheet having a TS of 780 MPa or more, which is excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, characterized by precipitation of 80% or more of the Ti content in the steel is disclosed.
しかしながら、特許文献1〜3に記載の高強度熱延鋼板には、次のような問題がある。すなわち、特許文献1、2に記載の高強度熱延鋼板は、Moを使用しているためコスト高である。また、通常、伸びフランジ性は鉄連規格JFST1001に準拠した円錐ポンチを用いた穴拡げ試験により評価される。特許文献1〜3に記載の高強度熱延鋼板では、このような伸びフランジ性が良好であっても、変形部の歪分布が小さくなるような、具体的には円筒穴拡げに代表される変形部の歪勾配が小さくなるような伸びフランジ加工を受けると割れが発生する場合がある。 However, the high-strength hot-rolled steel sheets described in Patent Documents 1 to 3 have the following problems. That is, the high-strength hot-rolled steel sheets described in Patent Documents 1 and 2 are expensive because they use Mo. Usually, stretch flangeability is evaluated by a hole expansion test using a conical punch in accordance with the iron standard JFST1001. In the high-strength hot-rolled steel sheets described in Patent Documents 1 to 3, even if such stretch flangeability is good, the strain distribution in the deformed portion is reduced, specifically represented by cylindrical hole expansion. Cracks may occur when subjected to stretch flange processing that reduces the strain gradient of the deformed portion.
本発明は、このような問題を解決した、安価で、かつ伸びおよび伸びフランジ特性に優れたTSが780MPa以上の高強度熱延鋼板およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength hot-rolled steel sheet having a TS of 780 MPa or more, which is inexpensive and excellent in elongation and stretch flange characteristics, and a method for producing the same, which solve such problems.
本発明者らは、上記の目的を達成するために鋭意検討を重ねた結果、以下のことを見出した。 As a result of intensive studies to achieve the above object, the present inventors have found the following.
イ) 変形部の歪勾配が小さくなるような伸びフランジ加工での加工性を良好とするには、鋼板の一様伸び特性を向上させることが重要である。 B) In order to improve the workability in stretch flange processing so that the strain gradient of the deformed portion becomes small, it is important to improve the uniform stretch characteristics of the steel sheet.
ロ) それには、成分組成を適正化した上で、面積率で2〜9%のベイナイト相を含有するフェライト相主体のミクロ組織とし、フェライト相において、アスペクト比が3.0未満の結晶粒のフェライト相全体に占める面積率が80%以上、鋼中の全析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合が70%以上、平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率が50%以上となる条件を満足させることが効果的である。 (B) For that purpose, the ferrite composition is composed mainly of a ferrite phase containing 2-9% bainite phase by area ratio after optimizing the component composition, and in the ferrite phase, the ferrite phase of crystal grains having an aspect ratio of less than 3.0 The ratio of the total Ti content in precipitates with an average diameter of less than 20 nm to the total Ti content in all precipitates in steel is 70% or more and the average diameter is less than 20 nm. It is effective to satisfy the condition that the area ratio of the crystal grains where the precipitates are present to the entire ferrite phase is 50% or more.
本発明は、このような知見に基づいてなされたもので、質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:1.0〜1.8%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.06〜0.13%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、組織全体に占めるフェライト相の面積率が85%以上、ベイナイト相の面積率が2〜9%であり、前記フェライト相が下記の条件i)〜iii)を満足するミクロ組織を有することを特徴とする引張強度が780MPa以上の高強度熱延鋼板を提供する。
i) アスペクト比が3.0未満の結晶粒のフェライト相全体に占める面積率が80%以上
ii) 鋼中の全析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合が70%以上
iii) 平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率が50%以上
本発明の高強度熱延鋼板では、さらに、質量%で、V:0.03〜0.15%、Cr:0.01〜0.5%のうちから選ばれた少なくとも1種の元素を含有する成分組成とすることが好ましい。
The present invention was made based on such findings, and in mass%, C: 0.06 to 0.15%, Si: 1.2% or less, Mn: 1.0 to 1.8%, P: 0.04% or less, S: 0.005% Below, Al: 0.05% or less, Ti: 0.06-0.13% is contained, the remainder has a component composition consisting of Fe and inevitable impurities, the area ratio of the ferrite phase occupying the entire structure is 85% or more, bainite phase Provided is a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, wherein the area ratio is 2 to 9% and the ferrite phase has a microstructure satisfying the following conditions i) to iii).
i) The area ratio of crystal grains with an aspect ratio of less than 3.0 in the entire ferrite phase is 80% or more
ii) The ratio of the total Ti content in precipitates with an average diameter of less than 20 nm to the total Ti content in all precipitates in steel is 70% or more
iii) The area ratio of the crystal grains in which precipitates having an average diameter of less than 20 nm are present in the entire ferrite phase is 50% or more In the high-strength hot-rolled steel sheet of the present invention, V: 0.03 to 0.15%, Cr : It is preferable to have a component composition containing at least one element selected from 0.01 to 0.5%.
