JP2013155390A - High strength hot rolled steel sheet having excellent fatigue property and method for producing the same - Google Patents

High strength hot rolled steel sheet having excellent fatigue property and method for producing the same Download PDF

Info

Publication number
JP2013155390A
JP2013155390A JP2012014470A JP2012014470A JP2013155390A JP 2013155390 A JP2013155390 A JP 2013155390A JP 2012014470 A JP2012014470 A JP 2012014470A JP 2012014470 A JP2012014470 A JP 2012014470A JP 2013155390 A JP2013155390 A JP 2013155390A
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolled steel
phase
excellent fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014470A
Other languages
Japanese (ja)
Inventor
Katsumi Nakajima
勝己 中島
Yoshimasa Funakawa
義正 船川
Nobuyuki Nakamura
展之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012014470A priority Critical patent/JP2013155390A/en
Priority to RU2012134770/02A priority patent/RU2510803C2/en
Priority to BR102012020368A priority patent/BR102012020368A2/en
Priority to MYPI2012003685A priority patent/MY162996A/en
Priority to ZA2012/06175A priority patent/ZA201206175B/en
Publication of JP2013155390A publication Critical patent/JP2013155390A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength hot rolled steel sheet having excellent fatigue properties, in which TS satisfies ≥490 MPa.SOLUTION: A steel sheet has a composition containing, by mass, 0.08 to 0.18% C, <0.5% Si, 0.8 to 1.8% Mn, ≤0.05% P, ≤0.005% S, ≤0.008% N, 0.01 to 0.1% Al and 0.01 to 0.1% Ti, and the balance Fe with inevitable impurities. The structure of the surface layer part to 100 μm from the surface of the steel sheet is composed of a ferrite phase as the main phase and a second phase in a fraction of ≤30%, and the average grain size of the ferrite phase is controlled to ≤10 μm. Further, at the surface layer part, ≥30% of Ti in the surface layer part is precipitated as Ti carbides, and the average grain size of the Ti carbides is controlled to ≤30 nm.

Description

本発明は、主な対象として、自動車用部材、例えば車体のメンバーやフレームなどの構造部材やサスペンションなどの足まわり部材、さらにはトラックフレーム等の厚物部材などに用いられる高強度熱延鋼板およびその製造方法に関するものである。   The main object of the present invention is a high-strength hot-rolled steel sheet used for automobile members, for example, structural members such as body members and frames, suspension members such as suspensions, and thick members such as truck frames, and the like. It relates to the manufacturing method.

近年、自動車車体の軽量化を図るために、高強度鋼板の利用が積極的に行われている。すなわち、自動車車体の骨格部材だけでなく、一般に熱延鋼板が使用される足回り部材等に対しても、軽量化を図るために、優れた性能を示すハイテン材への切り替えが望まれている。   In recent years, high-strength steel sheets have been actively used to reduce the weight of automobile bodies. In other words, not only the skeleton members of automobile bodies but also suspension members and the like that generally use hot-rolled steel sheets are desired to be switched to high-tensile materials that exhibit excellent performance in order to reduce weight. .

足回り部材やトラックフレームなどにハイテンが適用される場合、成形性、化成・耐食性に加えて、高い疲労特性を具備することが必須の条件となる。
一般に、平滑材の疲労限は、母材の引張強度と共に増加することが知られているが、打抜き穴部、スリット端部、ブランク端部などの疲労特性は、母材の引張強度が増加しても必ずしも増加しないことが知られている。
When high tension is applied to an underbody member, a track frame, etc., in addition to formability, chemical conversion and corrosion resistance, it is essential to have high fatigue characteristics.
In general, it is known that the fatigue limit of a smooth material increases with the tensile strength of the base material, but fatigue properties such as punched holes, slit ends, and blank ends increase the tensile strength of the base material. However, it is known that it does not necessarily increase.

従来、熱延ハイテンの高強度化には、
a) フェライト相中にSiなどを固溶させた固溶強化法
b) フェライト相中に炭窒化物を形成させる析出強化法
c) マルテンサイト相あるいはベイナイト相などを生成させる組織強化法
また、これらの方法を併用した複合強化法などが利用されてきた。
Conventionally, to increase the strength of hot rolled high tension,
a) Solid solution strengthening method in which Si or the like is dissolved in the ferrite phase
b) Precipitation strengthening method to form carbonitrides in the ferrite phase
c) Structure strengthening methods that generate martensite phase or bainite phase, and composite strengthening methods that combine these methods have been used.

さらに、要求される特性に応じて、種々の高強度熱延鋼板が開発されてきている。例えば、伸び性が要求される鋼板としては、フェライト相とマルテンサイト相からなる組織強化された複合組織鋼板(DP鋼板)が、また伸びフランジ性が要求される鋼板としては、ベイナイト相により組織強化された鋼板が開発されてきている。
しかしながら、上記鋼板では、成形性、化成・耐食性、疲労特性のすべてを満足させることは極めて難しかった。
Furthermore, various high-strength hot-rolled steel sheets have been developed according to required characteristics. For example, as a steel sheet that requires stretchability, a structure-strengthened composite steel sheet (DP steel sheet) consisting of a ferrite phase and a martensite phase is used, and as a steel sheet that requires stretch flangeability, the structure strengthens by a bainite phase. Steel plates that have been developed have been developed.
However, it has been extremely difficult to satisfy all of formability, chemical conversion / corrosion resistance, and fatigue characteristics with the steel sheet.

これに対して、特許文献1には、重量%で、C:0.18%以下、Si:0.5〜2.5%、Mn:0.5〜2.5%、P:0.05%以下、S:0.02%以下およびAl:0.01〜0.1%を含有しつつ、Ti:0.02〜0.5%およびNb:0.02〜1.0%のいずれか1種または2種を、CとTiおよびNbとが特定の関係を満足するように含有し、さらに、Ti、Nbの炭化物が析出したフェライトとマルテンサイト、またはTi、Nbの炭化物が析出したフェライトとマルテンサイトおよび残留オーステナイトとからなる組織を有する低降伏比高強度熱延鋼板が記載されている。   On the other hand, in Patent Document 1, by weight, C: 0.18% or less, Si: 0.5 to 2.5%, Mn: 0.5 to 2.5%, P: 0.05% or less, S: 0.02% or less, and Al: 0.01 Containing 0.1 to 0.1%, Ti: 0.02 to 0.5% and Nb: 0.02 to 1.0%, either one or two, so that C, Ti and Nb satisfy a specific relationship, A low-yield ratio high-strength hot-rolled steel sheet having a structure composed of ferrite and martensite precipitated with Ti, Nb carbides, or ferrite, martensite and retained austenite with Ti and Nb carbides precipitated is described.

