JP5482162B2 - High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same - Google Patents

High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same Download PDF

Info

Publication number
JP5482162B2
JP5482162B2 JP2009279020A JP2009279020A JP5482162B2 JP 5482162 B2 JP5482162 B2 JP 5482162B2 JP 2009279020 A JP2009279020 A JP 2009279020A JP 2009279020 A JP2009279020 A JP 2009279020A JP 5482162 B2 JP5482162 B2 JP 5482162B2
Authority
JP
Japan
Prior art keywords
less
phase
ferrite phase
strength
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279020A
Other languages
Japanese (ja)
Other versions
JP2011122188A (en
Inventor
玲子 水野
勝己 中島
哲也 妻鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009279020A priority Critical patent/JP5482162B2/en
Publication of JP2011122188A publication Critical patent/JP2011122188A/en
Application granted granted Critical
Publication of JP5482162B2 publication Critical patent/JP5482162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車の構造部品に適した高強度熱延鋼板、特に、伸びおよび伸びフランジ特性に優れた引張強度TSが780MPa以上の高強度熱延鋼板およびその製造方法に関する。   The present invention relates to a high-strength hot-rolled steel sheet suitable for structural parts of automobiles, and more particularly to a high-strength hot-rolled steel sheet having a tensile strength TS excellent in elongation and stretch flange characteristics of 780 MPa or more and a method for producing the same.

近年、環境問題に対する関心が高まるなか、自動車用鋼板には、軽量化による燃費向上を目的に一層の高強度-薄肉化が要求されている。現在では、自動車のピラーやメンバーなどの構造部品に主として440MPa級や590MPa級のTSを有する高強度熱延鋼板が使用されるようになっているが、近い将来、780MPa以上のTSを有する高強度熱延鋼板の実用化が予測されている。   In recent years, with increasing interest in environmental issues, steel sheets for automobiles are required to have higher strength and thinner wall thickness for the purpose of improving fuel efficiency through weight reduction. Currently, high-strength hot-rolled steel sheets with 440MPa class or 590MPa class TS are mainly used for structural parts such as automobile pillars and members. In the near future, high strength steel with TS of 780MPa or higher will be used. The practical application of hot-rolled steel sheets is predicted.

そのため、780MPa以上のTSを有する高強度熱延鋼板を対象とした研究開発が活発に行われており、高強度化にともなって劣化する加工性の向上、なかでも伸びおよび伸びフランジ特性の向上を図った種々の高強度熱延鋼板が提案されている。   For this reason, research and development for high-strength hot-rolled steel sheets with TS of 780 MPa or more is actively conducted, improving workability that deteriorates with increasing strength, in particular, improving elongation and stretch flange characteristics. Various high-strength hot-rolled steel sheets have been proposed.

例えば、特許文献1には、ベイナイト相を体積率で5〜70%含み、残部が実質的にフェライト相からなる複合組織を有し、フェライト相中に以下の(1)式を満たす範囲でTiおよびMoを含む析出物が分散析出していることを特徴とするTSが690MPa以上の加工性(伸びおよび伸びフランジ特性)に優れた高強度熱延鋼板が開示されている。
(Mo/96)/{(Ti/48)+(Mo/96)}≧0.25・・・(1)
ただし、(1)式中のTi、Moは析出物中の各成分の重量%を表す。
For example, Patent Document 1 includes a composite structure including a bainite phase in a volume ratio of 5 to 70% and the balance being substantially composed of a ferrite phase, and Ti within a range satisfying the following formula (1) in the ferrite phase. A high-strength hot-rolled steel sheet excellent in workability (elongation and stretch flange characteristics) having a TS of 690 MPa or more, characterized in that precipitates containing Mo and Mo are dispersed and precipitated.
(Mo / 96) / {(Ti / 48) + (Mo / 96)} ≧ 0.25 ... (1)
However, Ti and Mo in the formula (1) represent% by weight of each component in the precipitate.

また、特許文献2には、質量%で、C:0.04〜0.15%、Si:1.5%以下、Mn:0.5〜1.6%、P:0.04%以下、S:0.005%以下、Al:0.04%以下、Ti:0.03〜0.15%、およびMo:0.03〜0.5%を含み、残部がFeおよび不可避的不純物からなる化学組成を有し、析出物の存在するフェライト相と、ベイナイト相および/またはマルテンサイト相からなる第二相と、前記フェライト相および第二相以外のその他の相と、からなる組織を有し、かつ前記析出物の存在するフェライト相の割合が40〜95%、前記その他の相の割合が5%以下である高強度熱延鋼板が開示されている。   Patent Document 2 includes mass%, C: 0.04 to 0.15%, Si: 1.5% or less, Mn: 0.5 to 1.6%, P: 0.04% or less, S: 0.005% or less, Al: 0.04% or less, It contains Ti: 0.03-0.15% and Mo: 0.03-0.5%, and the balance has a chemical composition consisting of Fe and inevitable impurities, and consists of a ferrite phase in which precipitates are present, a bainite phase and / or a martensite phase. And the ferrite phase and the other phase other than the second phase, and the proportion of the ferrite phase in which the precipitate is present is 40 to 95%, the proportion of the other phase Has disclosed a high-strength hot-rolled steel sheet having 5% or less.

さらに、特許文献3には、質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:0.5〜1.6%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.03〜0.20%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、体積占有率で50〜90%がフェライト相で、かつ残部が実質的にベイナイト相であって、フェライト相とベイナイト相の体積占有率の合計が95%以上であり、フェライト相中にはTiを含む析出物が析出し、該析出物の平均直径が20nm以下である組織を有し、かつ、鋼中のTi量の80%以上が析出していることを特徴とする伸び特性、伸びフランジ特性および引張疲労特性に優れたTSが780MPa以上の高強度熱延鋼板が開示されている。   Furthermore, in Patent Document 3, in mass%, C: 0.06 to 0.15%, Si: 1.2% or less, Mn: 0.5 to 1.6%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti: 0.03 to 0.20% contained, the remainder has a composition composed of Fe and inevitable impurities, 50 to 90% by volume occupancy is the ferrite phase, and the remainder is substantially the bainite phase, The total volume occupancy of the ferrite phase and the bainite phase is 95% or more, a precipitate containing Ti is precipitated in the ferrite phase, and the average diameter of the precipitate has a structure of 20 nm or less, and A high-strength hot-rolled steel sheet having a TS of 780 MPa or more, which is excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, characterized by precipitation of 80% or more of the Ti content in the steel is disclosed.