本発明の高強度熱延鋼板は、上記の成分組成を有する鋼スラブを、1150〜1350℃の加熱温度で加熱し、850〜950℃の仕上温度で熱間圧延後、30℃/秒以上の平均冷却速度で650〜750℃の冷却停止温度まで一次冷却し、引き続き0.5〜5秒間空冷後、20℃/秒以上の平均冷却速度で二次冷却して、400〜500℃の巻取温度で巻取ることによって製造できる。 The high-strength hot-rolled steel sheet of the present invention is a steel slab having the above component composition, heated at a heating temperature of 1150 to 1350 ° C., hot-rolled at a finishing temperature of 850 to 950 ° C., and then at least 30 ° C./second. Primary cooling to a cooling stop temperature of 650 to 750 ° C at an average cooling rate, followed by air cooling for 0.5 to 5 seconds, followed by secondary cooling at an average cooling rate of 20 ° C / second or more and a winding temperature of 400 to 500 ° C Can be manufactured by winding.
本発明により、安価で、かつ一様伸び特性が良好であり、ひいては変形部の歪勾配が小さくなるような伸びフランジ加工での加工性にも優れる伸びおよび伸びフランジ特性に優れたTSが780MPa以上の高強度熱延鋼板が製造可能になった。本発明の高強度熱延鋼板を自動車のピラーやメンバーなどの構造部品に適用すれば、乗客の安全性を確保しながら薄肉化が可能となり、自動車の環境負荷が低減されることが期待される。 According to the present invention, it is inexpensive and has good uniform elongation characteristics. As a result, it has excellent workability in stretch flange processing such that the strain gradient of the deformed portion becomes small. TS with excellent elongation and stretch flange characteristics is 780 MPa or more. High-strength hot-rolled steel sheets can be manufactured. If the high-strength hot-rolled steel sheet of the present invention is applied to structural parts such as automobile pillars and members, it is possible to reduce the wall thickness while ensuring the safety of passengers, and to reduce the environmental burden of automobiles. .
以下に、本発明の詳細について説明する。なお、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。 Details of the present invention will be described below. Note that “%” representing the content of each component element means “% by mass” unless otherwise specified.
1) 成分組成
C:0.06〜0.15%
Cは、硬質なベイナイト相の形成を促進したり、フェライト相中に直径20nm未満の微細なTiの炭化物(析出物)として析出し、高強度化に有効な元素である。780MPa以上のTSを得るためにはC量を0.06%以上とする必要がある。一方、C量が0.15%を超えると溶接性が低下する。したがって、C量は0.06〜0.15%、好ましくは0.07〜0.12%とする。
1) Component composition
C: 0.06-0.15%
C is an element effective for increasing the strength by promoting the formation of a hard bainite phase or by depositing as fine Ti carbide (precipitate) having a diameter of less than 20 nm in the ferrite phase. In order to obtain a TS of 780 MPa or more, the C content needs to be 0.06% or more. On the other hand, if the amount of C exceeds 0.15%, the weldability decreases. Therefore, the C content is 0.06 to 0.15%, preferably 0.07 to 0.12%.
Si:1.2%以下
Siは、固溶強化に寄与する元素であるが、その量が1.2%を超えると表面性状が著しく劣化し、耐食性が低下する。したがって、Si量は1.2%以下、好ましくは0.3〜0.9%とする。
Si: 1.2% or less
Si is an element that contributes to solid solution strengthening, but if its amount exceeds 1.2%, the surface properties are remarkably deteriorated and the corrosion resistance is lowered. Therefore, the Si content is 1.2% or less, preferably 0.3 to 0.9%.
Mn:1.0〜1.8%
Mnは、高強度化に有効な元素であるが、その量が1.0%未満だと780MPa以上のTSが得られない。一方、Mn量が1.8%を超えると中心偏析が顕著になり、伸びおよび伸びフランジ特性などの加工性や溶接性が低下する。したがって、Mn量は1.0〜1.8%、好ましくは1.2〜1.6%とする。
Mn: 1.0-1.8%
Mn is an element effective for increasing the strength, but if its amount is less than 1.0%, a TS of 780 MPa or more cannot be obtained. On the other hand, when the amount of Mn exceeds 1.8%, center segregation becomes prominent, and workability and weldability such as elongation and stretch flange characteristics deteriorate. Therefore, the Mn content is 1.0 to 1.8%, preferably 1.2 to 1.6%.
P:0.04%以下
Pは、その量が0.04%を超えると粒界に偏析し、低温靱性や伸びおよび伸びフランジ特性などの加工性を低下させる。したがって、P量は0.04%以下とするが、極力低減することが好ましい。
P: 0.04% or less
When the amount of P exceeds 0.04%, it segregates at the grain boundaries and lowers the workability such as low temperature toughness, elongation and stretch flange characteristics. Therefore, the P content is 0.04% or less, but it is preferable to reduce it as much as possible.
S:0.005%以下
Sは、MnやTiと硫化物を形成し、伸びおよび伸びフランジ特性などの加工性を低下させる。したがって、S量は0.005%以下とするが、極力低減することが好ましい。
S: 0.005% or less
S forms sulfides with Mn and Ti, and degrades workability such as elongation and stretch flange characteristics. Therefore, the S amount is 0.005% or less, but it is preferable to reduce it as much as possible.