上掲特許文献1の記載によれば、上記マルテンサイト相もしくは残留オーステナイト相からなる第二相の周辺に、高密度の可動転位網が形成されるために、当該鋼板は低降伏比を有し、さらに、第二相の存在によって、疲労亀裂の伝播が阻止されるため、耐疲労特性が向上するとしている。   According to the description of the above-mentioned Patent Document 1, since a high-density movable dislocation network is formed around the second phase composed of the martensite phase or the retained austenite phase, the steel sheet has a low yield ratio. Furthermore, the presence of the second phase prevents the propagation of fatigue cracks, so that the fatigue resistance is improved.

特許第3219820号公報Japanese Patent No. 3219820

すなわち、上掲特許文献1に記載された技術は、フェライト相を析出強化し、マルテンサイト相との強度差を低減することで耐疲労特性の向上を狙ったものと考えられるが、フェライト相とマルテンサイト相とでは、塑性変形能や、変形挙動が異なっていて、さらに、フェライト相とマルテンサイト相との異相界面は、疲労亀裂の発生起点となりやすいため、近年要求されている程度の耐疲労特性の実現は困難である。
また、上掲特許文献1に記載の材料は、0.5%以上のSiを添加することにより複合組織を形成させているが、このようなSi添加は、表面性状を悪化させて疲労特性に悪影響を及ぼすだけでなく、化成・耐食性も劣化させるので、近年要求されている程度に、化成・耐食性を満足させることができない。
That is, the technique described in the above-mentioned Patent Document 1 is considered to aim at improving fatigue resistance properties by precipitation strengthening the ferrite phase and reducing the strength difference from the martensite phase. The martensite phase has different plastic deformability and deformation behavior, and the heterogeneous interface between the ferrite phase and the martensite phase is likely to be the starting point of fatigue cracks. Realization of characteristics is difficult.
In addition, the material described in the above-mentioned Patent Document 1 forms a composite structure by adding 0.5% or more of Si, but such addition of Si deteriorates surface properties and adversely affects fatigue properties. In addition to the effects, chemical conversion and corrosion resistance are deteriorated, so that chemical conversion and corrosion resistance cannot be satisfied to the extent required in recent years.

本発明は、上記した現状に鑑み、自動車用部材として、近年要求されている成形性や化成・耐食性を確保し、かつ優れた疲労特性を有する高強度熱延鋼板、具体的には、鋼板強度(TS)が490MPa以上となる疲労特性に優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。なお、本発明鋼の特性が要求される用途であれば、特に用途は限定されない。   The present invention is a high-strength hot-rolled steel sheet that secures formability, chemical conversion and corrosion resistance, which have been recently required as a member for automobiles, and has excellent fatigue properties, specifically, steel sheet strength. An object of the present invention is to provide a high-strength hot-rolled steel sheet having excellent fatigue characteristics (TS) of 490 MPa or more and a method for producing the same. The application is not particularly limited as long as the characteristics of the steel of the present invention are required.

発明者等は、上記の目的を達成すべく鋭意検討を行った結果、種々の知見を得て、本発明を完成させた。
すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、C:0.08〜0.18%、Si:0.5%未満、Mn:0.8〜1.8%、P:0.05%以下、S:0.005%以下、N:0.008%以下、Al:0.01〜0.1%およびTi:0.01〜0.1%を含有し、残部がFeおよび不可避的不純物からなる鋼板であって、該鋼板表面から100μmまでの表層部の組織が主相フェライト相と分率:30%以下の第二相とからなり、該フェライト相の平均粒径が10μm以下で、さらに、該表層部には、該表層部中のTi量の30%以上がTi炭化物として析出し、該Ti炭化物の平均粒径が30nm以下であることを特徴とする疲労特性に優れた高強度熱延鋼板。
As a result of intensive studies to achieve the above object, the inventors obtained various findings and completed the present invention.
That is, the gist configuration of the present invention is as follows.
(1) By mass%, C: 0.08 to 0.18%, Si: less than 0.5%, Mn: 0.8 to 1.8%, P: 0.05% or less, S: 0.005% or less, N: 0.008% or less, Al: 0.01 to 0.1 % And Ti: 0.01 to 0.1%, with the balance being Fe and inevitable impurities, the structure of the surface layer part from the steel sheet surface to 100 μm has a fraction of the main phase ferrite phase: 30% or less The ferrite phase has an average particle size of 10 μm or less, and more than 30% of the amount of Ti in the surface layer is precipitated as Ti carbide in the surface layer portion. A high-strength hot-rolled steel sheet with excellent fatigue characteristics characterized by a particle size of 30 nm or less.

(2)前記鋼板がさらに、質量%で、V:0.005〜0.1%およびNb:0.005〜0.1%のうちから選んだ少なくとも一種を含有することを特徴とする前記(1)に記載の疲労特性に優れた高強度熱延鋼板。 (2) The fatigue characteristics according to (1), wherein the steel sheet further contains at least one selected from V: 0.005 to 0.1% and Nb: 0.005 to 0.1% by mass%. Excellent high-strength hot-rolled steel sheet.

(3)前記鋼板がさらに、質量%で、Cu:0.005〜0.1%、Ni:0.005〜0.1%、Cr:0.002〜0.1%およびMo:0.002〜0.1%のうちから選んだ少なくとも一種を含有することを特徴とする前記(1)または(2)に記載の疲労特性に優れた高強度熱延鋼板。 (3) The steel sheet further contains at least one selected from Cu: 0.005-0.1%, Ni: 0.005-0.1%, Cr: 0.002-0.1% and Mo: 0.002-0.1% by mass%. A high-strength hot-rolled steel sheet having excellent fatigue properties as described in (1) or (2) above.

(4)前記鋼板がさらに、質量%で、B:0.0002〜0.005%を含有することを特徴とする前記(1)〜(3)のいずれかに記載の疲労特性に優れた高強度熱延鋼板。 (4) The high-strength hot-rolled steel sheet having excellent fatigue characteristics according to any one of (1) to (3), wherein the steel sheet further contains B: 0.0002 to 0.005% by mass%. .

(5)前記鋼板がさらに、質量%でCa:0.0005〜0.005%およびREM:0.0005〜0.03%のうちから選んだ少なくとも1種を含有することを特徴とする、前記(1)〜(4)のいずれかに記載の疲労特性に優れた高強度熱延鋼板。 (5) The steel sheet further comprises at least one selected from Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.03% by mass%, according to the above (1) to (4) A high-strength hot-rolled steel sheet excellent in fatigue characteristics as described in any one of the above.

(6)前記(1)〜(5)のいずれか一項に記載の成分組成からなる鋼を、1150〜1300℃に加熱したのち、熱間圧延を、Ar3変態点〜(Ar3変態点+60)℃の範囲の仕上温度で、かつ仕上圧延の最終スタンドにおける圧下率を25%以上として施し、ついで570〜670℃の巻取り温度で巻き取ることを特徴とする疲労特性に優れた高強度熱延鋼板の製造方法。 (6) After heating the steel comprising the component composition according to any one of (1) to (5) above to 1150 to 1300 ° C., hot rolling is performed at an Ar 3 transformation point to an (Ar 3 transformation point). High fatigue resistance, characterized by being applied at a finishing temperature in the range of +60) ° C, with a rolling reduction of 25% or more at the final stand of finish rolling, and then winding at a winding temperature of 570-670 ° C Manufacturing method of high strength hot rolled steel sheet.