特開2003-321739号公報Japanese Patent Laid-Open No. 2003-321739 特開2004-339606号公報JP 2004-339606 A 特開2007-9322号公報Japanese Unexamined Patent Publication No. 2007-9322

しかしながら、特許文献1〜3に記載の高強度熱延鋼板には、次のような問題がある。すなわち、特許文献1、2に記載の高強度熱延鋼板は、Moを使用しているためコスト高であり、特許文献1〜3に記載の高強度熱延鋼板では、安定して780MPa以上のTSを確保することができない場合がある。   However, the high-strength hot-rolled steel sheets described in Patent Documents 1 to 3 have the following problems. That is, the high-strength hot-rolled steel sheets described in Patent Documents 1 and 2 are expensive because they use Mo, and the high-strength hot-rolled steel sheets described in Patent Documents 1 to 3 are stably 780 MPa or more. TS may not be secured.

本発明は、このような問題を解決するためになされたもので、安価に、かつ安定して780MPa以上のTSが得られる伸びおよび伸びフランジ特性に優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and provides a high-strength hot-rolled steel sheet excellent in elongation and stretch flange characteristics that can obtain TS of 780 MPa or more stably at low cost and a method for producing the same. The purpose is to provide.

本発明者らは、安価に、かつ安定して780MPa以上のTSが得られる伸びおよび伸びフランジ特性に優れた高強度熱延鋼板について検討を重ねた結果、以下のことを見出した。   As a result of studying a high strength hot-rolled steel sheet excellent in elongation and stretch flange characteristics that can stably obtain TS of 780 MPa or more stably at low cost, the present inventors have found the following.

すなわち、Moを使用せず、ベイナイト相とベイニティックフェライト相を主体とし、20nm未満のサイズのTiを含む析出物を析出させたポリゴナルフェライト相を実質的な残部としたミクロ組織を形成させることにより、安定して780MPa以上のTSを確保できるとともに、優れた伸びおよび伸びフランジ特性が得られる。   That is, without using Mo, a microstructure is mainly formed of a polygonal ferrite phase mainly composed of a bainite phase and a bainitic ferrite phase and deposited with a precipitate containing Ti having a size of less than 20 nm. As a result, a TS of 780 MPa or more can be secured stably, and excellent elongation and stretch flange characteristics can be obtained.

本発明は、このような知見に基づいてなされたもので、質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:0.5〜2.0%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.03〜0.15%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、組織全体に占めるベイナイト相およびベイニティックフェライト相の合計の体積率が50%以上で、ベイナイト相およびベイニティックフェライト相とポリゴナルフェライト相の合計の体積率が95%以上であるミクロ組織を有し、平均直径20nm未満の析出物中のTi含有量の合計が、鋼中に析出している全ての析出物中のTi含有量の合計の50%以上であることを特徴とする引張強度が780MPa以上の高強度熱延鋼板を提供する。   The present invention was made based on such findings, and in mass%, C: 0.06 to 0.15%, Si: 1.2% or less, Mn: 0.5 to 2.0%, P: 0.04% or less, S: 0.005% Hereinafter, Al: 0.05% or less, Ti: 0.03 to 0.15% contained, the remainder has a composition composed of Fe and inevitable impurities, the total volume ratio of the bainite phase and bainitic ferrite phase occupying the entire structure Is a microstructure in which the volume fraction of the bainite phase and the total of the bainitic ferrite phase and the polygonal ferrite phase is 95% or more, and the total Ti content in the precipitate having an average diameter of less than 20 nm. However, the present invention provides a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, characterized in that it is 50% or more of the total Ti content in all precipitates precipitated in the steel.

本発明の高強度熱延鋼板では、さらに、質量%で、V:0.005〜0.2%やB:0.0005〜0.002%やCa:0.0005〜0.005%を、個別にあるいは2以上の元素を同時に含有する成分組成とすることが好ましい。   In the high-strength hot-rolled steel sheet of the present invention, in addition, by mass%, V: 0.005-0.2%, B: 0.0005-0.002%, Ca: 0.0005-0.005%, or a component containing two or more elements simultaneously A composition is preferred.

本発明の高強度熱延鋼板は、上記の成分組成を有する鋼スラブを、1150〜1350℃の加熱温度で加熱し、850〜950℃の仕上温度で熱間圧延後、30℃/秒以上の平均冷却速度で550℃以上630℃未満の冷却停止温度まで一次冷却し、引き続き0.5〜10秒間空冷後、20℃/秒以上の平均冷却速度で二次冷却して、300〜500℃の巻取温度で巻取ることによって製造できる。   The high-strength hot-rolled steel sheet of the present invention is a steel slab having the above component composition, heated at a heating temperature of 1150 to 1350 ° C., hot-rolled at a finishing temperature of 850 to 950 ° C., and then at least 30 ° C./second. Primary cooling to a cooling stop temperature of 550 ° C or more and less than 630 ° C at an average cooling rate, followed by air cooling for 0.5 to 10 seconds, followed by secondary cooling at an average cooling rate of 20 ° C / second or more and winding at 300 to 500 ° C Can be manufactured by winding at temperature.

本発明により、安価に、かつ安定して780MPa以上のTSが得られる伸びおよび伸びフランジ特性に優れた高強度熱延鋼板が製造可能になった。本発明の高強度熱延鋼板を自動車のピラーやメンバーなどの構造部品に適用すれば、乗客の安全性を確保しながら薄肉化が可能となり、自動車の環境負荷が低減されることが期待される。   The present invention makes it possible to produce a high-strength hot-rolled steel sheet excellent in elongation and stretch-flange characteristics that can obtain TS of 780 MPa or more stably at low cost. If the high-strength hot-rolled steel sheet of the present invention is applied to structural parts such as automobile pillars and members, it is possible to reduce the wall thickness while ensuring the safety of passengers, and to reduce the environmental burden of automobiles. .