Al:0.05%以下
Alは、鋼の脱酸剤として添加され、その清浄度を向上させるのに有効な元素であるので、0.001%以上含有されていることが好ましい。しかし、Al量が0.05%を超えると介在物が多量に生成し、表面疵の原因になる。したがって、Al量は0.05%以下、好ましくは0.01〜0.04%とする。
Al: 0.05% or less
Al is added as a steel deoxidizer and is an effective element for improving the cleanliness thereof, so it is preferably contained in an amount of 0.001% or more. However, if the Al content exceeds 0.05%, a large amount of inclusions are formed, causing surface defects. Therefore, the Al content is 0.05% or less, preferably 0.01 to 0.04%.
Ti:0.06〜0.13%
Tiは、フェライト相中でCと結合し微細な析出物として析出し、その高強度化に寄与する元素である。780MPa以上のTSを得るためにはTi量を0.06%以上とする必要があるが、0.13%を超えるとその効果は飽和し、コストアップを招く。したがって、Ti量は0.06〜0.13%、好ましくは0.09〜0.12%とする。
Ti: 0.06-0.13%
Ti is an element that combines with C in the ferrite phase to precipitate as fine precipitates and contributes to increasing the strength. In order to obtain a TS of 780 MPa or more, the Ti amount needs to be 0.06% or more. However, if it exceeds 0.13%, the effect is saturated and the cost is increased. Therefore, the Ti content is 0.06 to 0.13%, preferably 0.09 to 0.12%.
残部はFeおよび不可避的不純物であるが、以下の理由により、V:0.03〜0.15%、Cr:0.01〜0.5%のうちから選ばれた少なくとも1種の元素を含有させることができる。 The balance is Fe and inevitable impurities, but at least one element selected from V: 0.03 to 0.15% and Cr: 0.01 to 0.5% can be contained for the following reasons.
V:0.03〜0.15%
Vは、鋼を析出強化または固溶強化し、高強度化や疲労強度の向上に寄与する元素である。しかし、その量が0.03%未満だとその効果が乏しく、0.15%を超えるとその効果は飽和し、コストアップを招く。したがって、V量は0.03〜0.15%とすることが好ましい。
V: 0.03-0.15%
V is an element that contributes to increasing strength and improving fatigue strength by precipitation strengthening or solid solution strengthening of steel. However, if the amount is less than 0.03%, the effect is poor, and if it exceeds 0.15%, the effect is saturated, resulting in an increase in cost. Therefore, the V amount is preferably 0.03 to 0.15%.
Cr:0.01〜0.5%
Crも、Vと同様、鋼を析出強化または固溶強化し、高強度化や疲労強度の向上に寄与する元素である。しかし、その量が0.01%未満だとその効果が乏しく、0.5%を超えるとその効果は飽和し、コストアップを招く。したがって、Cr量は0.01〜0.5%とすることが好ましい。
Cr: 0.01-0.5%
Cr, like V, is an element that contributes to increasing strength and improving fatigue strength by precipitation strengthening or solid solution strengthening of steel. However, if the amount is less than 0.01%, the effect is poor, and if it exceeds 0.5%, the effect is saturated, resulting in an increase in cost. Therefore, the Cr content is preferably 0.01 to 0.5%.
2) ミクロ組織
本発明において、780MPa以上のTSは、平均直径20nm未満の微細なTiを含む析出物により硬質化されたフェライト相と硬質なベイナイト相によって達成される。すなわち、鋼中の全析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合が70%以上になるようにしてTiを微細に析出させる。このような微細なTi析出物は、主に組織全体に占める面積率で85%以上のフェライト相中に析出し、フェライト相を析出強化する。あわせて、面積率で2〜9%の硬質なベイナイト相を含有させて高強度化が図られている。鋼中の全析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合が70%未満であったり、ベイナイト相の面積率が2%未満だと、780MPa以上のTSが得られない。また、ベイナイト相の面積率が9%を超えると伸び特性の低下を招く。
2) Microstructure In the present invention, TS of 780 MPa or more is achieved by a ferrite phase hardened by precipitates containing fine Ti having an average diameter of less than 20 nm and a hard bainite phase. That is, Ti is finely precipitated such that the ratio of the total Ti content in the precipitates having an average diameter of less than 20 nm to the total Ti content in all the precipitates in the steel is 70% or more. Such fine Ti precipitates are mainly precipitated in a ferrite phase having an area ratio of 85% or more in the entire structure, thereby precipitating and strengthening the ferrite phase. In addition, the strength is increased by including a hard bainite phase having an area ratio of 2 to 9%. When the ratio of the total Ti content in precipitates with an average diameter of less than 20 nm to the total Ti content in all precipitates in steel is less than 70% or the area ratio of the bainite phase is less than 2%, TS of 780MPa or more cannot be obtained. Further, when the area ratio of the bainite phase exceeds 9%, the elongation characteristics are deteriorated.