(7)前記(6)に記載の仕上圧延終了後、2秒以内に鋼板の冷却を開始し、さらに該鋼板を、仕上圧延終了後10秒以内に(巻取り温度+50℃)以下の温度に冷却することを特徴とする疲労特性に優れた高強度熱延鋼板の製造方法。 (7) After finishing rolling according to the above (6), cooling of the steel sheet is started within 2 seconds, and the steel sheet is further brought to a temperature below (winding temperature + 50 ° C.) within 10 seconds after finishing rolling. A method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics, characterized by cooling.

本発明により、安定して、耐久比0.45以上の疲労特性に優れた高強度熱延鋼板を製造できるようになった。また、本発明の高強度熱延鋼板を用いることで、自動車における車体のメンバーやフレームなどの構造部材やサスペンションなどの足まわり部材を効果的に軽量化することができる。   According to the present invention, a high-strength hot-rolled steel sheet excellent in fatigue characteristics with a durability ratio of 0.45 or more can be produced stably. Further, by using the high-strength hot-rolled steel sheet of the present invention, it is possible to effectively reduce the weight of structural members such as vehicle body members and frames and suspension members such as suspensions in automobiles.

平面曲げ疲労試験片を示した図である。It is the figure which showed the plane bending fatigue test piece.

以下、本発明を具体的に説明するが、まず、本発明における鋼板の成分組成について説明する。なお、成分組成に関する「%」表示は特に断らない限り「質量%」を意味するものとする。
C:0.08〜0.18%
Cは、鋼板に必要な強度確保だけでなく、結晶粒の微細化に効果的な元素である。490MPa以上の鋼板強度(以下、TSという)および所望の結晶粒を得るためには、C量を0.08%以上とする必要がある。一方、C量が0.18%を超えると、全伸び(以下、ELという)や穴広げ率(以下、λという)が低下する。従って、C量は0.08〜0.18%とする。好ましくは0.08〜0.16%である。
Hereinafter, the present invention will be specifically described. First, the component composition of the steel sheet according to the present invention will be described. In addition, unless otherwise indicated, "%" display regarding a component composition shall mean "mass%".
C: 0.08-0.18%
C is an element effective not only for ensuring the strength necessary for the steel sheet but also for making the crystal grains finer. In order to obtain a steel plate strength of 490 MPa or more (hereinafter referred to as TS) and desired crystal grains, the C content needs to be 0.08% or more. On the other hand, when the amount of C exceeds 0.18%, the total elongation (hereinafter referred to as EL) and the hole expansion rate (hereinafter referred to as λ) decrease. Therefore, the C content is 0.08 to 0.18%. Preferably it is 0.08 to 0.16%.

Si:0.5%未満
Siは、0.5%以上添加すると、表面性状の著しい低下を招き、疲労、化成・耐食性に悪影響を及ぼすため、0.5%未満とする。下限は特に限定せず、0%であっても良い。
Si: Less than 0.5%
If Si is added in an amount of 0.5% or more, the surface properties will be significantly reduced, and the fatigue, chemical conversion and corrosion resistance will be adversely affected. The lower limit is not particularly limited, and may be 0%.

Mn:0.8〜1.8%
Mnは、固溶強化による強度確保および結晶粒微細化に効果的な元素である。490MPa以上のTSおよび所望の粒径の結晶粒を得るためにはMn量を0.8%以上とする必要がある。一方、Mn量が1.8%を超えると加工性が著しく低下する。従って、Mn量は0.8〜1.8%とする。好ましくは0.8〜1.5%である。
Mn: 0.8-1.8%
Mn is an element that is effective in securing strength by solid solution strengthening and crystal grain refinement. In order to obtain TS of 490 MPa or more and crystal grains having a desired grain size, the Mn content needs to be 0.8% or more. On the other hand, when the amount of Mn exceeds 1.8%, workability is remarkably lowered. Therefore, the Mn content is 0.8 to 1.8%. Preferably it is 0.8 to 1.5%.

P:0.05%以下
P量が0.05%を超えると、Pの偏析によるELやλの低下を招く。従って、Pは、0.05%以下とする。好ましくは、0.03%以下である。下限は特に限定せず、0%であっても良い。
P: 0.05% or less When the amount of P exceeds 0.05%, EL or λ is lowered due to segregation of P. Therefore, P is set to 0.05% or less. Preferably, it is 0.03% or less. The lower limit is not particularly limited, and may be 0%.

S:0.005%以下
Sは、硫化物を形成してELやλを低下させるため、0.005%以下とする。好ましくは0.003%以下である。下限は特に限定せず、0%であっても良い。
S: 0.005% or less S is not more than 0.005% because it forms sulfides and lowers EL and λ. Preferably it is 0.003% or less. The lower limit is not particularly limited, and may be 0%.

N:0.008%以下
N量が0.008%を超えて多量に含有すると、製造工程で多量の窒化物を生成して熱間延性を劣化させるので有害である。従って、N量は0.008%以下とする。好ましくは0.005%以下である。下限は特に限定せず、0%であっても良い。
N: 0.008% or less If the N content exceeds 0.008%, a large amount of nitride is generated in the production process, which deteriorates hot ductility. Therefore, the N content is 0.008% or less. Preferably it is 0.005% or less. The lower limit is not particularly limited, and may be 0%.

Al:0.01〜0.1%
Alは、鋼の脱酸剤として重要な元素であり、その効果を得るためにはAl量を0.01%以上とする必要がある。一方、Al量が0.1%を超えると鋳造が難しくなったり、鋼中に多量の介在物が残存して材質や表面性状の低下を招く。従って、Al量は0.01〜0.1%とする。
Al: 0.01-0.1%
Al is an important element as a deoxidizer for steel. In order to obtain the effect, Al content needs to be 0.01% or more. On the other hand, if the Al content exceeds 0.1%, casting becomes difficult, or a large amount of inclusions remain in the steel, resulting in deterioration of the material and surface properties. Therefore, the Al content is 0.01 to 0.1%.

Ti:0.01〜0.1%
Tiは、本発明において最も重要な元素の1つである。0.01%以上の添加によって、鋼板の結晶粒の微細化や、炭化物の析出による降伏点上昇を介して疲労特性が向上するからである。一方、0.1%を超える添加は、加工性や、溶接性、靭性などに悪影響を及ぼしてしまうので0.1%以下とする。
Ti: 0.01-0.1%
Ti is one of the most important elements in the present invention. This is because the addition of 0.01% or more improves the fatigue characteristics through refinement of crystal grains of the steel sheet and an increase in yield point due to precipitation of carbides. On the other hand, addition exceeding 0.1% adversely affects workability, weldability, toughness, etc., so 0.1% or less.