以下に、本発明の詳細について説明する。なお、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. Note that “%” representing the content of each component element means “% by mass” unless otherwise specified.

1) 成分組成
C:0.06〜0.15%
Cは、硬質なベイナイト相やベイニティックフェライト相の形成を促進したり、ポリゴナルフェライト相中に微細なTiの炭化物(析出物)として析出し、高強度化に有効な元素である。780MPa以上のTSを得るためにはC量を0.06%以上とする必要がある。一方、C量が0.15%を超えると溶接性が低下する。したがって、C量は0.06〜0.15%、好ましくは0.07〜0.12%とする。
1) Component composition
C: 0.06-0.15%
C is an element effective for increasing the strength by promoting the formation of a hard bainite phase or bainitic ferrite phase or by precipitating as fine Ti carbides (precipitates) in the polygonal ferrite phase. In order to obtain a TS of 780 MPa or more, the C content needs to be 0.06% or more. On the other hand, if the amount of C exceeds 0.15%, the weldability decreases. Therefore, the C content is 0.06 to 0.15%, preferably 0.07 to 0.12%.

Si:1.2%以下
Siは、固溶強化に寄与する元素であるが、その量が1.2%を超えると表面性状が著しく劣化し、耐食性が低下する。したがって、Si量は1.2%以下、好ましくは0.9%以下とする。
Si: 1.2% or less
Si is an element that contributes to solid solution strengthening, but if its amount exceeds 1.2%, the surface properties are remarkably deteriorated and the corrosion resistance is lowered. Therefore, the Si content is 1.2% or less, preferably 0.9% or less.

Mn:0.5〜2.0%
Mnは、高強度化に有効な元素であるが、その量が0.5%未満だと780MPa以上のTSが得られない。一方、Mn量が2.0%を超えると中心偏析が顕著になり、伸びフランジ特性などの加工性や溶接性が低下する。したがって、Mn量は0.5〜2.0%、好ましくは0.8〜1.8%とする。
Mn: 0.5-2.0%
Mn is an element effective for increasing the strength, but if its amount is less than 0.5%, a TS of 780 MPa or more cannot be obtained. On the other hand, when the Mn content exceeds 2.0%, center segregation becomes prominent, and workability such as stretch flange characteristics and weldability deteriorate. Therefore, the Mn content is 0.5 to 2.0%, preferably 0.8 to 1.8%.

P:0.04%以下
P量が0.04%を超えると粒界に偏析し、低温靱性や伸びフランジ特性などの加工性の低下を招く。したがって、P量は0.04%以下とするが、極力低減することが好ましい。
P: 0.04% or less
When the P content exceeds 0.04%, segregation occurs at the grain boundaries, resulting in deterioration of workability such as low temperature toughness and stretch flange characteristics. Therefore, the P content is 0.04% or less, but it is preferable to reduce it as much as possible.

S:0.005%以下
Sは、MnやTiと硫化物を形成し、伸び特性などの加工性を低下させる。したがって、S量は0.005%以下とするが、極力低減することが好ましい。
S: 0.005% or less
S forms sulfides with Mn and Ti, and degrades workability such as elongation characteristics. Therefore, the S amount is 0.005% or less, but it is preferable to reduce it as much as possible.

Al:0.05%以下
Alは、鋼の脱酸剤として添加され、その清浄度を向上させるのに有効な元素であるので、0.001%以上含有されていることが好ましい。しかし、Al量が0.05%を超えると介在物が多量に生成し、表面疵の原因になる。したがって、Al量は0.05%以下、好ましくは0.01〜0.04%とする。
Al: 0.05% or less
Al is added as a steel deoxidizer and is an effective element for improving the cleanliness thereof, so it is preferably contained in an amount of 0.001% or more. However, if the Al content exceeds 0.05%, a large amount of inclusions are formed, causing surface defects. Therefore, the Al content is 0.05% or less, preferably 0.01 to 0.04%.

Ti:0.03〜0.15%
Tiは、ポリゴナルフェライト相中で主としてCと結合し微細な析出物を析出し、その高強度化に寄与する元素である。こうした効果を得るにはTi量を0.03%以上とする必要があるが、0.15%を超えるとその効果は飽和し、コストアップを招く。したがって、Ti量は0.03〜0.15%、好ましくは0.05〜0.12%とする。
Ti: 0.03-0.15%
Ti is an element that mainly binds to C in the polygonal ferrite phase to precipitate fine precipitates and contributes to increasing the strength. In order to obtain such effects, the Ti amount needs to be 0.03% or more. However, if it exceeds 0.15%, the effects are saturated and the cost is increased. Therefore, the Ti content is 0.03 to 0.15%, preferably 0.05 to 0.12%.

残部はFeおよび不可避的不純物であるが、以下の理由により、V:0.005〜0.2%やB:0.0005〜0.002%やCa:0.0005〜0.005%を、個別にあるいは2種以上の元素を同時に含有させることが好ましい。   The balance is Fe and unavoidable impurities, but for the following reasons, V: 0.005-0.2%, B: 0.0005-0.002%, Ca: 0.0005-0.005% are contained individually or simultaneously with two or more elements. It is preferable.

V:0.005〜0.2%
Vは、鋼を析出強化または固溶強化し、高強度化や疲労強度の向上に寄与する元素である。しかし、その量が0.005%未満だとその効果が乏しく、0.2%を超えるとその効果が飽和し、コストアップを招く。したがって、V量は0.005〜0.2%とすることが好ましい。
V: 0.005-0.2%
V is an element that contributes to increasing strength and improving fatigue strength by precipitation strengthening or solid solution strengthening of steel. However, if the amount is less than 0.005%, the effect is poor, and if it exceeds 0.2%, the effect is saturated and the cost is increased. Therefore, the V amount is preferably 0.005 to 0.2%.