優れた伸び特性は、組織全体に占める面積率で85%以上を延性に富んだフェライト相にするとともに、フェライト相におけるアスペクト比が3.0未満の結晶粒の面積率を80%以上にして、十分に再結晶したフェライト相を主体とすることにより達成される。特に、平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率を50%以上にする、すなわち微細な析出物をフェライト相中により均一に析出すると一様伸び特性が著しく向上し、変形部の歪勾配が小さくなるような伸びフランジ加工時の割れの発生を防止できる。このようなフェライト相中に観察される微細な析出物は、主にTiを含む析出物である。組織全体に占めるフェライト相の面積率が85%未満であったり、フェライト相におけるアスペクト比が3.0未満の結晶粒の面積率が80%未満だと、伸び特性の低下を招く。また、平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率が50%未満だと一様伸び特性の劣化を招く。なお、フェライト相におけるアスペクト比が3.0未満の結晶粒の面積率は90%以上にすることが好ましい。 Excellent elongation characteristics, the area ratio of the entire structure is 85% or more to make the ferrite phase rich in ductility, and the area ratio of grains with an aspect ratio of less than 3.0 in the ferrite phase is 80% or more This is achieved mainly by the recrystallized ferrite phase. In particular, if the area ratio of the crystal grains containing precipitates with an average diameter of less than 20 nm in the entire ferrite phase is set to 50% or more, that is, if fine precipitates are deposited more uniformly in the ferrite phase, the uniform elongation characteristics are remarkably improved. In addition, it is possible to prevent the occurrence of cracks at the time of stretch flange processing that reduces the strain gradient of the deformed portion. Such fine precipitates observed in the ferrite phase are mainly precipitates containing Ti. If the area ratio of the ferrite phase occupying the entire structure is less than 85%, or the area ratio of the crystal grains having an aspect ratio of less than 3.0 in the ferrite phase is less than 80%, the elongation characteristics are deteriorated. Further, if the area ratio of the crystal grains in which precipitates having an average diameter of less than 20 nm are present in the entire ferrite phase is less than 50%, the uniform elongation characteristics are deteriorated. The area ratio of the crystal grains having an aspect ratio of less than 3.0 in the ferrite phase is preferably 90% or more.
優れた伸びフランジ特性は、フェライト相を微細な析出物により硬質化し、ベイナイト相との硬度差を減少させることにより達成される。これは、硬度差が少なくなることによりフェライト相とベイナイト相の界面における応力集中が緩和されるためと考えられる。また、上記したように、微細な析出物をフェライト相中により均一に析出させると一様伸び特性が著しく向上し、変形部の歪勾配が小さくなるような伸びフランジ加工時にも割れが発生せず、優れた伸びフランジ特性が得られることになる。 Excellent stretch flange properties are achieved by hardening the ferrite phase with fine precipitates and reducing the hardness difference from the bainite phase. This is presumably because the stress concentration at the interface between the ferrite phase and the bainite phase is alleviated by reducing the hardness difference. In addition, as described above, when fine precipitates are deposited more uniformly in the ferrite phase, the uniform elongation characteristics are remarkably improved, and cracks do not occur even during stretch flange processing where the strain gradient of the deformed portion is reduced. Excellent stretch flange characteristics can be obtained.
ここで、組織全体に占めるフェライト相やベイナイト相の面積率は、走査型電子顕微鏡(SEM)用試験片を採取し、圧延方向に平行な板厚断面を研磨後、3%ナイタール溶液で腐食し、倍率1000倍でSEM写真を3視野撮影し、画像解析処理により各相の面積を測定し、観察視野の面積に占める割合(百分率)として求めた。また、フェライト相におけるアスペクト比が3.0未満の結晶粒の面積率は、同様にして、アスペクト比が3.0未満の結晶粒の面積を測定し、フェライト相の面積に占める割合として求めた。なお、結晶粒のアスペクト比は、結晶粒における(圧延方向の最大粒径)/(板厚方向の最大粒径)で定義される。 Here, the area ratio of ferrite phase and bainite phase occupying the whole structure is obtained by corroding the plate thickness section parallel to the rolling direction after sampling a scanning electron microscope (SEM) test piece and then corroding with 3% nital solution. In addition, three fields of view of the SEM photograph were taken at a magnification of 1000 times, the area of each phase was measured by image analysis processing, and the ratio (percentage) in the area of the observation field was obtained. Similarly, the area ratio of the crystal grains having an aspect ratio of less than 3.0 in the ferrite phase was determined by measuring the area of the crystal grains having an aspect ratio of less than 3.0 and occupying the area of the ferrite phase. The aspect ratio of the crystal grains is defined by (maximum grain size in the rolling direction) / (maximum grain size in the plate thickness direction) in the crystal grains.