なお、本発明では、必要とされる鋼板の強度レベルに応じて、Ti添加量を決定するが、表層部では、添加したTiのうち、表層部に存在するTiの30%以上を、表層部でTi炭化物として析出させることが肝要である。
このTi炭化物の存在により、本発明が所望するレベルの疲労特性を得ることができるのである。
このとき、上記Ti炭化物の結晶粒径は、30nm以下とする。表層部における微細なTi炭化物の析出を確保することで、微細フェライト粒を強化し、本発明の目標の疲労耐久比を達成できるからである。
In the present invention, the amount of Ti added is determined according to the required strength level of the steel sheet, but in the surface layer portion, of the added Ti, 30% or more of Ti existing in the surface layer portion is the surface layer portion. It is important to precipitate as Ti carbide.
The presence of this Ti carbide can provide the level of fatigue characteristics desired by the present invention.
At this time, the crystal grain size of the Ti carbide is 30 nm or less. This is because by ensuring the precipitation of fine Ti carbide in the surface layer portion, the fine ferrite grains can be strengthened and the target fatigue durability ratio of the present invention can be achieved.

本発明は、上記した成分組成以外に、鋼中に、V:0.005〜0.1%およびNb:0.005〜0.1%の中から選択された少なくとも一種を含有することができる。
VおよびNbは、共に再結晶抑制効果を有していて、結晶粒の微細化に寄与したり、炭化物の生成によって、降伏点の上昇に寄与したりする元素である。いずれも0.005%以上の添加により上記効果を得られる。一方、0.1%を超えて添加してもコストに見合った効果が得られないので0.1%以下とする。VおよびNbは、Tiに比べ合金コストが高いことに加え、炭化物析出の歩留がTiより低いので、副次的に活用する。
The present invention may contain at least one selected from V: 0.005 to 0.1% and Nb: 0.005 to 0.1% in the steel, in addition to the above-described component composition.
V and Nb are both elements that have a recrystallization suppressing effect and contribute to the refinement of crystal grains or to the increase of the yield point by the formation of carbides. In any case, the above effect can be obtained by adding 0.005% or more. On the other hand, even if added over 0.1%, an effect commensurate with the cost cannot be obtained, so 0.1% or less. V and Nb are utilized secondary because they have a higher alloy cost than Ti and have a lower carbide precipitation yield than Ti.

また、本発明は、上記した成分組成以外に、鋼中に、Cu:0.005〜0.1%、Ni:0.005〜0.1%、Cr:0.002〜0.1%およびMo:0.002〜0.1%のうち、少なくとも一種を含有することができる。
CuおよびNiは、共に0.005%以上の添加で、鋼板の強度向上に寄与する。一方、0.1%を超えて添加すると、熱間圧延中に、表層割れを起こすおそれがあるので、添加する場合は0.1%以下とする。
CrおよびMoは、共に炭化物形成元素であり、0.002%以上の添加で鋼板の強度向上に寄与する。一方、0.1%を超える添加はコストに見合う効果が得られないので、添加する場合は0.1%以下とする。
In addition to the above component composition, the present invention includes at least one of Cu: 0.005-0.1%, Ni: 0.005-0.1%, Cr: 0.002-0.1%, and Mo: 0.002-0.1% in the steel. Can be contained.
Both Cu and Ni contribute to improving the strength of the steel sheet by adding 0.005% or more. On the other hand, if added over 0.1%, surface layer cracking may occur during hot rolling, so when added, the content is made 0.1% or less.
Cr and Mo are both carbide forming elements, and if added in an amount of 0.002% or more, they contribute to improving the strength of the steel sheet. On the other hand, addition exceeding 0.1% does not provide an effect commensurate with cost.

さらに、B:0.0002〜0.005%を含有できる。
Bは、結晶粒の微細化に有利な元素であり、そのためには0.0002%以上の添加が必要である。一方、B量が0.005%を超えると添加の効果が飽和し、コストに見合う効果が得られない。従って、B量は0.0002〜0.005%の範囲とすることが好ましい。
Furthermore, B: 0.0002 to 0.005% can be contained.
B is an element advantageous for refinement of crystal grains, and for that purpose, addition of 0.0002% or more is necessary. On the other hand, if the amount of B exceeds 0.005%, the effect of addition is saturated and an effect commensurate with the cost cannot be obtained. Accordingly, the B content is preferably in the range of 0.0002 to 0.005%.

また、本発明は、上記した成分組成以外に、鋼中に、Ca:0.0005〜0.005%およびREM:0.0005〜0.03%のうち少なくとも1種を含有できる。
CaやREMは、介在物の形態制御に有効な元素であり、加工性向上に寄与する。こうした添加効果を得るためには、Ca量やREM量を、それぞれ0.0005%以上とすることが必要である。一方、Ca量が0.005%を超えたり、REM量が0.03%を超えると、鋼中介在物が増加して材質が劣化する。従って、Ca量は0.0005〜0.005%、REM量は0.0005〜0.03%の範囲とすることが好ましい。
Moreover, this invention can contain at least 1 sort (s) in Ca: 0.0005-0.005% and REM: 0.0005-0.03% other than the above-mentioned component composition.
Ca and REM are effective elements for controlling the shape of inclusions, and contribute to improving workability. In order to obtain such an additive effect, the Ca amount and the REM amount must be 0.0005% or more, respectively. On the other hand, when the Ca content exceeds 0.005% or the REM content exceeds 0.03%, inclusions in the steel increase and the material deteriorates. Therefore, it is preferable that the Ca content is 0.0005 to 0.005% and the REM content is 0.0005 to 0.03%.

次に、本発明における鋼板のミクロ組織について説明する。
本発明の熱延鋼板は、鋼板表面から100μmまでの表層部の組織を主相フェライト相と分率:30%以下の第二相とし、フェライト相の平均粒径が10μm以下で、かつ表層部中のTi量の30%以上がTi炭化物として析出し、さらにそのTi炭化物の平均粒径を30nm以下としたミクロ組織を有している。
本発明においては、鋼板表面から100μmまでの表層部(以下、単に表層部という)の組織制御が極めて重要である。というのは、対象とする疲労現象が、表面からの疲労き裂であって、疲労き裂が生成後、進展して最終破断に至るためである。
Next, the microstructure of the steel sheet in the present invention will be described.
The hot-rolled steel sheet of the present invention has a structure of the surface layer part from the steel sheet surface to 100 μm as the second phase with a main phase ferrite phase and a fraction: 30% or less, and the average grain size of the ferrite phase is 10 μm or less, and 30% or more of the Ti amount in the precipitate is precipitated as Ti carbide, and has a microstructure in which the average particle size of the Ti carbide is 30 nm or less.
In the present invention, it is extremely important to control the structure of the surface layer portion (hereinafter simply referred to as the surface layer portion) from the steel sheet surface to 100 μm. This is because the target fatigue phenomenon is a fatigue crack from the surface, and after the fatigue crack is generated, it progresses and reaches the final fracture.