B:0.0005〜0.002%
Bは、オーステナイト粒界からのフェライト相の生成や成長を抑制する作用を有する元素であるので、必要に応じて含有させることができる。その効果を得るには、B量を0.0005%以上とすることが好ましい。一方、B量が0.002%を超えると伸び特性などの加工性が低下する。したがって、B量は0.0005〜0.002%とすることが好ましい。
B: 0.0005-0.002%
B is an element having an action of suppressing the formation and growth of ferrite phase from the austenite grain boundary, and can be contained as necessary. In order to obtain the effect, the B content is preferably 0.0005% or more. On the other hand, when the amount of B exceeds 0.002%, workability such as elongation characteristics is lowered. Therefore, the B amount is preferably 0.0005 to 0.002%.

Ca:0.0005〜0.005%
Caは、硫化物の形状を球状化し、伸びフランジ特性を改善するために有効な元素である。その効果を得るには、Ca量を0.0005%以上とすることが好ましい。一方、Ca量が0.005%を超えると介在物等の増加を招き、表面欠陥や内部欠陥の原因となる。したがって、Ca量は0.0005〜0.005%とすることが好ましい。
Ca: 0.0005-0.005%
Ca is an effective element for making the shape of sulfide spherical and improving the stretch flange characteristics. In order to obtain the effect, the Ca content is preferably 0.0005% or more. On the other hand, if the Ca content exceeds 0.005%, inclusions and the like increase, causing surface defects and internal defects. Therefore, the Ca content is preferably 0.0005 to 0.005%.

2) ミクロ組織
2-1) 組織全体に占めるベイナイト相およびベイニティックフェライト相の合計の体積率が50%以上、ベイナイト相およびベイニティックフェライト相とポリゴナルフェライト相の合計の体積率が95%以上
780MPa以上のTSと優れた伸びおよび伸びフランジ特性とを両立させるには、ベイナイト相およびベイニティックフェライト相を主体とする。すなわち、本発明では、フェライト相生成温度域より低い冷却停止温度で空冷することにより、比較的硬質なベイニティックフェライト相を生成させる。このようなベイニティックフェライト相を存在させることにより、従来、ベイナイト相とポリゴナルフェライト相との混合組織で問題となっていた、これら組織間の大きな硬度差が生じる界面を減少させ、伸びフランジ特性を大幅に改善できることになる。なお、ベイニティックフェライト相は粒内にラスが、ベイナイト相は粒内に炭化物が確認できるものであるが、本発明では、上記のようにベイニティックフェライト相を生成させるため、巻取りの段階で生成するベイナイト相と上記ベイニティックフェライト相の明確な識別が難しい。ただし、結晶粒の形状や炭化物の析出状態から、ベイニティックフェライト相あるいはベイナイト相であることは確認でき、その他の組織とは識別できる。このため、本願発明では、ベイナイト相およびベイニティックフェライト相の合計として、組織規定を行う。このとき、組織全体に占めるベイナイト相およびベイニティックフェライト相の合計の体積率が50%未満であると、780MPa以上のTSが得られない。このため、ベイナイト相およびベイニティックフェライト相の合計の体積率は50%以上とし、好ましくは55%以上、より好ましくは60%以上であり、100%であってもよい。残部組織を有する場合は、これを実質的にポリゴナルフェライト相とすることが好ましく、組織全体に占めるベイナイト相およびベイニティックフェライト相とポリゴナルフェライト相の合計の体積率を95%以上とする必要がある。ベイナイト相およびベイニティックフェライト相とポリゴナルフェライト相以外の組織、具体的には、パーライト相やマルテンサイト相などが合計で5%を超える程多くなると、伸びや伸びフランジ性を著しく損ねることとなるためである。
2) Micro structure
2-1) The total volume fraction of the bainite phase and bainitic ferrite phase in the entire structure is 50% or more, and the total volume fraction of the bainite phase, bainitic ferrite phase and polygonal ferrite phase is 95% or more.
A bainite phase and a bainitic ferrite phase are mainly used to satisfy both TS of 780 MPa or more and excellent elongation and stretch flange characteristics. That is, in the present invention, a relatively hard bainitic ferrite phase is generated by air cooling at a cooling stop temperature lower than the ferrite phase generation temperature range. The presence of such bainitic ferrite phase reduces the interface where a large hardness difference between these structures, which has been a problem with the mixed structure of the bainite phase and the polygonal ferrite phase, has been reduced. The characteristics can be greatly improved. In the bainitic ferrite phase, lath can be confirmed in the grains, and in the bainite phase, carbide can be confirmed in the grains. However, in the present invention, the bainitic ferrite phase is generated as described above. It is difficult to clearly distinguish the bainite phase formed at the stage from the bainitic ferrite phase. However, it can be confirmed that it is a bainitic ferrite phase or a bainite phase from the shape of crystal grains and the precipitation state of carbides, and can be distinguished from other structures. For this reason, in the present invention, the structure is defined as the sum of the bainite phase and the bainitic ferrite phase. At this time, if the total volume ratio of the bainite phase and bainitic ferrite phase in the entire structure is less than 50%, TS of 780 MPa or more cannot be obtained. Therefore, the total volume ratio of the bainite phase and the bainitic ferrite phase is 50% or more, preferably 55% or more, more preferably 60% or more, and may be 100%. When it has a remaining structure, it is preferable that this is substantially the polygonal ferrite phase, and the total volume fraction of the bainite phase and the bainitic ferrite phase and the polygonal ferrite phase in the entire structure is 95% or more. There is a need. If the structure other than the bainite phase, bainitic ferrite phase and polygonal ferrite phase, specifically the pearlite phase or martensite phase exceeds 5% in total, the elongation and stretch flangeability will be significantly impaired. It is to become.