平均直径20nm未満の析出物中のTi含有量は、次のような方法で求めた。すなわち、試料を、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解後、表面に析出物が付着している試料を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液と称す)中に浸漬し、超音波振動を付与して、析出物を試料から剥離しSHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、孔径20nmのフィルタを用いてろ過し、ろ過後のろ液に対してICP発光分光分析装置、ICP質量分析装置、原子吸光分析装置などを用いて分析し、ろ液中のTiの絶対量を測定した。そして、Tiの絶対量を電解重量で除して、大きさ20nm未満の析出物に含まれるTi含有量(鋼における質量%)を得た。なお、電解重量は、析出物剥離後の試料に対して重量を測定し、電解前の試料重量から差し引くことで求めた。また、鋼中に析出している全析出物中のTi含有量(鋼における質量%)は、孔径20nmのフィルタを用いてろ過する前のSHMP水溶液に対してICP発光分光分析装置を用いて分析し、上記と同様にして求めた。これらのTi含有量から、鋼中の全析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合を算出した。 The Ti content in the precipitate having an average diameter of less than 20 nm was determined by the following method. In other words, the sample was subjected to constant current electrolysis at a current density of 20 mA / cm 2 in a 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol), and deposits adhered to the surface. Remove the sample from the electrolyte, immerse it in a sodium hexametaphosphate aqueous solution (500 mg / l) (hereinafter referred to as SHMP aqueous solution), apply ultrasonic vibration, peel off the deposit from the sample, and remove the SHMP aqueous solution. Extracted in. Next, the aqueous solution of SHMP containing the precipitate is filtered using a filter with a pore size of 20 nm, and the filtrate after filtration is analyzed using an ICP emission spectroscopic analyzer, an ICP mass spectrometer, an atomic absorption spectrometer, etc. The absolute amount of Ti in the filtrate was measured. Then, the absolute amount of Ti was divided by the electrolytic weight to obtain a Ti content (mass% in steel) contained in a precipitate having a size of less than 20 nm. In addition, the electrolysis weight was calculated | required by measuring a weight with respect to the sample after deposit peeling, and subtracting from the sample weight before electrolysis. In addition, the Ti content (% by mass in steel) in all precipitates precipitated in steel was analyzed using an ICP emission spectroscopic analyzer for the SHMP aqueous solution before filtration using a filter with a pore size of 20 nm. And obtained in the same manner as described above. From these Ti contents, the ratio of the total Ti content in precipitates having an average diameter of less than 20 nm to the total Ti content in all precipitates in steel was calculated.
また、平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率は次のような方法で求めた。まず、TEMにより倍率10,000倍の視野中に確認されるフェライト結晶粒を高倍(50,000倍程度)で観察し、20nm未満の析出物の存在する結晶粒の面積を求める。同様な作業を3〜5視野で繰り返し、20nm未満の析出物の存在する結晶粒の総面積を求め、観察した視野におけるフェライト相の総面積に対する20nm未満の析出物の存在する結晶粒の総面積の割合(百分率)を面積率とした。 Further, the area ratio of the crystal grains in which precipitates having an average diameter of less than 20 nm are present in the entire ferrite phase was determined by the following method. First, the ferrite crystal grains confirmed in a visual field with a magnification of 10,000 times by TEM are observed at a high magnification (about 50,000 times), and the area of the crystal grains where precipitates of less than 20 nm are present is obtained. The same operation is repeated in 3 to 5 fields of view to determine the total area of the grains having precipitates of less than 20 nm, and the total area of grains having deposits of less than 20 nm relative to the total area of the ferrite phase in the observed field of view. The ratio (percentage) was defined as the area ratio.
3) 製造条件
スラブの加熱温度:1150〜1350℃
熱間圧延後フェライト相中に微細なTiを含む析出物を析出させるには、スラブ中に析出している粗大なTiを含む析出物などを熱間圧延前に溶解させる必要がある。そのためには、スラブを1150℃以上に加熱する必要がある。一方、スラブを1350℃を超えて加熱するとフェライト相の結晶粒が粗大化して強度低下を招きやすい。したがって、スラブの加熱温度は1150〜1350℃、好ましくは1170〜1260℃とする。
3) Manufacturing conditions Slab heating temperature: 1150 ~ 1350 ℃
In order to precipitate precipitates containing fine Ti in the ferrite phase after hot rolling, it is necessary to dissolve precipitates containing coarse Ti precipitated in the slab before hot rolling. For this purpose, it is necessary to heat the slab to 1150 ° C or higher. On the other hand, when the slab is heated at a temperature exceeding 1350 ° C., the ferrite phase crystal grains become coarse and the strength tends to be lowered. Therefore, the heating temperature of the slab is 1150 to 1350 ° C, preferably 1170 to 1260 ° C.
熱間圧延の仕上温度:850〜950℃
仕上温度が850℃未満だとフェライトとオーステナイトの二相域で圧延されるため、圧延後のフェライト相の結晶粒が伸展し、アスペクト比が3.0未満の結晶粒の面積率を80%以上にすることが困難になる。一方、仕上温度が950℃を超えると析出物径が大きくなるため、必要な析出強化能を得ることができない。したがって、熱間圧延の仕上温度は850〜950℃、好ましくは880〜920℃とする。
Hot rolling finishing temperature: 850-950 ° C
If the finishing temperature is less than 850 ° C, it is rolled in the two-phase region of ferrite and austenite. Therefore, the ferrite phase grains after rolling extend and the area ratio of grains with an aspect ratio of less than 3.0 is increased to 80% or more. It becomes difficult. On the other hand, when the finishing temperature exceeds 950 ° C., the precipitate diameter increases, so that the necessary precipitation strengthening ability cannot be obtained. Therefore, the finishing temperature of hot rolling is 850 to 950 ° C, preferably 880 to 920 ° C.