発明者らは、鋭意研究を重ね、その研究の中で、疲労き裂の生成から進展していく現象のうち、100μm程度に達するまでが、疲労現象をほぼ支配すること、および、材料組織に依存するのは、疲労き裂の長さが100μm程度までで、それ以上の長さになると、き裂進展は材料組織に依存しなくなること、をそれぞれ知見した。
すなわち、表層部の組織制御が、優れた疲労特性を有する高強度熱延鋼板を得るという目的に対して、最も重要な点であることを知見したのである。
The inventors have conducted intensive research, and in that research, the phenomenon that progresses from the generation of fatigue cracks until it reaches about 100 μm, the fatigue phenomenon is almost controlled, and the material structure We depended on the fact that the fatigue crack length is up to about 100 μm, and that crack growth does not depend on the material structure when it is longer than that.
That is, it has been found that the structure control of the surface layer is the most important point for the purpose of obtaining a high-strength hot-rolled steel sheet having excellent fatigue characteristics.

主相フェライト相の平均粒径が10μm以下
本発明の熱延鋼板の表層部は、主相フェライト相と分率:30%以下の第二相から成っている。
ここで、主相フェライトの平均粒径は10μm以下であることが必要である。これを超える粒径の場合、所望の疲労特性が得られないからである。
また、第二相分率が30%を超えると、主相と第二相との界面において、疲労き裂の生成する頻度が増加して所望の疲労特性が得られない。好ましくは第二相分率は20%以下である。ここで第二相とは、パーライト、ベイナイト、マルテンサイト、残留オーステナイト、粗大な炭化物などの単一相や複数相全体を指す。すなわち、本発明において、第二相とは、フェライト以外の結晶相であれば、特に限定はなく、パーライトやベイナイトなど、フェライト以外の結晶相全てが第二相である。
The average grain size of the main phase ferrite phase is 10 μm or less The surface layer portion of the hot-rolled steel sheet of the present invention comprises a main phase ferrite phase and a second phase having a fraction of 30% or less.
Here, the average grain size of the main phase ferrite needs to be 10 μm or less. This is because if the particle size exceeds this range, the desired fatigue characteristics cannot be obtained.
On the other hand, if the second phase fraction exceeds 30%, the frequency at which fatigue cracks are generated at the interface between the main phase and the second phase increases, and desired fatigue characteristics cannot be obtained. Preferably the second phase fraction is 20% or less. Here, the second phase refers to a single phase or the entire plurality of phases such as pearlite, bainite, martensite, retained austenite, and coarse carbide. That is, in the present invention, the second phase is not particularly limited as long as it is a crystal phase other than ferrite, and all crystal phases other than ferrite, such as pearlite and bainite, are the second phase.

ここで、上記のフェライト相、あるいはその他の相(第二相)の分率(面積率)は、以下のようにして求めることができる。
試験鋼より、試験片を採取し、圧延方向に平行な板厚断面を研磨後、ナイタール腐食を施して、走査型電子顕微鏡(SEM)用試験片とする。ついで、倍率:1000倍および3000倍のSEM写真を、その試験片の表層から100μm以内の領域にわたり、1視野の大きさ30×30μmで、10視野、撮影する。そして、フェライト相や、その他の相を、SEM写真の画像処理で抽出し、画像解析処理によりフェライト相、その他の相の面積および観察視野の面積を測定して、(各相の面積)/(観察視野の面積)×100(%)の式により、上記面積率を算出することができる。
ここで、フェライト相は1000倍のSEM写真で灰色に観察される部分であり、粒界を除く白色に観察される部分を第二相とする。
Here, the fraction (area ratio) of the ferrite phase or other phase (second phase) can be obtained as follows.
A test piece is taken from the test steel, and after the plate thickness cross section parallel to the rolling direction is polished, it is subjected to nital corrosion to obtain a test piece for a scanning electron microscope (SEM). Subsequently, SEM photographs at magnifications of 1000 and 3000 are taken for 10 fields with a size of 1 field of view of 30 × 30 μm over an area within 100 μm from the surface layer of the specimen. Then, the ferrite phase and other phases are extracted by image processing of the SEM photograph, and the area of the ferrite phase and other phases and the area of the observation field are measured by image analysis processing, and (area of each phase) / ( The area ratio can be calculated by the formula of (observation visual field area) × 100 (%).
Here, the ferrite phase is a portion observed in gray in a 1000 times SEM photograph, and the portion observed in white excluding the grain boundary is the second phase.

また、主相フェライトの平均粒径は、上記1000倍および3000倍のSEM写真を同じく画像解析し、円相当径(JIS G 0551:2005)を求めることで算出している。なお、本発明において、0.5μm以下のフェライト粒は、上記平均値の計算に入れていない。   Further, the average particle diameter of the main phase ferrite is calculated by image analysis of the above 1000 times and 3000 times SEM photographs to obtain the equivalent circle diameter (JIS G 0551: 2005). In the present invention, ferrite grains of 0.5 μm or less are not included in the above average value calculation.

添加したTi量のうち、表層部に存在するTi量の30%以上を、平均粒径:30nm以下の炭化物として析出させることで、表層部のフェライト相を強化し、材料の降伏強度を上昇させて所望の疲労特性を得ることができる。平均粒径が上記値を超えたり、析出量が不足すると十分な効果が得られない。
なお、Tiの析出物の平均粒径は、鋼板表面から100μm厚みのサンプルを切出し、電解研磨により透過型電子顕微鏡(TEM)用の薄膜を作製し、透過型電子顕微鏡(TEM)を用いて、15万倍の倍率で、任意に10視野程度選択し、1視野1×1μmを観察する。そして、観察されたTiの析出物を円相当径(JIS G 0551:2005)を求めることで、上記Tiの析出物の平均粒径を算出している。なお、本発明において、円相当径として1nm以下と評価された析出物は、上記平均値の計算に入れていない。
Of the added Ti amount, 30% or more of the Ti amount present in the surface layer part is precipitated as a carbide having an average particle size of 30 nm or less, thereby strengthening the ferrite phase of the surface layer part and increasing the yield strength of the material. Desired fatigue characteristics. If the average particle size exceeds the above value or the amount of precipitation is insufficient, a sufficient effect cannot be obtained.
In addition, the average particle diameter of the precipitate of Ti is cut out a sample of 100 μm thickness from the steel sheet surface, a thin film for a transmission electron microscope (TEM) is produced by electrolytic polishing, and using a transmission electron microscope (TEM), Select about 10 fields of view at a magnification of 150,000 times, and observe 1 field of 1 × 1 μm. Then, the average particle diameter of the Ti precipitate is calculated by calculating the equivalent circle diameter (JIS G 0551: 2005) of the observed Ti precipitate. In the present invention, the precipitate evaluated as an equivalent circle diameter of 1 nm or less is not included in the calculation of the average value.