ここで、組織全体に占めるベイナイト相、ベイニティックフェライト相、ポリゴナルフェライト相の体積率は、走査型電子顕微鏡(SEM)用試験片を採取し、圧延方向に平行な板厚断面を研磨後、3%ナイタール溶液で腐食し、倍率1000倍でSEM写真を3視野撮影し、ベイナイト相、ベイニティックフェライト相、ポリゴナルフェライト相を画像処理により抽出し、画像解析処理により各相の面積を測定し、観察視野の面積に占める割合(百分率)として求めた。なお、ベイナイト相およびベイニティックフェライト相は、粒の形状と炭化物の析出状態を観察し、粒内に炭化物が確認されたりラスが認められる組織をベイナイト相およびベイニティックフェライト相とした。   Here, the volume fraction of the bainite phase, bainitic ferrite phase and polygonal ferrite phase occupying the entire structure is obtained by sampling a specimen for a scanning electron microscope (SEM) and polishing a plate thickness section parallel to the rolling direction. Corroded with 3% nital solution, SEM photo taken at 1000x magnification with 3 fields of view, extracted bainite phase, bainitic ferrite phase, polygonal ferrite phase by image processing, and the area of each phase by image analysis processing Measured and calculated as a percentage (percentage) of the area of the observation field. In the bainite phase and bainitic ferrite phase, the shape of grains and the precipitation state of carbides were observed, and the structure in which carbides were confirmed or lath was observed in the grains was defined as the bainite phase and bainitic ferrite phase.

2-2) 平均直径20nm未満の析出物中のTi含有量の合計:鋼中に析出している全ての析出物中のTi含有量の合計の50%以上
上述したように、本発明においてはベイナイトおよびベイニティックフェライト以外の残部としては、ポリゴナルフェライトとすることが好ましいが、主体であるベイナイト相やベイニティックフェライト相との硬度差が大き過ぎると伸びフランジ特性の低下を招く。そこで、本発明では、ポリゴナルフェライト相が生成する場合でも、これをある程度硬質化するために、転位の移動を抑制して大きな析出強化能の期待できる平均直径20nm未満のTiを含む微細な析出物を、これら微細な析出物の全析出物中のTi含有量の合計が鋼中に析出している全ての析出物中のTi含有量の合計の50%以上となるように析出させる。このようなTiを含む微細な析出物は、主にTiCであるが、オーステナイト相とフェライト相のTiCの溶解度積の違いから、オーステナイト相からフェライト相へ変態する際に析出しやすく、ポリゴナルフェライト相が生成する場合はポリゴナルフェライト相中に析出して、ポリゴナルフェライト相を硬質化する役割を果たしている。平均直径20nm未満の析出物中のTi含有量の合計:鋼中に析出している全ての析出物中のTi含有量の合計の50%未満だと、平均直径20nm未満の析出物の数が少なく、ポリゴナルフェライト相の硬質化を図れないため、良好な伸びフランジ性が確保できない。
2-2) Total Ti content in precipitates with an average diameter of less than 20 nm: 50% or more of the total Ti content in all precipitates precipitated in steel As described above, in the present invention The balance other than bainite and bainitic ferrite is preferably polygonal ferrite. However, if the difference in hardness from the main bainite phase or bainitic ferrite phase is too large, the stretch flange characteristic is deteriorated. Therefore, in the present invention, even when a polygonal ferrite phase is generated, in order to harden this to some extent, fine precipitation containing Ti with an average diameter of less than 20 nm that can be expected to have a large precipitation strengthening ability by suppressing dislocation movement. The product is precipitated so that the total Ti content in all the precipitates of these fine precipitates is 50% or more of the total Ti content in all the precipitates precipitated in the steel. Such fine precipitates containing Ti are mainly TiC, but due to the difference in the solubility product of TiC between the austenite phase and the ferrite phase, they are likely to precipitate when transformed from the austenite phase to the ferrite phase. When a phase is formed, it precipitates in the polygonal ferrite phase and plays a role of hardening the polygonal ferrite phase. Total Ti content in precipitates with an average diameter of less than 20 nm: If the total Ti content in all precipitates precipitated in the steel is less than 50% of the total, the number of precipitates with an average diameter of less than 20 nm is small, Since the polygonal ferrite phase cannot be hardened, good stretch flangeability cannot be secured.

ここで、平均直径20nm未満の析出物中のTi含有量は、次のような方法で求めることができる。すなわち、試料を、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解後、表面に析出物が付着している試料を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液と称す)中に浸漬し、超音波振動を付与して、析出物を試料から剥離しSHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、孔径20nmのフィルタを用いてろ過し、ろ過後のろ液に対してICP発光分光分析装置を用いて分析し、ろ液中のTiの絶対量を測定した。そして、Tiの絶対量を電解重量で除して、大きさ20nm未満の析出物に含まれるTi含有量(鋼における質量%)を得る。なお、電解重量は、析出物剥離後の試料に対して重量を測定し、電解前の試料重量から差し引くことで求める。また、鋼中に析出している全ての析出物中のTi含有量(鋼における質量%)は、孔径20nmのフィルタを用いてろ過する前のSHMP水溶液に対してICP発光分光分析装置を用いて分析し、上記と同様にして求まる。これらのTi含有量から、平均直径20nm未満の析出物中のTi含有量の合計の鋼中に析出している全ての析出物中のTi含有量の合計に対する割合が算出できることになる。 Here, the Ti content in the precipitate having an average diameter of less than 20 nm can be determined by the following method. In other words, the sample was subjected to constant current electrolysis at a current density of 20 mA / cm 2 in a 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol). Remove the sample from the electrolyte, immerse it in a sodium hexametaphosphate aqueous solution (500 mg / l) (hereinafter referred to as SHMP aqueous solution), apply ultrasonic vibration, peel off the deposit from the sample, and remove the SHMP aqueous solution. Extracted in. Next, the SHMP aqueous solution containing the precipitate was filtered using a filter with a pore size of 20 nm, and the filtrate after filtration was analyzed using an ICP emission spectrometer, and the absolute amount of Ti in the filtrate was measured. . Then, by dividing the absolute amount of Ti by the electrolysis weight, the Ti content (mass% in steel) contained in the precipitate having a size of less than 20 nm is obtained. In addition, electrolysis weight is calculated | required by measuring weight with respect to the sample after deposit peeling, and subtracting from the sample weight before electrolysis. In addition, the Ti content (% by mass in steel) in all precipitates precipitated in the steel was measured using an ICP emission spectrometer for the SHMP aqueous solution before filtration using a filter with a pore diameter of 20 nm. Analyze and find as above. From these Ti contents, the ratio of the total Ti content in the precipitates with an average diameter of less than 20 nm to the total Ti content in all the precipitates precipitated in the steel can be calculated.