熱間圧延後の一次冷却条件:平均冷却速度30℃/秒以上、冷却停止温度650〜750℃
一次冷却の平均冷却速度が30℃/秒未満ではパーライト相が生成し、伸びおよび伸びフランジ特性が劣化する。したがって、一次冷却の平均冷却速度は30℃/秒以上とする。平均冷却速度の上限は、特に限定しないが、次の冷却停止温度域で冷却を停止させるには100℃/秒程度の冷却速度が好ましい。なお、一次冷却の方法は、特に限定する必要はなく、例えば、公知のラミナー冷却による水冷を利用できる。
Primary cooling conditions after hot rolling: average cooling rate of 30 ° C / second or more, cooling stop temperature of 650-750 ° C
When the average cooling rate of the primary cooling is less than 30 ° C./second, a pearlite phase is formed, and elongation and stretch flange characteristics deteriorate. Therefore, the average primary cooling rate is 30 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but a cooling rate of about 100 ° C./second is preferable to stop cooling in the next cooling stop temperature range. The primary cooling method is not particularly limited, and for example, water cooling by known laminar cooling can be used.
一次冷却の冷却停止温度が650℃未満では、その後の空冷時にフェライト相中に微細なTiを含む析出物が十分に析出できず、また、750℃以上では平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率が50%未満となる。したがって、一次冷却の冷却停止温度は650〜750℃、好ましくは680〜720℃とする。 When the cooling stop temperature of the primary cooling is less than 650 ° C, precipitates containing fine Ti cannot be sufficiently precipitated in the ferrite phase during the subsequent air cooling, and there are precipitates with an average diameter of less than 20 nm above 750 ° C. The area ratio of the crystal grains in the entire ferrite phase is less than 50%. Therefore, the cooling stop temperature of the primary cooling is 650 to 750 ° C, preferably 680 to 720 ° C.
一次冷却後の空冷条件:空冷時間0.5〜5秒
一次冷却後の空冷は、本発明における重要なポイントである。すなわち、空冷によりフェライト相中に微細なTiを含む析出物の析出が促進され、こうした析出物が存在する結晶粒のフェライト相全体に占める面積率が50%以上となるため、一様伸び特性を大きく向上でき、変形部の歪分布が小さくなるような伸びフランジ加工を受けた時の割れを防止できることになる。
Air cooling condition after primary cooling: Air cooling time 0.5 to 5 seconds Air cooling after primary cooling is an important point in the present invention. In other words, the precipitation of fine Ti-containing precipitates in the ferrite phase is promoted by air cooling, and the area ratio of the crystal grains in which these precipitates are present in the entire ferrite phase is 50% or more. It can be greatly improved, and cracking when subjected to stretch flange processing that reduces the strain distribution of the deformed portion can be prevented.
しかし、空冷時間が0.5秒未満では微細なTiを含む析出物の析出が十分でなく、5秒を超えると平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率が50%未満となる。したがって、一次冷却後の空冷時間は0.5〜5秒間、好ましくは1〜4秒間とする。 However, when the air cooling time is less than 0.5 seconds, precipitation of fine Ti-containing precipitates is not sufficient, and when it exceeds 5 seconds, the area ratio of the crystal grains containing precipitates having an average diameter of less than 20 nm to the entire ferrite phase is 50%. Less than%. Therefore, the air cooling time after the primary cooling is 0.5 to 5 seconds, preferably 1 to 4 seconds.
なお、空冷時の冷却速度は、概ね15℃/秒以下である。 The cooling rate during air cooling is approximately 15 ° C./second or less.
空冷後の二次冷却条件:平均冷却速度20℃/秒以上
空冷後は、巻取りまで平均冷却速度20℃/秒以上で二次冷却する。これは、平均冷却速度が20℃/秒未満ではパーライト相が生成し、伸びおよび伸びフランジ特性が低下するためである。
Secondary cooling conditions after air cooling: average cooling rate of 20 ° C / second or more After air cooling, secondary cooling is performed at an average cooling rate of 20 ° C / second or more until winding. This is because when the average cooling rate is less than 20 ° C./second, a pearlite phase is formed, and elongation and stretch flange characteristics are deteriorated.
巻取温度:400〜500℃
巻取温度が400℃未満では著しく硬質なマルテンサイト相が生成し、500℃を超えるとパーライト相が生成して、伸びおよび伸びフランジ特性が著しく低下する。したがって、巻取温度は400〜500℃、好ましくは420〜480℃とする。
Winding temperature: 400-500 ° C
When the coiling temperature is less than 400 ° C., a remarkably hard martensite phase is formed. Therefore, the coiling temperature is 400 to 500 ° C, preferably 420 to 480 ° C.