ここで、本発明における所望の疲労特性とは、シェンク型の平面曲げ疲労試験を実施した。試験条件は応力比R=-1、周波数:25Hzで200万サイクルにおける疲労強度を評価したときの特性を指す。   Here, the desired fatigue characteristics in the present invention were subjected to a Schenck type plane bending fatigue test. The test conditions refer to characteristics when the fatigue strength at 2 million cycles is evaluated at a stress ratio R = -1 and a frequency: 25 Hz.

さらに、本発明に従う熱延鋼板を得るための製造条件について、以下説明する。
1150〜1300℃のスラブ加熱
本発明においてスラブを1150℃以上に加熱し、スラブ段階の炭化物を固溶させることが重要である。1150℃未満の加熱の場合、スラブ中の炭化物が固溶せず、熱延工程で所望の炭化物を得ることができないためである。一方、加熱温度が1300℃を超えた場合、表層部の組織が粗大化して目標組織が得られずに、Si系スケールが生成して表面性状を損ね、さらには疲労特性にも悪影響を及ぼす。
Furthermore, manufacturing conditions for obtaining a hot-rolled steel sheet according to the present invention will be described below.
Slab heating at 1150 to 1300 ° C. In the present invention, it is important to heat the slab to 1150 ° C. or higher to dissolve the carbide in the slab stage. This is because in the case of heating below 1150 ° C., the carbide in the slab does not dissolve, and the desired carbide cannot be obtained in the hot rolling process. On the other hand, when the heating temperature exceeds 1300 ° C., the structure of the surface layer is coarsened and the target structure cannot be obtained, the Si scale is generated and the surface properties are impaired, and the fatigue characteristics are also adversely affected.

Ar3変態点〜(Ar3変態点+60)℃の仕上温度、かつ仕上圧延最終スタンドでの圧下率:25%以上
本発明における仕上圧延は、Ar3変態点〜(Ar3変態点+60)℃の範囲で実施する必要がある。Ar3変態点未満で仕上圧延を終えた場合、表層部に粗大粒が生成し疲労、加工性が著しく低下し、一方、(Ar3変態点+60)℃を超えた温度で終了すると、所望の結晶粒が得られずに目標とする疲労特性が実現できないからである。
なお、ここでいうAr3変態点は、冷却速度10℃/sの加工フォーマスタ実験で熱膨張曲線を求め、その変化点により求めた変態温度である。
Finishing temperature of Ar 3 transformation point to (Ar 3 transformation point +60) ° C. and rolling reduction at the final stand of finish rolling: 25% or more In the finish rolling in the present invention, Ar 3 transformation point to (Ar 3 transformation point +60 ) Must be carried out in the range of ° C. When finish rolling is finished at less than the Ar 3 transformation point, coarse grains are formed in the surface layer, resulting in fatigue and workability being significantly reduced.On the other hand, when finishing at a temperature exceeding (Ar 3 transformation point +60) ° C, it is desirable This is because the target fatigue characteristics cannot be realized without obtaining the crystal grains.
Here, the Ar 3 transformation point is a transformation temperature obtained from a thermal expansion curve obtained by a processing formaser experiment at a cooling rate of 10 ° C./s and obtained from the change point.

また、本発明において仕上圧延最終スタンドにおける圧下率は極めて重要である。圧下率が25%未満の場合、所望の表層組織が得られず疲労特性が向上しないからである。好ましくは、圧下率:30%以上である。   Further, in the present invention, the rolling reduction at the finish rolling final stand is extremely important. This is because when the rolling reduction is less than 25%, a desired surface layer structure cannot be obtained and fatigue characteristics are not improved. Preferably, the rolling reduction is 30% or more.

巻取り温度:570〜670℃
670℃を超えた巻取り温度の場合、粗大なパーライトが生成し、疲労、加工性を低下させる。一方、570℃未満の巻取り温度の場合、表層部に所望のTi炭化物量を確保できず、目標とする疲労特性が得られない。
Winding temperature: 570-670 ° C
When the coiling temperature exceeds 670 ° C, coarse pearlite is generated, which reduces fatigue and workability. On the other hand, when the coiling temperature is less than 570 ° C., a desired amount of Ti carbide cannot be secured in the surface layer portion, and the target fatigue characteristics cannot be obtained.

さらに、以下の製造条件を加えると、一層優れた疲労特性が得られる。
仕上圧延終了後、2秒以内に冷却を開始し、さらに10秒以内に(巻取り温度+50℃)以下の温度に冷却
仕上圧延終了後2秒以内に冷却を開始すると、組織をさらに効果的に微細化することができ、より一層の疲労特性向上が期待できる。また、仕上圧延終了後10秒以内に(巻取り温度+50℃)まで冷却することで、目標とするTi炭化物をより得やすくなり疲労特性改善が期待できる。
Furthermore, if the following manufacturing conditions are added, further excellent fatigue characteristics can be obtained.
Cooling starts within 2 seconds after finishing rolling, then cools to a temperature below (winding temperature + 50 ° C) within 10 seconds. When cooling starts within 2 seconds after finishing rolling, the structure becomes more effective. It can be miniaturized and further improvement in fatigue characteristics can be expected. In addition, by cooling to (winding temperature + 50 ° C.) within 10 seconds after finishing rolling, it is easier to obtain the target Ti carbide, and improvement in fatigue characteristics can be expected.

その他の製造条件は通常の条件に従って行うことができる。
例えば、前述したような所望の組成を有する鋼は、転炉や電気炉、誘導炉などで溶製を行う。ついで、真空脱ガス炉にて二次精錬が行われる。その後行われる鋳造は、生産性や品質上の点から連続鋳造法で行うのが好ましいが、分塊圧延による方法も可能である。
鋳造されるスラブは、厚みが200〜300mm程度の通常のスラブであっても、厚みが30mm程度の薄スラブであってもよい。薄スラブにすれば粗圧延を省略できる。鋳造後のスラブは、そのまま直送熱間圧延しても、加熱炉で加熱後熱間圧延してもよい。
Other manufacturing conditions can be performed according to normal conditions.
For example, steel having a desired composition as described above is melted in a converter, electric furnace, induction furnace or the like. Next, secondary refining is performed in a vacuum degassing furnace. The casting performed thereafter is preferably performed by a continuous casting method from the viewpoint of productivity and quality, but a method by split rolling is also possible.
The cast slab may be a normal slab having a thickness of about 200 to 300 mm or a thin slab having a thickness of about 30 mm. If a thin slab is used, rough rolling can be omitted. The slab after casting may be directly hot-rolled as it is or may be hot-rolled after being heated in a heating furnace.