3) 製造条件
スラブの加熱温度:1150〜1350℃
熱間圧延後ポリゴナルフェライト相中に微細なTiを含む析出物を析出させるには、スラブ中に析出している粗大なTiを含む析出物などを熱間圧延前に溶解させる必要がある。そのためには、スラブを1150℃以上に加熱する必要がある。一方、スラブを1350℃を超えて加熱するとスケール増大による歩留まり低下を招きやすい。したがって、スラブの加熱温度は1150〜1350℃、好ましくは1170〜1260℃とする。
3) Manufacturing conditions Slab heating temperature: 1150 ~ 1350 ℃
In order to precipitate fine Ti-containing precipitates in the polygonal ferrite phase after hot rolling, it is necessary to dissolve coarse Ti-containing precipitates precipitated in the slab before hot rolling. For this purpose, it is necessary to heat the slab to 1150 ° C or higher. On the other hand, when the slab is heated above 1350 ° C., the yield tends to decrease due to an increase in scale. Therefore, the heating temperature of the slab is 1150 to 1350 ° C, preferably 1170 to 1260 ° C.

熱間圧延の仕上温度:850〜950℃
仕上温度が850℃未満だとフェライトとオーステナイトの二相域で圧延されるため、圧延後に加工組織が残り、伸びフランジ特性が低下する。一方、仕上温度が950℃を超えるとTiを含む析出物が少なくなり、必要な析出強化能を得ることができず、伸びフランジ特性が低下する。したがって、熱間圧延の仕上温度は850〜950℃とする。
Hot rolling finishing temperature: 850-950 ° C
When the finishing temperature is less than 850 ° C., rolling is performed in a two-phase region of ferrite and austenite, so that the processed structure remains after rolling and the stretch flange characteristics deteriorate. On the other hand, when the finishing temperature exceeds 950 ° C., the amount of precipitates containing Ti decreases, the necessary precipitation strengthening ability cannot be obtained, and the stretch flange characteristics deteriorate. Therefore, the finishing temperature of hot rolling is 850 to 950 ° C.

熱間圧延後の一次冷却条件:平均冷却速度30℃/秒以上、冷却停止温度550℃以上630℃未満
一次冷却の平均冷却速度が30℃/秒未満ではパーライト相が生成し、伸びおよび伸びフランジ特性が劣化する。したがって、一次冷却の平均冷却速度は30℃/秒以上とする。平均冷却速度の上限は、特に限定しないが、次の冷却停止温度域で冷却を停止させるには100℃/秒程度の冷却速度が好ましい。なお、一次冷却の方法は、特に限定する必要はなく、例えば、公知のラミナー冷却による水冷を利用できる。
Primary cooling conditions after hot rolling: average cooling rate of 30 ° C / second or more, cooling stop temperature of 550 ° C or more and less than 630 ° C When the average cooling rate of primary cooling is less than 30 ° C / second, a pearlite phase is formed, and elongation and stretch flange Characteristics deteriorate. Therefore, the average primary cooling rate is 30 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but a cooling rate of about 100 ° C./second is preferable to stop cooling in the next cooling stop temperature range. The primary cooling method is not particularly limited, and for example, water cooling by known laminar cooling can be used.

一次冷却の冷却停止温度が550℃未満ではベイニティックフェライト相が生成せず、630℃以上ではポリゴナルフェライト相が過剰に生成し、ベイナイト相とベイニティックフェライト相主体のミクロ組織が得られない。したがって、一次冷却の冷却停止温度は550℃以上630℃未満とする。   When the cooling stop temperature of primary cooling is less than 550 ° C, no bainitic ferrite phase is generated, and when it is 630 ° C or more, polygonal ferrite phase is excessively generated, and a microstructure mainly composed of bainite phase and bainitic ferrite phase is obtained. Absent. Therefore, the cooling stop temperature of the primary cooling is set to 550 ° C. or higher and lower than 630 ° C.

一次冷却後の空冷条件:空冷時間0.5〜10秒
一次冷却後は、ポリゴナルフェライト相中に微細なTiを含む析出物の析出を促進させるために空冷する必要がある。このとき、空冷時間が0.5秒未満では析出物の析出が十分でなく、10秒を超えても析出強化の効果が飽和する。したがって、一次冷却後の空冷時間は0.5〜10秒間、好ましくは0.75〜5秒間とする。なお、空冷時の冷却速度は、概ね15℃/秒以下である。
Air-cooling conditions after primary cooling: Air-cooling time 0.5 to 10 seconds After primary cooling, it is necessary to air-cool in order to promote precipitation of precipitates containing fine Ti in the polygonal ferrite phase. At this time, if the air cooling time is less than 0.5 seconds, precipitation of precipitates is not sufficient, and even if it exceeds 10 seconds, the effect of precipitation strengthening is saturated. Therefore, the air cooling time after the primary cooling is 0.5 to 10 seconds, preferably 0.75 to 5 seconds. The cooling rate during air cooling is approximately 15 ° C./second or less.

空冷後の二次冷却条件:平均冷却速度20℃/秒以上
空冷後は、巻取りまで平均冷却速度20℃/秒以上で二次冷却する。これは、平均冷却速度が20℃/秒未満ではパーライト相が生成し、伸びフランジ特性の低下を招くためである。
Secondary cooling conditions after air cooling: average cooling rate of 20 ° C / second or more After air cooling, secondary cooling is performed at an average cooling rate of 20 ° C / second or more until winding. This is because when the average cooling rate is less than 20 ° C./second, a pearlite phase is generated, and the stretch flange characteristic is deteriorated.

巻取温度:300〜500℃
巻取温度が300℃未満では著しく硬質なマルテンサイト相が生成し、500℃を超えるとパーライト相が生成して、伸びフランジ特性の著しい低下を招く。したがって、巻取温度は300〜500℃、好ましくは380〜500℃とする。
Winding temperature: 300 ~ 500 ℃
When the coiling temperature is less than 300 ° C., an extremely hard martensite phase is generated. Therefore, the coiling temperature is 300 to 500 ° C, preferably 380 to 500 ° C.

その他の製造条件には通常の条件を適用できる。例えば、所望の成分組成を有する鋼は転炉や電気炉などで溶製後、真空脱ガス炉にて2次精錬を行って製造される。その後の鋳造は、生産性や品質上の点から連続鋳造法で行うのが好ましい。鋳造後は、本発明の方法にしたがって熱間圧延を行う。熱間圧延後は、表面にスケールが付着した状態であっても、酸洗を行いスケールを除去した状態であっても、鋼板の特性が変わることはない。また、熱間圧延後、調質圧延を行ったり、溶融亜鉛系めっき、電気亜鉛系めっき、化成処理を施すことも可能である。ここで、亜鉛系めっきとは、亜鉛および亜鉛を主体とした(すなわち亜鉛を約90%以上含有する)めっきであり、亜鉛のほかにAl、Crなどの合金元素を含んだめっきや亜鉛系めっき後に合金化処理を行っためっきのことである。   Normal conditions can be applied to other manufacturing conditions. For example, steel having a desired component composition is manufactured by melting in a converter or electric furnace and then performing secondary refining in a vacuum degassing furnace. The subsequent casting is preferably performed by a continuous casting method from the viewpoint of productivity and quality. After casting, hot rolling is performed according to the method of the present invention. After hot rolling, the properties of the steel sheet do not change even if the scale is attached to the surface or the scale is removed by pickling. Further, after hot rolling, temper rolling may be performed, or hot dip galvanizing, electrogalvanizing, or chemical conversion treatment may be performed. Here, zinc-based plating is plating mainly composed of zinc and zinc (that is, containing about 90% or more of zinc), and plating or zinc-based plating containing alloy elements such as Al and Cr in addition to zinc. It is the plating which performed the alloying process later.

表1に示す成分組成を有する鋼No.A〜Hを転炉で溶製し、連続鋳造により鋼スラブとした。これらの鋼スラブを、1250℃に加熱後、表2に示す熱延条件で板厚3.4mmの熱延鋼板No.1〜14を作製した。   Steel Nos. A to H having the composition shown in Table 1 were melted in a converter, and a steel slab was obtained by continuous casting. After these steel slabs were heated to 1250 ° C., hot-rolled steel sheets Nos. 1 to 14 having a thickness of 3.4 mm were produced under the hot-rolling conditions shown in Table 2.

そして、上記の方法により、ベイナイト相とベイニティックフェライト相の合計の体積率、および平均直径20nm未満の析出物中のTi含有量の合計の鋼中に析出している全ての析出物中のTi含有量の合計に対する割合(%)を求めた。   And, by the above method, the total volume fraction of the bainite phase and the bainitic ferrite phase, and the total content of Ti in the precipitate with an average diameter of less than 20 nm in all the precipitates precipitated in the steel The ratio (%) to the total Ti content was determined.

また、JIS 5号引張試験片(圧延方向に平行)を採取し、JIS Z2241に準拠して歪み速度10mm/minで引張試験を行い、TSと全伸びElを測定し、TSが780MPa以上、Elが21%以上であれば本発明の目標を達成しているとした。   Also, a JIS No. 5 tensile test piece (parallel to the rolling direction) was collected, a tensile test was performed at a strain rate of 10 mm / min according to JIS Z2241, TS and total elongation El were measured, TS was 780 MPa or more, El If the ratio is 21% or more, the target of the present invention is achieved.

さらに、伸びフランジ特性を評価するために、130mm角の穴広げ試験用試験片を採取し、鉄連規格JFST 1001に準拠して穴広げ試験を行い、穴広げ率λを求め、λが80%以上であれば本発明の目標を達成しているとした。   Furthermore, in order to evaluate the stretch flange characteristics, a 130 mm square hole expansion test specimen was collected and subjected to a hole expansion test in accordance with the iron standard JFST 1001, to determine the hole expansion ratio λ, where λ was 80% or more. If so, the objective of the present invention was achieved.

結果を表2に示す。本発明例では、780MPa以上のTSが得られ、Elが21%以上で、λが80%以上であり、伸びおよび伸びフランジ特性に優れていることがわかる。   The results are shown in Table 2. In the example of the present invention, a TS of 780 MPa or more is obtained, El is 21% or more, λ is 80% or more, and it can be seen that the elongation and stretch flange characteristics are excellent.

Figure 0005482162
Figure 0005482162

Figure 0005482162
Figure 0005482162

Claims (5)

質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:0.5〜2.0%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.03〜0.15%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、組織全体に占めるベイナイト相およびベイニティックフェライト相の合計の体積率が50%以上で、ベイナイト相およびベイニティックフェライト相とポリゴナルフェライト相の合計の体積率が95%以上であるミクロ組織を有し、平均直径20nm未満の析出物中のTi含有量の合計が、鋼中に析出している全ての析出物中のTi含有量の合計の50%以上であることを特徴とする引張強度が780MPa以上の高強度熱延鋼板。   In mass%, C: 0.06-0.15%, Si: 1.2% or less, Mn: 0.5-2.0%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti: 0.03-0.15% However, the balance is composed of Fe and inevitable impurities, the total volume fraction of the bainite phase and bainitic ferrite phase in the entire structure is 50% or more, and the bainite phase, bainitic ferrite phase and The total volume fraction of the null ferrite phase has a microstructure of 95% or more, and the total Ti content in the precipitates with an average diameter of less than 20 nm is the Ti content in all the precipitates precipitated in the steel. A high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, characterized by being 50% or more of the total content. さらに、質量%で、V:0.005〜0.2%を含有する成分組成を有することを特徴とする請求項1に記載の引張強度が780MPa以上の高強度熱延鋼板。   2. The high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more according to claim 1, wherein the high-strength steel sheet has a component composition containing V: 0.005-0.2% by mass%. さらに、質量%で、B:0.0005〜0.002%を含有する成分組成を有することを特徴とする請求項1または2に記載の引張強度が780MPa以上の高強度熱延鋼板。   3. The high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more according to claim 1, wherein the high-strength steel sheet has a component composition containing B: 0.0005 to 0.002% by mass%. さらに、質量%で、Ca:0.0005〜0.005%を含有する成分組成を有することを特徴とする請求項1から3のいずれかに記載の引張強度が780MPa以上の高強度熱延鋼板。   4. The high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more according to any one of claims 1 to 3, further comprising a component composition containing Ca: 0.0005 to 0.005% by mass%. 組織全体に占めるベイナイト相およびベイニティックフェライト相の合計の体積率が50%以上で、ベイナイト相およびベイニティックフェライト相とポリゴナルフェライト相の合計の体積率が95%以上であるミクロ組織を有し、平均直径20nm未満の析出物中のTi含有量の合計が、鋼中に析出している全ての析出物中のTi含有量の合計の50%以上である高強度熱延鋼板を製造する方法であって、
請求項1から4のいずれかに記載の成分組成を有する鋼スラブを、1150〜1350℃の加熱温度で加熱し、850〜950℃の仕上温度で熱間圧延後、30℃/秒以上の平均冷却速度で550℃以上630℃未満の冷却停止温度まで一次冷却し、引き続き0.5〜10秒間空冷後、20℃/秒以上の平均冷却速度で二次冷却して、300〜500℃の巻取温度で巻取ることを特徴とする引張強度が780MPa以上の高強度熱延鋼板の製造方法。
A microstructure in which the total volume fraction of the bainite phase and bainitic ferrite phase in the entire structure is 50% or more, and the total volume fraction of the bainite phase, bainitic ferrite phase and polygonal ferrite phase is 95% or more. Producing high-strength hot-rolled steel sheets that have a total Ti content of precipitates with an average diameter of less than 20 nm that is 50% or more of the total Ti content of all precipitates precipitated in the steel. A way to
The steel slab having the component composition according to any one of claims 1 to 4 is heated at a heating temperature of 1150 to 1350 ° C, and after hot rolling at a finishing temperature of 850 to 950 ° C, an average of 30 ° C / second or more Primary cooling to a cooling stop temperature of 550 ° C or more and less than 630 ° C at a cooling rate, followed by air cooling for 0.5 to 10 seconds, followed by secondary cooling at an average cooling rate of 20 ° C / second or more, and a coiling temperature of 300 to 500 ° C A method for producing a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, which is characterized by winding at a high temperature.
JP2009279020A 2009-12-09 2009-12-09 High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same Active JP5482162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279020A JP5482162B2 (en) 2009-12-09 2009-12-09 High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279020A JP5482162B2 (en) 2009-12-09 2009-12-09 High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2011122188A JP2011122188A (en) 2011-06-23
JP5482162B2 true JP5482162B2 (en) 2014-04-23

Family

ID=44286357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279020A Active JP5482162B2 (en) 2009-12-09 2009-12-09 High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same

Country Status (1)

Country Link
JP (1) JP5482162B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013023633A2 (en) * 2011-03-18 2016-12-13 Nippon Steel & Sumitomo Metal Corp hot rolled steel sheet with excellent press forming capacity and its production method
JP5636346B2 (en) * 2011-08-17 2014-12-03 株式会社神戸製鋼所 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
US9689060B2 (en) 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
JP5741426B2 (en) * 2011-12-27 2015-07-01 新日鐵住金株式会社 High strength hot-rolled steel sheet and manufacturing method thereof
CN104141093B (en) * 2013-05-10 2016-04-13 河北钢铁股份有限公司承德分公司 Yield strength reaches motor vehicle body band steel and the rolling method thereof of 700MPa
JP6720649B2 (en) * 2016-03-31 2020-07-08 日本製鉄株式会社 High strength hot rolled steel sheet and method for producing the same
KR20220147134A (en) * 2020-04-17 2022-11-02 닛폰세이테츠 가부시키가이샤 High-strength hot-rolled steel sheet
WO2022091489A1 (en) * 2020-10-28 2022-05-05 日本製鉄株式会社 Hot rolled steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070732B2 (en) * 2005-05-30 2012-11-14 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same
JP5176431B2 (en) * 2007-08-24 2013-04-03 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet

Also Published As

Publication number Publication date
JP2011122188A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5394709B2 (en) Super high strength steel plate with excellent hydrogen embrittlement resistance and workability
JP5041083B2 (en) High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP5482162B2 (en) High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
EP2759613B1 (en) High-tensile-strength hot-rolled steel sheet and method for producing same
JP5321672B2 (en) High-tensile hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
KR20140103340A (en) High-strength hot-rolled steel sheet and method for producing same
JP5610003B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
KR20120023129A (en) High-strength steel sheet and manufacturing method therefor
JP5884476B2 (en) High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof
JP2017115191A (en) High strength steel sheet excellent in bendability and production method therefor
JP6589903B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2017168958A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP5637225B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
KR20190104183A (en) Hot-dip galvanized steel and its manufacturing method
JP6103160B1 (en) High strength thin steel sheet and method for producing the same
JP5821864B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP6131872B2 (en) High strength thin steel sheet and method for producing the same
JP5644964B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5556157B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more
JP5971281B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent workability and toughness
JP2013155390A (en) High strength hot rolled steel sheet having excellent fatigue property and method for producing the same
JP6455462B2 (en) High-strength steel sheet with excellent toughness and ductility and method for producing the same
KR20150004430A (en) Low yield ratio high-strength cold-rolled steel sheet with excellent elongation and stretch flange formability, and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250