その他の製造条件には通常の条件を適用できる。例えば、所望の成分組成を有する鋼は転炉や電気炉などで溶製後、真空脱ガス炉にて2次精錬を行って製造される。その後の鋳造は、生産性や品質上の点から連続鋳造法で行うのが好ましい。鋳造後は、本発明の方法にしたがって熱間圧延を行う。熱間圧延後は、表面にスケールが付着した状態であっても、酸洗を行いスケールを除去した状態であっても、鋼板の特性が変わることはない。また、熱間圧延後、調質圧延を行ったり、溶融亜鉛系めっき、電気亜鉛系めっき、化成処理を施すことも可能である。ここで、亜鉛系めっきとは、亜鉛および亜鉛を主体とした(すなわち亜鉛を約90%以上含有する)めっきであり、亜鉛のほかにAl、Crなどの合金元素を含んだめっきや亜鉛系めっき後に合金化処理を行っためっきのことである。 Normal conditions can be applied to other manufacturing conditions. For example, steel having a desired component composition is manufactured by melting in a converter or electric furnace and then performing secondary refining in a vacuum degassing furnace. The subsequent casting is preferably performed by a continuous casting method from the viewpoint of productivity and quality. After casting, hot rolling is performed according to the method of the present invention. After hot rolling, the properties of the steel sheet do not change even if the scale is attached to the surface or the scale is removed by pickling. Further, after hot rolling, temper rolling may be performed, or hot dip galvanizing, electrogalvanizing, or chemical conversion treatment may be performed. Here, zinc-based plating is plating mainly composed of zinc and zinc (that is, containing about 90% or more of zinc), and plating or zinc-based plating containing alloy elements such as Al and Cr in addition to zinc. It is the plating which performed the alloying process later.
表1に示す成分組成を有する鋼No.A〜Dを転炉で溶製し、連続鋳造により鋼スラブとした。これらの鋼スラブを、表2に示す熱延条件で板厚3.4mmの熱延鋼板No.1〜6を作製した。 Steel Nos. A to D having the composition shown in Table 1 were melted in a converter, and a steel slab was obtained by continuous casting. From these steel slabs, hot-rolled steel sheets Nos. 1 to 6 having a thickness of 3.4 mm were produced under the hot-rolling conditions shown in Table 2.
そして、上記の方法により、組織全体に占めるフェライト相の面積率(F相の面積率)、ベイナイト相の面積率(B相の面積率)、フェライト相のアスペクト比が3.0未満の結晶粒のフェライト相全体に占める面積率(アスペクト比が3.0未満の結晶粒の面積率)、鋼中に析出している全ての析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合[(20nm未満の析出物中のTi量)/(全析出物中のTi量)×100]、および平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率(20nm未満の析出物の存在する結晶粒の面積率)を求めた。 And by the above method, the ferrite phase area ratio (F phase area ratio), bainite phase area ratio (B phase area ratio), ferrite phase aspect ratio of less than 3.0 Ti content in precipitates with an average diameter of less than 20 nm with respect to the total area ratio (area ratio of crystal grains with an aspect ratio of less than 3.0), total Ti content in all precipitates precipitated in steel The ratio of the total amount [(Ti amount in precipitates less than 20 nm) / (Ti amount in all precipitates) × 100], and accounts for precipitates having an average diameter less than 20 nm in the entire ferrite phase The area ratio (area ratio of crystal grains where precipitates of less than 20 nm exist) was determined.
また、JIS 5号引張試験片(圧延方向に平行)を採取し、JIS Z2241に準拠して歪み速度10mm/minで引張試験を行い、TS、全伸びEl、一様伸びU-Elを測定し、TSが780MPa以上、Elが24%以上、U-Elが12%以上であれば本発明の目標を達成しているとした。 In addition, JIS No. 5 tensile test specimen (parallel to the rolling direction) was collected and subjected to a tensile test at a strain rate of 10 mm / min in accordance with JIS Z2241 to measure TS, total elongation El, and uniform elongation U-El. If the TS is 780 MPa or more, the El is 24% or more, and the U-El is 12% or more, the target of the present invention is achieved.
さらに、130mm角の穴広げ試験用試験片を採取し、鉄連規格JFST 1001に準拠した穴拡げ試験を行い、穴拡げ率λを求め、λが75%以上であれば伸びフランジ性が良好であるとした。 Furthermore, a 130 mm square hole expansion test specimen was collected and subjected to a hole expansion test in accordance with the Iron Federation Standard JFST 1001 to obtain a hole expansion ratio λ. If λ is 75% or more, the stretch flangeability is good. It was.
結果を表3に示す。本発明例では、TSが780MPa以上であり、Elが24%以上、伸び特性に優れ、かつ75%以上の高いλが得られ、伸びフランジ特性にも優れていることがわかる。さらに、本発明例では、U-Elが12%以上と一様伸び特性にも優れていることがわかる。 The results are shown in Table 3. In the example of the present invention, it can be seen that TS is 780 MPa or more, El is 24% or more, excellent elongation characteristics, high λ of 75% or more is obtained, and stretch flange characteristics are also excellent. Furthermore, in the example of the present invention, it can be seen that the U-El is 12% or more and the uniform elongation property is also excellent.