また、本発明の高強度熱延鋼板は、電気亜鉛めっき鋼板や溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板等のめっき鋼板とすることもできる。   Moreover, the high-strength hot-rolled steel sheet of the present invention can be a plated steel sheet such as an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, or an alloyed hot-dip galvanized steel sheet.

表1に示す組成とAr3変態点を有する鋼スラブ記号A〜Iを、表2に示す熱延条件で熱延鋼板No.1〜13を作製した。なお、表1のAr3変態点は前記した加工フォーマスタ実験により求めた。 Hot-rolled steel sheets Nos. 1 to 13 were produced using the steel slab symbols A to I having the compositions shown in Table 1 and Ar 3 transformation points under the hot rolling conditions shown in Table 2. The Ar 3 transformation point in Table 1 was determined by the above-described machining formaster experiment.

Figure 2013155390
Figure 2013155390

Figure 2013155390
Figure 2013155390

そして、前記したSEM写真の画像処理方法を用いて、表面から100μm以内の平均フェライト粒径および第二相分率を求めた。また、表面から100μm以内のTi炭化物析出量は、表面から100μm厚みのサンプルを切出し、30μmフィルターを用い残渣を捕集する電解抽出残渣法により求めた。また、表面から100μm以内のTi量は表面から100μm厚みのサンプルを用い、通常の化学分析(例えばJIS G 1253 スパーク放電発光分光分析方法など)により測定した。さらに、機械特性は、JIS 5号引張試験片を、圧延方向に直角の方向より採取し、以下に述べる方法で求めた。
3本の引張試験片に、歪み速度:10mm/minで引張試験を行い、JIS Z 2241に準拠して、3本の平均値から、それぞれ降伏強さ(YS)、引張強さ(TS)を求めた。
Then, the average ferrite particle diameter and the second phase fraction within 100 μm from the surface were determined by using the image processing method of the SEM photograph described above. The amount of Ti carbide deposited within 100 μm from the surface was determined by the electrolytic extraction residue method in which a sample having a thickness of 100 μm was cut from the surface and the residue was collected using a 30 μm filter. Further, the amount of Ti within 100 μm from the surface was measured by ordinary chemical analysis (for example, JIS G 1253 spark discharge emission spectroscopic analysis method) using a sample having a thickness of 100 μm from the surface. Furthermore, mechanical properties were obtained by a method described below by collecting JIS No. 5 tensile test pieces from a direction perpendicular to the rolling direction.
Three tensile test pieces are subjected to a tensile test at a strain rate of 10 mm / min, and the yield strength (YS) and tensile strength (TS) are calculated from the average value of the three in accordance with JIS Z 2241. Asked.

疲労試験は、図1に示す試験片を、鋼板の圧延方向に対して直角方向に採取し、シェンク型の平面曲げ疲労試験を実施した。試験条件は応力比R=-1、周波数:25Hzで200万サイクルでの疲労強度を評価し、耐久比(200万サイクル疲労強度/引張強度)を計算した。ここで耐久比≧0.45を本発明の目標とした。
結果を表3に示す。
In the fatigue test, the test piece shown in FIG. 1 was taken in a direction perpendicular to the rolling direction of the steel sheet, and a Schenck type plane bending fatigue test was performed. The test conditions were stress ratio R = -1, frequency: 25 Hz, fatigue strength at 2 million cycles was evaluated, and durability ratio (2 million cycle fatigue strength / tensile strength) was calculated. Here, the durability ratio ≧ 0.45 was set as a target of the present invention.
The results are shown in Table 3.

Figure 2013155390
Figure 2013155390

本発明の条件をいずれも満足する発明例(No.2,4,5および8〜10)では、耐久比が0.45以上を満足し、優れた疲労特性を示すことが分かる。   It can be seen that in the inventive examples (Nos. 2, 4, 5 and 8 to 10) which satisfy all the conditions of the present invention, the durability ratio is 0.45 or more and excellent fatigue properties are exhibited.

Claims (7)

質量%で、C:0.08〜0.18%、Si:0.5%未満、Mn:0.8〜1.8%、P:0.05%以下、S:0.005%以下、N:0.008%以下、Al:0.01〜0.1%およびTi:0.01〜0.1%を含有し、残部がFeおよび不可避的不純物からなる鋼板であって、該鋼板表面から100μmまでの表層部の組織が主相フェライト相と分率:30%以下の第二相とからなり、該フェライト相の平均粒径が10μm以下で、さらに、該表層部には、該表層部中のTi量の30%以上がTi炭化物として析出し、該Ti炭化物の平均粒径が30nm以下であることを特徴とする疲労特性に優れた高強度熱延鋼板。   In mass%, C: 0.08 to 0.18%, Si: less than 0.5%, Mn: 0.8 to 1.8%, P: 0.05% or less, S: 0.005% or less, N: 0.008% or less, Al: 0.01 to 0.1% and Ti : A steel plate containing 0.01 to 0.1%, the balance being Fe and inevitable impurities, and the structure of the surface layer portion from the steel plate surface to 100 μm is the main phase ferrite phase and the second phase with a fraction: 30% or less The ferrite phase has an average particle size of 10 μm or less, and more than 30% of the Ti content in the surface layer portion is precipitated as Ti carbide on the surface layer portion, and the average particle size of the Ti carbide is A high-strength hot-rolled steel sheet with excellent fatigue characteristics characterized by being 30 nm or less. 前記鋼板がさらに、質量%で、V:0.005〜0.1%およびNb:0.005〜0.1%のうちから選んだ少なくとも一種を含有することを特徴とする請求項1に記載の疲労特性に優れた高強度熱延鋼板。   The high strength with excellent fatigue characteristics according to claim 1, wherein the steel sheet further contains at least one selected from V: 0.005 to 0.1% and Nb: 0.005 to 0.1% by mass%. Hot rolled steel sheet. 前記鋼板がさらに、質量%で、Cu:0.005〜0.1%、Ni:0.005〜0.1%、Cr:0.002〜0.1%およびMo:0.002〜0.1%のうちから選んだ少なくとも一種を含有することを特徴とする請求項1または2に記載の疲労特性に優れた高強度熱延鋼板。   The steel sheet further contains at least one selected from Cu: 0.005-0.1%, Ni: 0.005-0.1%, Cr: 0.002-0.1% and Mo: 0.002-0.1% by mass%. A high-strength hot-rolled steel sheet having excellent fatigue properties according to claim 1 or 2. 前記鋼板がさらに、質量%で、B:0.0002〜0.005%を含有することを特徴とする請求項1〜3のいずれかに記載の疲労特性に優れた高強度熱延鋼板。   The high-strength hot-rolled steel sheet having excellent fatigue characteristics according to any one of claims 1 to 3, wherein the steel sheet further contains B: 0.0002 to 0.005% by mass%. 前記鋼板がさらに、質量%で、Ca:0.0005〜0.005%およびREM:0.0005〜0.03%のうちから選んだ少なくとも1種を含有することを特徴とする、請求項1〜4のいずれかに記載の疲労特性に優れた高強度熱延鋼板。   5. The steel sheet according to claim 1, wherein the steel sheet further contains at least one selected from Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.03% by mass%. High-strength hot-rolled steel sheet with excellent fatigue characteristics. 請求項1〜5のいずれか一項に記載の成分組成からなる鋼を、1150〜1300℃に加熱したのち、熱間圧延を、Ar3変態点〜(Ar3変態点+60)℃の範囲の仕上温度で、かつ仕上圧延の最終スタンドにおける圧下率を25%以上として施し、ついで570〜670℃の巻取り温度で巻き取ることを特徴とする疲労特性に優れた高強度熱延鋼板の製造方法。 The steel comprising the component composition according to any one of claims 1 to 5 is heated to 1150 to 1300 ° C, and then hot-rolled in a range of Ar 3 transformation point to (Ar 3 transformation point + 60) ° C. Of high-strength hot-rolled steel sheets with excellent fatigue characteristics, characterized in that the rolling reduction at the final stand of finish rolling is 25% or more, and then winding is performed at a winding temperature of 570 to 670 ° C. Method. 請求項6に記載の仕上圧延終了後、2秒以内に鋼板の冷却を開始し、さらに該鋼板を、仕上圧延終了後10秒以内に(巻取り温度+50℃)以下の温度に冷却することを特徴とする疲労特性に優れた高強度熱延鋼板の製造方法。


Cooling of the steel sheet is started within 2 seconds after the finish rolling according to claim 6 is finished, and the steel sheet is further cooled to a temperature of (winding temperature + 50 ° C.) or less within 10 seconds after finishing the finish rolling. A method for producing a high-strength hot-rolled steel sheet having excellent fatigue characteristics.


JP2012014470A 2012-01-26 2012-01-26 High strength hot rolled steel sheet having excellent fatigue property and method for producing the same Pending JP2013155390A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012014470A JP2013155390A (en) 2012-01-26 2012-01-26 High strength hot rolled steel sheet having excellent fatigue property and method for producing the same
RU2012134770/02A RU2510803C2 (en) 2012-01-26 2012-08-14 High-strength hot-rolled steel plate with excellent fatigue strength and its manufacturing method
BR102012020368A BR102012020368A2 (en) 2012-01-26 2012-08-14 high strength hot rolled steel sheet having good fatigue strength and method for producing it
MYPI2012003685A MY162996A (en) 2012-01-26 2012-08-15 High strength hot rolled steel sheet having good fatique strength and method for manufacturing the same
ZA2012/06175A ZA201206175B (en) 2012-01-26 2012-08-16 High strength hot rolled steel sheet having good fatigue strength and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014470A JP2013155390A (en) 2012-01-26 2012-01-26 High strength hot rolled steel sheet having excellent fatigue property and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013155390A true JP2013155390A (en) 2013-08-15

Family

ID=49050884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014470A Pending JP2013155390A (en) 2012-01-26 2012-01-26 High strength hot rolled steel sheet having excellent fatigue property and method for producing the same

Country Status (5)

Country Link
JP (1) JP2013155390A (en)
BR (1) BR102012020368A2 (en)
MY (1) MY162996A (en)
RU (1) RU2510803C2 (en)
ZA (1) ZA201206175B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793458A (en) * 2013-11-28 2016-07-20 杰富意钢铁株式会社 Hot-rolled steel sheet and method for manufacturing same
JP2016204690A (en) * 2015-04-17 2016-12-08 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in ductility, fatigue characteristic and corrosion resistance and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU855051A1 (en) * 1979-11-11 1981-08-15 Орско-Халиловский Ордена Трудового Красного Знамени Металлургический Комбинат Steel
JP4265133B2 (en) * 1999-09-28 2009-05-20 Jfeスチール株式会社 High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5076347B2 (en) * 2006-03-31 2012-11-21 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
RU2387731C2 (en) * 2008-03-31 2010-04-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Steel and item made from it (versions)
RU2394923C1 (en) * 2009-06-08 2010-07-20 Открытое акционерное общество "Западно-Сибирский металлургический комбинат" ( ОАО "ЗСМК") Procedure for production of hot rolled rod for fabricating reinforcing bar of periodic profile in reinforcing concrete structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793458A (en) * 2013-11-28 2016-07-20 杰富意钢铁株式会社 Hot-rolled steel sheet and method for manufacturing same
TWI558823B (en) * 2013-11-28 2016-11-21 Jfe Steel Corp Hot rolled steel sheet and method of manufacturing same
CN105793458B (en) * 2013-11-28 2017-11-24 杰富意钢铁株式会社 Hot rolled steel plate and its manufacture method
US10273554B2 (en) 2013-11-28 2019-04-30 Jfe Steel Corporation Hot-rolled steel sheet and method of manufacturing the same
JP2016204690A (en) * 2015-04-17 2016-12-08 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in ductility, fatigue characteristic and corrosion resistance and manufacturing method therefor

Also Published As

Publication number Publication date
RU2012134770A (en) 2014-02-20
RU2510803C2 (en) 2014-04-10
BR102012020368A2 (en) 2015-09-22
MY162996A (en) 2017-07-31
ZA201206175B (en) 2013-05-29

Similar Documents

Publication Publication Date Title
JP5126326B2 (en) High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same
JP6194951B2 (en) Hot rolled steel sheet
KR101485237B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5041084B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5446885B2 (en) Cold rolled steel sheet manufacturing method
WO2014171062A1 (en) High-strength hot-rolled steel sheet and method for manufacturing same
JP5610003B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
KR20120023129A (en) High-strength steel sheet and manufacturing method therefor
KR20140026608A (en) High-strength steel sheet for warm forming and process for producing same
KR101772476B1 (en) High-strength hot-rolled steel sheet and method for manufacturing the same
JP5641086B2 (en) High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
JP5482162B2 (en) High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same
JP5423737B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP2017186634A (en) Hot rolled steel sheet and manufacturing method therefor
JP5348071B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2015147960A (en) High-strength thin steel sheet excellent in toughness, and production method thereof
JP6103160B1 (en) High strength thin steel sheet and method for producing the same
JP5821864B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP5641087B2 (en) High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
JP6536328B2 (en) High strength steel sheet excellent in fatigue characteristics and formability and method of manufacturing the same
JP2013155390A (en) High strength hot rolled steel sheet having excellent fatigue property and method for producing the same
KR101505278B1 (en) Steel for cargo oil tank and method of manufacturing the same
KR20240090672A (en) Cold rolled heat treated steel sheet and manufacturing method thereof