Claims (2)
質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:1.0〜1.8%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.06〜0.13%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1150〜1350℃の加熱温度で加熱し、850〜950℃の仕上温度で熱間圧延後、30℃/秒以上の平均冷却速度で650〜750℃の冷却停止温度まで一次冷却し、引き続き0.5〜5秒間空冷後、20℃/秒以上50℃/秒以下の平均冷却速度で二次冷却して、400〜500℃の巻取温度で巻取ることを特徴とする引張強度が780MPa以上の高強度熱延鋼板の製造方法。
i) アスペクト比が3.0未満の結晶粒のフェライト相全体に占める面積率が80%以上、
ii) 鋼中の全析出物中のTi含有量の合計に対する平均直径20nm未満の析出物中のTi含有量の合計の割合が70%以上、
iii) 平均直径20nm未満の析出物が存在する結晶粒のフェライト相全体に占める面積率が50%以上 The area ratio of the ferrite phase occupying the entire structure is 85% or more, the area ratio of the bainite phase is 2 to 9%, and the ferrite phase has a microstructure satisfying the following conditions i) to iii): A method of manufacturing a steel sheet,
In mass%, C: 0.06-0.15%, Si: 1.2% or less, Mn: 1.0-1.8%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti: 0.06-0.13% The steel slab having a composition composed of Fe and inevitable impurities as the balance is heated at a heating temperature of 1150 to 1350 ° C., and after hot rolling at a finishing temperature of 850 to 950 ° C., an average of 30 ° C./second or more Primary cooling to a cooling stop temperature of 650 to 750 ° C at a cooling rate, followed by air cooling for 0.5 to 5 seconds, followed by secondary cooling at an average cooling rate of 20 ° C / second or more and 50 ° C / second or less to 400 to 500 ° C A method for producing a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, characterized by winding at a winding temperature.
i) The area ratio of the crystal grains having an aspect ratio of less than 3.0 to the entire ferrite phase is 80% or more,
ii) The ratio of the total Ti content in precipitates with an average diameter of less than 20 nm to the total Ti content in all precipitates in steel is 70% or more,
iii) The area ratio of the crystal grains in which precipitates having an average diameter of less than 20 nm are present in the entire ferrite phase is 50% or more
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009279021A JP5556157B2 (en) | 2009-12-09 | 2009-12-09 | Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009279021A JP5556157B2 (en) | 2009-12-09 | 2009-12-09 | Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011122189A JP2011122189A (en) | 2011-06-23 |
JP5556157B2 true JP5556157B2 (en) | 2014-07-23 |
Family
ID=44286358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009279021A Active JP5556157B2 (en) | 2009-12-09 | 2009-12-09 | Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5556157B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104141093B (en) * | 2013-05-10 | 2016-04-13 | 河北钢铁股份有限公司承德分公司 | Yield strength reaches motor vehicle body band steel and the rolling method thereof of 700MPa |
WO2017111303A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | High-strength hot-rolled steel sheet with excellent bending workability and production method therefor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240356A (en) * | 1993-02-10 | 1994-08-30 | Sumitomo Metal Ind Ltd | Production of high strength hot rolled steel plate excellent in workability |
JP5056771B2 (en) * | 2008-04-21 | 2012-10-24 | Jfeスチール株式会社 | Method for producing high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more |
-
2009
- 2009-12-09 JP JP2009279021A patent/JP5556157B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011122189A (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6525114B1 (en) | High strength galvanized steel sheet and method of manufacturing the same | |
EP2808413B1 (en) | High-strength hot-rolled steel sheet and method for producing same | |
JP6179584B2 (en) | High strength steel plate with excellent bendability and method for producing the same | |
KR101424859B1 (en) | High-strength steel sheet and manufacturing method therefor | |
EP3467135B1 (en) | Thin steel sheet, and production method therefor | |
EP2759613B1 (en) | High-tensile-strength hot-rolled steel sheet and method for producing same | |
EP2843075B1 (en) | High-strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method for manufacturing the same | |
JP5884476B2 (en) | High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof | |
JP5482162B2 (en) | High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same | |
JP5610003B2 (en) | High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof | |
JP2014019928A (en) | High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet | |
JP6669319B1 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP5637225B2 (en) | High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof | |
US20220275471A1 (en) | High-strength thin steel sheet and method for manufacturing same | |
JP2005264323A (en) | High strength steel sheet having excellent deep drawability and stretch flange formability and its production method | |
JP6103160B1 (en) | High strength thin steel sheet and method for producing the same | |
JP5821864B2 (en) | High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof | |
JP6131872B2 (en) | High strength thin steel sheet and method for producing the same | |
JP2011021224A (en) | High strength cold-rolled steel sheet and method of manufacturing the same | |
JP5556157B2 (en) | Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more | |
JP6123551B2 (en) | High-strength hot-rolled steel sheet excellent in fatigue resistance and shape freezing property after slit processing and manufacturing method thereof | |
WO2021125283A1 (en) | Steel sheet and method for manufacturing same | |
JP5971281B2 (en) | Method for producing high-strength hot-rolled steel sheet with excellent workability and toughness | |
JP5532791B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP2009108378A (en) | High-tensile strength cold rolled steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140227 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5556157 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |