JPH07197183A - Ultra-high strength thin steel sheet without developing hydrogen brittleness and its production - Google Patents
Ultra-high strength thin steel sheet without developing hydrogen brittleness and its productionInfo
- Publication number
- JPH07197183A JPH07197183A JP35210293A JP35210293A JPH07197183A JP H07197183 A JPH07197183 A JP H07197183A JP 35210293 A JP35210293 A JP 35210293A JP 35210293 A JP35210293 A JP 35210293A JP H07197183 A JPH07197183 A JP H07197183A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- thin steel
- ultra
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車のバンパー、ドア
の補強部材など軽量でかつ耐強度が要求される用途にお
いて好適な超高強度薄鋼板とその製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high strength thin steel sheet suitable for use in automobiles such as bumpers for automobiles and reinforcing members for doors, which is lightweight and requires strength resistance, and a method for producing the same.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】米国の
CAFE(Corporate Average Fuel Economy)の規制
強化提案により自動車の軽量化が進み、バンパー、ドア
の補強部材などに980N/mm2以上の超高強度薄鋼板
が採用されるようになってきた。[Problems to be Solved by the Prior Art and Invention] The weight reduction of automobiles is promoted by the proposal of strengthening the regulations of CAFE (Corporate Average Fuel Economy) in the United States, and the ultra high strength of 980 N / mm 2 or more is applied to the reinforcing members of the bumpers and doors. High strength steel sheets have been adopted.
【0003】980N/mm2以上の超高強度鋼では、水
素脆化が発生することが、例えば、日本ねじ協会発行
(1990年10月18日)の研修テキスト“ねじ締結の
設計と実際”にて知られている。したがって、超高強度
薄鋼板においても、大気環境下の腐食反応で発生する水
素が鋼板中に入り、使用中に突然破壊することが考えら
れる。Hydrogen embrittlement occurs in ultra-high strength steel of 980 N / mm 2 or more, for example, issued by Japan Screw Association.
It is known for the training text "Design and practice of screw fastening" (October 18, 1990). Therefore, even in an ultra-high-strength thin steel sheet, hydrogen generated by a corrosion reaction in the atmospheric environment may enter the steel sheet and suddenly break during use.
【0004】超高強度薄鋼板の水素脆化については、特
開平4−268053号に記載されているように、鋼に
Siを添加し、鋼板中への水素原子の侵入を抑制するこ
とが提案されている。しかし、腐食環境によって錆の発
生状況は種々変化し、必ずしもSi添加によって鋼板中
への水素原子の侵入を十分に抑制し、水素脆化を防止す
ることは困難である。Regarding the hydrogen embrittlement of ultra-high strength thin steel sheet, it is proposed to add Si to the steel to suppress the penetration of hydrogen atoms into the steel sheet, as described in JP-A-4-268053. Has been done. However, the generation of rust changes variously depending on the corrosive environment, and it is difficult to prevent the hydrogen embrittlement by sufficiently suppressing the intrusion of hydrogen atoms into the steel sheet by adding Si.
【0005】また、鋼の水素脆化防止について報告があ
る条鋼の分野では、例えば、特開昭60−155644
号に記載されているように、マルテンサイト組織を40
0℃以上で焼戻し、Fe−C系化合物を十分に析出させ
て防止する方法が知られている。しかし、このような鋼
は、プレス成形などの加工を行う超高強度薄鋼板に比較
して加工性に劣っている。また超高強度薄鋼板では冷間
加工による強度増加で水素脆化が発生し易くなると考え
られるが、この特性までは考慮されていない。Further, in the field of bar steel, which has been reported to prevent hydrogen embrittlement of steel, for example, JP-A-60-155644.
40 martensite texture as described in
A method is known in which tempering is performed at 0 ° C. or higher to sufficiently prevent the Fe—C compound from precipitating. However, such steel is inferior in workability as compared with the ultra-high-strength thin steel sheet that is processed by press forming or the like. Further, it is considered that the ultra-high strength thin steel sheet is likely to cause hydrogen embrittlement due to the increase in strength due to cold working, but this characteristic is not taken into consideration.
【0006】通常、連続焼鈍法で製造される超高強度薄
鋼板は、プレス成形などの冷間加工性の確保のために
C、Mn量を比較的低くしており、400℃以上で焼戻
した場合には強度が低下し、目的の特性が得られない。
このため、均熱処理後所定の冷却速度で400℃以下に
冷却、又は一旦常温まで冷却後400℃以下で焼戻して
製造されるものであり、条鋼で知られている方法とは全
く異なっている。Usually, the ultra-high-strength thin steel sheet produced by the continuous annealing method has a relatively low amount of C and Mn in order to secure cold workability such as press forming, and is tempered at 400 ° C. or higher. In this case, the strength is lowered and the desired characteristics cannot be obtained.
Therefore, it is manufactured by cooling after soaking at a predetermined cooling rate to 400 ° C. or lower, or by once cooling to normal temperature and then tempering at 400 ° C. or lower, which is completely different from the method known for bar steel.
【0007】本発明は、引張強さ980N/mm2以上の
超高強度薄鋼板における上記従来技術の問題点を解決
し、水素脆化の発生しない加工用超高強度薄鋼板を提供
し、並びにその製造方法を提供することを目的とするも
のである。The present invention solves the problems of the prior art in the ultrahigh strength thin steel sheet having a tensile strength of 980 N / mm 2 or more, and provides an ultrahigh strength thin steel sheet for working in which hydrogen embrittlement does not occur, and It is intended to provide a manufacturing method thereof.
【0008】[0008]
【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、C:0.05〜0.25%、M
n:1.0〜3.0%、Al:0.025〜0.100%、
S:0.01%以下、N:0.008%以下を含み、必要
に応じて更に、Si:3.0%以下、P:0.1%以下、
Cr:1.0%以下、Mo:1.0%以下、W:1.0%以
下の1種以上、及び/又は、Ti:0.2%以下、Nb:
0.1%以下、V:0.1%以下、Zr:0.1%以下の1
種以上を含み、残部が不可避的不純物からなる組成を有
し、引張強さ980N/mm2以上で、マルテンサイトを
体積率で70%以上含む超高強度薄鋼板において、0.
1μm以上のFe−C系の析出物が1mm2当たり3×105
以下であることを特徴とする水素脆化の発生しない超高
強度薄鋼板を要旨としている。Means for Solving the Problems As a means for solving the above problems, the present invention provides C: 0.05 to 0.25%, M
n: 1.0 to 3.0%, Al: 0.025 to 0.100%,
S: 0.01% or less, N: 0.008% or less, and if necessary, Si: 3.0% or less, P: 0.1% or less,
One or more of Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, and / or Ti: 0.2% or less, Nb:
0.1% or less, V: 0.1% or less, Zr: 0.1% or less 1
An ultra high strength thin steel sheet containing at least 70% by weight of martensite, having a composition of unavoidable impurities, the balance of which is unavoidable impurities, and a tensile strength of 980 N / mm 2 or more.
Fe-C based precipitates of 1 μm or more are 3 × 10 5 per 1 mm 2.
The gist is an ultrahigh-strength thin steel sheet that is free from hydrogen embrittlement and is characterized by the following.
【0009】また、他の本発明は、上記組成を有する鋼
を常法により熱間圧延し、酸洗まま又はその後冷間圧延
して、連続焼鈍するに際して、Ac3点以上に均熱後85
0〜650℃まで徐冷し、その温度から5℃/sec以上
で300℃以下まで冷却し、以後、300℃以下に再加
熱し若しくはそのまま300℃以下で1〜20minの焼
戻し処理を行うことにより、引張強さ980N/mm2以
上で、マルテンサイトが体積率で70%以上含み、0.
1μm以上のFe−C系の析出物が1mm2当たり3×105
以下を得ることを特徴とする水素脆化の発生しない超高
強度薄鋼板の製造方法を要旨としている。In another aspect of the present invention, when a steel having the above composition is hot-rolled by a conventional method, and pickled or subsequently cold-rolled and continuously annealed, after soaking to an Ac 3 point or more, 85
By gradually cooling to 0 to 650 ° C, cooling from that temperature to 300 ° C or less at 5 ° C / sec or more, and then reheating to 300 ° C or less or directly performing tempering treatment at 300 ° C or less for 1 to 20 minutes , Tensile strength of 980 N / mm 2 or more, martensite volume ratio of 70% or more, and
Fe-C based precipitates of 1 μm or more are 3 × 10 5 per 1 mm 2.
The gist is a method for producing an ultrahigh-strength thin steel sheet that does not cause hydrogen embrittlement, which is characterized by obtaining the following.
【0010】[0010]
【作用】以下に本発明を更に詳細に説明する。まず、本
発明における炭化物の限定理由を述べる。The present invention will be described in more detail below. First, the reasons for limiting the carbide in the present invention will be described.
【0011】本発明者らは、プレス成形、曲げ加工など
の冷間加工を行なった超高強度薄鋼板における大気及び
塩水噴霧などの腐食環境下での水素脆化について鋭意研
究を行った。The inventors of the present invention have earnestly studied hydrogen embrittlement in a corrosive environment such as air and salt spray in an ultra-high strength thin steel sheet that has been cold worked such as press forming and bending.
【0012】その結果、水素脆化による破壊は冷間加工
部から発生し、破壊が短時間で生じる鋼板は、粒界破壊
が主体の破面であり、0.1μm以上のFe−C系の析出
物が1mm2当たり3×105よりも多く析出していた。一
方、破壊時間が長い鋼板は、粒内破壊が主体の破面であ
り、水素脆化が発生しない鋼板と同様、0.1μm以上の
Fe−C系の析出物が1mm2当たり3×105以下である
ことを見い出した。As a result, the fracture due to hydrogen embrittlement occurs from the cold-worked portion, and the fracture occurs in a short time in the steel sheet, which is the fracture surface mainly due to the intergranular fracture and is of the Fe-C system of 0.1 μm or more. More than 3 × 10 5 precipitates were deposited per 1 mm 2 . On the other hand, a steel sheet with a long fracture time is a fracture surface mainly due to intragranular fracture, and similarly to a steel sheet that does not cause hydrogen embrittlement, Fe—C-based precipitates of 0.1 μm or more are 3 × 10 5 per 1 mm 2. I found the following:
【0013】0.1μmよりも小さいFe−C系、又はそ
れ以外の炭化物はいずれの鋼板にも多数存在しており、
水素脆化による破壊の発生時間の長短との関係は認めら
れなかった。Many Fe-C-based or other carbides smaller than 0.1 μm are present in any steel sheet,
No relationship was observed between the length of time of occurrence of fracture due to hydrogen embrittlement.
【0014】このように、0.1μm以上のFe−C系の
析出物が1mm2当たり3×105よりも多く析出している
場合に粒内破壊が主体の破面となり、水素脆化による破
壊時間が短くなる原因については明確でないが、次のよ
うに推定される。As described above, when the Fe-C-based precipitates having a size of 0.1 μm or more are deposited in an amount of more than 3 × 10 5 per 1 mm 2 , the intergranular fracture becomes the main fracture surface and hydrogen embrittlement is caused. Although the cause of shortening the breakdown time is not clear, it is presumed as follows.
【0015】すなわち、高い引張りの外力が存在するプ
レス成形等の加工を施した超高強度薄鋼板の製品で、
0.1μm以上のFe−C系の析出物が析出していると、
プレス時の冷間加工によって炭化物と母材組織の界面に
高い応力、又はボイドが生成し、その場所に腐食反応で
発生した原子状の水素が集まり、更に応力集中を高める
か、又は亀裂が発生する。析出物は本来格子欠陥の多い
粒界に優先的に析出することから、0.1μm以上のFe
−C系の析出物が1mm2当たり3×105よりも多くなる
と、粒界での応力集中、又は亀裂の発生頻度も高まり、
粒界破壊が主体の水素脆化が発生する。一方、0.1μm
よりも小さいFe−C系の析出物は冷間加工によって炭
化物と母材組織の界面に高い応力、又はボイドが生成し
難く、したがって、粒界での亀裂の発生頻度も低下する
ため、粒界破壊が主体の水素脆化が発生し難いと考えら
れる。That is, a product of an ultra-high-strength thin steel sheet that has been subjected to processing such as press forming in which a high tensile external force exists,
If Fe-C based precipitates of 0.1 μm or more are deposited,
High stress or voids are generated at the interface between the carbide and the base metal structure due to cold working during pressing, and atomic hydrogen generated by the corrosion reaction is collected at that location, further increasing stress concentration or cracking. To do. Since precipitates are preferentially deposited at grain boundaries with many lattice defects, Fe of 0.1 μm or more is used.
When the amount of —C-based precipitates exceeds 3 × 10 5 per 1 mm 2 , the stress concentration at grain boundaries or the frequency of cracks increases,
Hydrogen embrittlement occurs mainly due to intergranular fracture. On the other hand, 0.1 μm
Fe-C-based precipitates smaller than the above-mentioned size are less likely to generate high stress or voids at the interface between the carbide and the base metal structure due to cold working. Therefore, the occurrence frequency of cracks at the grain boundaries also decreases, It is considered that hydrogen embrittlement, which is mainly due to fracture, is unlikely to occur.
【0016】次に本発明における鋼の化学成分の限定理
由について説明する。Next, the reasons for limiting the chemical composition of steel in the present invention will be explained.
【0017】C:Cはマルテンサイトを生成し高強度化
には必須の元素であり、980N/mm2以上の強度を得
るためには0.05%以上が必要である。しかし、0.2
5%を超えると曲げなどの加工性が低下するため、これ
を上限とする。C: C is an element essential for increasing the strength by forming martensite, and 0.05% or more is necessary to obtain a strength of 980 N / mm 2 or more. But 0.2
If it exceeds 5%, workability such as bending deteriorates, so this is made the upper limit.
【0018】Mn:Mnは鋼の焼入性を高める元素で、連
続焼鈍設備で安定してマルテンサイトを得るためには
1.0%以上が必要である。しかし、3.0%を超えると
その効果が飽和するのみならず、偏析が大きくなり、組
織が不均一となり、加工性が低下するため、これを上限
とする。Mn: Mn is an element that enhances the hardenability of steel, and is required to be 1.0% or more in order to stably obtain martensite in continuous annealing equipment. However, if it exceeds 3.0%, not only the effect is saturated, but also segregation becomes large, the structure becomes nonuniform, and the workability deteriorates, so this is made the upper limit.
【0019】S:Sは介在物を形成して曲げ加工性など
を劣化させるため、0.01%以下に抑制する。S: S forms inclusions and deteriorates bending workability, so is suppressed to 0.01% or less.
【0020】N:Nは鋼中に固溶してプレス加工性など
を劣化させるため、0.008%以下に規定する。N: N is a solid solution in steel and deteriorates press workability, so it is specified to be 0.008% or less.
【0021】以上の元素を必須成分とするが、以下に示
すとおり、必要に応じて、Si、P、Cr、Mo、Wから
なる群の1種以上、或いはTi、Nb、V、Zrからなる
群の1種以上を適量にて含有させることができる。Although the above elements are essential components, as shown below, if necessary, at least one member selected from the group consisting of Si, P, Cr, Mo and W, or Ti, Nb, V and Zr. One or more of the groups can be included in suitable amounts.
【0022】Si:Siは鋼を強化し、延性を高めるため
に有効な元素であるが、3.0%を超えるとその効果が
飽和するのみならず、冷間圧延での荷重が高くなるなど
の問題があるため、これ以下に規定する。Si: Si is an element effective for strengthening the steel and enhancing the ductility, but if it exceeds 3.0%, not only the effect is saturated, but also the load in cold rolling becomes high. Therefore, it is specified below.
【0023】P:Pは鋼を強化し、延性を高めるために
有効な元素であるが、0.1%を超えると脆化が起こり
易くなるため、これ以下とする。P: P is an element effective for strengthening the steel and increasing the ductility, but if it exceeds 0.1%, embrittlement is likely to occur, so the content is made less than this.
【0024】Cr、Mo:Cr、Moは鋼の焼入性を高めて
連続焼鈍設備で安定してマルテンサイトを得るために有
効な元素であるが、それぞれ1.0%を超えると効果が
飽和するため、それぞれ1.0%を上限とする。Cr, Mo: Cr and Mo are effective elements for enhancing the hardenability of the steel and stably obtaining martensite in the continuous annealing equipment. However, if each exceeds 1.0%, the effect is saturated. Therefore, the upper limit of each is 1.0%.
【0025】W:Wは鋼の強度を高めるために有効な元
素であるが、1.0%を超えると加工性が劣化するた
め、これを上限とする。W: W is an element effective for increasing the strength of steel, but if it exceeds 1.0%, the workability deteriorates, so this is the upper limit.
【0026】Ti、Nb、V、Zr:Ti、Nb、V及びZr
は炭化物を形成し、細粒化に効果があり、鋼の強化に有
効な元素であるが、Tiが0.2%を超え、他の元素がそ
れぞれ0.1%を超えると冷間圧延の荷重が高くなるな
どの問題があるため、Tiは0.2%以下、他の元素はそ
れぞれ0.1%を上限とする。Ti, Nb, V, Zr: Ti, Nb, V and Zr
Is an element that forms carbides and has an effect on grain refining and is effective for strengthening steel. However, when Ti exceeds 0.2% and other elements exceed 0.1%, respectively, cold rolling Due to problems such as high load, the upper limit of Ti is 0.2% or less, and the upper limit of other elements is 0.1%.
【0027】次に本発明の製造方法について述べる。Next, the manufacturing method of the present invention will be described.
【0028】上記化学成分を有する鋼のスラブは連続鋳
造又は造塊によって製造され、常法により熱間圧延し、
酸洗され、又はその後冷間圧延が行なわれる。The steel slab having the above chemical composition is manufactured by continuous casting or ingot casting, and hot rolling is performed by a conventional method.
It is pickled or cold-rolled thereafter.
【0029】熱間圧延するに際しては、所定の圧延温度
以上に加熱する必要があるが、鋳造後一旦常温付近まで
冷却し再加熱しても、高温のまま加熱炉に挿入しても、
また鋳造後そのまま圧延しても特に問題はない。圧延は
Ar3変態点以上の温度で仕上ればよく、その後の冷却条
件、巻取温度についても特に規定されず、常法に従えば
よい。例えば、冷却は平均で30〜100℃/secの範
囲で、巻取温度は750〜400℃行えばよい。In hot rolling, it is necessary to heat above a predetermined rolling temperature, but after casting, once cooled to near room temperature and reheated, or when it is inserted into a heating furnace at a high temperature,
Further, there is no particular problem even if it is rolled as it is after casting. The rolling may be finished at a temperature not lower than the Ar 3 transformation point, and the cooling conditions and the coiling temperature thereafter are not particularly specified, and the usual method may be used. For example, the cooling may be performed in the range of 30 to 100 ° C./sec on average, and the winding temperature may be 750 to 400 ° C.
【0030】次いで連続焼鈍する。連続焼鈍に際して
は、熱延後酸洗したままでも、その後更に25〜80%
の冷間圧延を行った鋼板を用いてもよい。連続焼鈍の均
熱温度はAc3点以上の温度で行う。Ac3点未満では均熱
過程でフェライトの成長により、組織が不均一となり曲
げ加工性などが低下する。また強度の確保が困難となる
ため望ましくない。均熱後は、急冷開始温度まで1〜3
0℃/secで徐冷する。急冷開始温度はマルテンサイト
組織体積率を70%以上として所定の強度を確保するた
めに下限を650℃とするが、850℃を超えると急冷
時に鋼板の形状が悪くなるため、850℃を上限とす
る。急冷の冷却速度は5℃/sec以上であればマルテン
サイト組織が得られるため、これを下限とする。冷却方
法は水焼入れ、水冷ロール冷却、気水冷却、及びガスジ
ェット冷却など、その方法は問わない。急冷停止温度は
マルテンサイト組織を主体とするために300℃以下と
する。Next, continuous annealing is performed. In continuous annealing, even after pickling after hot rolling, 25% to 80% afterwards
You may use the steel plate which cold-rolled. The soaking temperature of continuous annealing is performed at a temperature of Ac 3 or higher. If the Ac is less than 3 points, the structure becomes non-uniform due to the growth of ferrite during the soaking process and the bending workability and the like deteriorate. In addition, it becomes difficult to secure strength, which is not desirable. After soaking, 1 to 3 until the quenching start temperature
Slowly cool at 0 ° C / sec. The quenching start temperature has a lower limit of 650 ° C. in order to secure a predetermined strength with a martensite structure volume ratio of 70% or more, but if it exceeds 850 ° C., the shape of the steel sheet deteriorates during quenching, so the upper limit is 850 ° C. To do. If the quenching cooling rate is 5 ° C./sec or more, a martensite structure is obtained, so this is the lower limit. The cooling method may be water quenching, water-cooled roll cooling, steam cooling, gas jet cooling, or the like. The quenching stop temperature is set to 300 ° C. or lower because the martensite structure is the main constituent.
【0031】その後は、300℃以下で1〜20minの
焼戻し処理を行うことで所定の強度に調整する。この
際、急冷開始温度が焼戻し処理温度範囲内であればその
温度でそのまま恒温保持してもよく、焼戻し処理温度よ
りも低い場合は再加熱すればよい。焼戻し時間は1min
以上でないとその効果が殆ど認められず、しかし20mi
nよりも長いとその効果が飽和するのみならず、設備が
巨大化するので望ましくない。また焼戻し処理温度が3
00℃よりも高いと炭化物が所定の量よりも多くなり破
壊特性が劣化するので望ましくない。After that, tempering treatment is performed at 300 ° C. or lower for 1 to 20 minutes to adjust the strength to a predetermined value. At this time, if the quenching start temperature is within the tempering temperature range, the temperature may be kept constant at that temperature, and if it is lower than the tempering temperature, reheating may be performed. Tempering time is 1 min
If it is not above, the effect is hardly recognized, but 20mi
If it is longer than n, not only the effect is saturated, but also the equipment becomes huge, which is not desirable. The tempering temperature is 3
If the temperature is higher than 00 ° C., the amount of carbides exceeds the predetermined amount and the fracture characteristics are deteriorated, which is not desirable.
【0032】以上の製造方法により、引張強さ980N
/mm2以上で、マルテンサイトを体積率で70%以上含
み、0.1μm以上のFe−C系の析出物を1mm2当たり3
×105以下である超高強度鋼板が得られる。By the above manufacturing method, the tensile strength is 980N.
/ Mm 2 or more, 70% or more by volume of martensite, and 0.1 μm or more of Fe-C based precipitates per mm 2 of 3
An ultra high strength steel sheet having a density of × 10 5 or less can be obtained.
【0033】この超高強度鋼板は塩水噴霧、塩酸浸漬及
び陰極チャージ試験などの腐食環境下の水素脆化試験で
遅れ破壊の発生時間が長くなり、又は破壊せず、水素脆
化に対して優れた耐性を有している。This ultrahigh-strength steel sheet is excellent in hydrogen embrittlement because the delayed fracture generation time becomes longer or does not fracture in hydrogen embrittlement tests under corrosive environments such as salt spray, hydrochloric acid immersion and cathode charge tests. Have tolerance.
【0034】また、組織については、所定の強度を確保
するために上記炭化物を含むマルテンサイトが体積率で
70%以上であればよい。マルテンサイトが100%で
あっても、或いは他にフェライト、ベイナイト、及び残
留オーステナイトを単独又は複合して30%以下で含ん
でも、何ら本発明の効果が変わらない。Regarding the structure, the martensite containing the above-mentioned carbide may be 70% or more in volume ratio in order to secure a predetermined strength. Even if the martensite content is 100% or if the content of ferrite, bainite, and retained austenite alone or in combination is 30% or less, the effect of the present invention is not changed.
【0035】なお、連続焼鈍後は調質圧延しても、また
亜鉛などのめっき処理を行っても問題はない。After the continuous annealing, there is no problem in temper rolling or plating treatment with zinc or the like.
【0036】次に本発明の実施例を示す。Next, examples of the present invention will be shown.
【0037】表1に示す化学成分の鋼を1200℃に加
熱した後、3.2mm厚さに熱延し560℃で巻取った。
酸洗後板厚0.8mmまで冷間圧延し、表2に示す条件で
連続焼鈍を行なった。0.3%の調質圧延を施した後、
強度、曲げ加工性などの機械的性質、耐水素脆化を調査
した。その結果を表1に示す。Steels having the chemical composition shown in Table 1 were heated to 1200 ° C., then hot rolled to a thickness of 3.2 mm and wound at 560 ° C.
After pickling, cold rolling was performed to a plate thickness of 0.8 mm, and continuous annealing was performed under the conditions shown in Table 2. After temper rolling of 0.3%,
The mechanical properties such as strength and bending workability, and hydrogen embrittlement resistance were investigated. The results are shown in Table 1.
【0038】耐水素脆化については、30mmw×150
mmlの短冊試験片を曲げ半径12mmで曲げ加工し、板間
の幅が24mmになるまで締め込み、表面に20μmの電
着塗装を施した後、0.5mol/リットルの硫酸+0.0
001mol/リットルのKSCN溶液中でポテンショス
タットを用いて、自然電位よりも550mV卑である電
位を与えて割れが発生する時間で評価した。曲げ加工性
は45度V曲げ試験により評価した。Regarding hydrogen embrittlement resistance, 30 mmw × 150
Bending a strip test piece of mml with a bending radius of 12 mm, tightening it until the width between the plates became 24 mm, and applying electrodeposition coating of 20 μm on the surface, then 0.5 mol / liter sulfuric acid + 0.0
Using a potentiostat in a 001 mol / liter KSCN solution, a potential 550 mV lower than the natural potential was applied to evaluate the time at which cracking occurred. The bending workability was evaluated by a 45-degree V-bending test.
【0039】表1より明らかなように、本発明例はいず
れも980N/mm2以上の引張強度と良好な加工性を示
し、また図1に示すように、0.1μm以上の炭化物が少
なく、割れ発生までの時間が980sec以上と長く耐水
素脆化が優れている。As is clear from Table 1, all of the examples of the present invention showed tensile strength of 980 N / mm 2 or more and good workability, and as shown in FIG. 1, there were few carbides of 0.1 μm or more, The time until cracking is as long as 980 seconds or more and hydrogen embrittlement resistance is excellent.
【0040】これに対し、比較例の鋼No.1、7、8
は、化学成分が本発明範囲から外れており、所定の強度
が確保できず、又は加工性が悪い。また鋼No.3、6、
16、22、23、24、25は、焼鈍条件が本発明範
囲から外れており、マルテンサイトの体積率が不足し所
定の強度が確保できず、又は図2に示すように0.1μm
以上の炭化物が多く、割れ発生までの時間が短く耐水素
脆化が劣っている。On the other hand, steel Nos. 1, 7, and 8 of the comparative examples
Has a chemical component outside the scope of the present invention, and cannot secure a predetermined strength, or has poor workability. Steel No. 3, 6,
Nos. 16, 22, 23, 24, and 25 have annealing conditions outside the scope of the present invention, and the volume ratio of martensite is insufficient and a predetermined strength cannot be ensured, or as shown in FIG.
The above carbides are abundant, the time until cracking is short, and the hydrogen embrittlement resistance is poor.
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【表2】 [Table 2]
【0043】[0043]
【発明の効果】以上説明したように、本発明によれば、
自動車のバンパー及びドアインパクトビームなどの補強
部材として最適な980N/mm2以上の引張強度と良好
な加工性を有し、しかも使用時に問題となる水素脆化に
ついて優れた耐性を有している超高強度薄鋼板を提供で
きるので、上述のような強度部材、補強部材などの軽量
化に寄与する効果は顕著である。As described above, according to the present invention,
It has an optimal tensile strength of 980 N / mm 2 or more as a reinforcing member for automobile bumpers and door impact beams, good workability, and excellent resistance to hydrogen embrittlement, which is a problem during use. Since the high-strength thin steel sheet can be provided, the effect of contributing to weight reduction of the above-described strength member, reinforcing member, etc. is remarkable.
【図1】実施例で得られた鋼板の金属組織を示す写真
で、抽出レプリカによる炭化物の分布状況を示してお
り、(a)は本発明例、(b)は比較例の場合である。FIG. 1 is a photograph showing a metallographic structure of a steel sheet obtained in an example, showing a distribution state of carbides by an extracted replica, (a) is an example of the present invention, and (b) is a case of a comparative example.
Claims (4)
0.25%、Mn:1.0〜3.0%、Al:0.025〜
0.100%、S:0.01%以下、N:0.008%以
下を含み、残部が不可避的不純物からなる組成を有し、
引張強さ980N/mm2以上で、マルテンサイトを体積
率で70%以上含む超高強度薄鋼板において、0.1μm
以上のFe−C系の析出物が1mm2当たり3×105以下
であることを特徴とする水素脆化の発生しない超高強度
薄鋼板。1. In weight% (hereinafter the same), C: 0.05-
0.25%, Mn: 1.0 to 3.0%, Al: 0.025
0.10%, S: 0.01% or less, N: 0.008% or less, with the balance being inevitable impurities.
0.1 μm in an ultra-high strength thin steel sheet having a tensile strength of 980 N / mm 2 or more and containing martensite in a volume ratio of 70% or more.
Ultra high strength steel sheet without hydrogen embrittlement, characterized in that the Fe-C-based precipitates are 3 × 10 5 or less per 1 mm 2 .
以下、Cr:1.0%以下、Mo:1.0%以下、W:1.
0%以下の1種以上を含むことを特徴とする請求項1に
記載の水素脆化の発生しない超高強度薄鋼板。2. Further, Si: 3.0% or less, P: 0.1%
Below, Cr: 1.0% or less, Mo: 1.0% or less, W: 1.
The ultrahigh-strength thin steel sheet according to claim 1, wherein the ultrahigh-strength thin steel sheet contains 0% or less of one or more kinds.
以下、V:0.1%以下、Zr:0.1%以下の1種以上
を含むことを特徴とする請求項1又は2に記載の水素脆
化の発生しない超高強度薄鋼板。3. Further, Ti: 0.2% or less, Nb: 0.1%
The ultrahigh-strength thin steel sheet without hydrogen embrittlement according to claim 1 or 2, further comprising one or more of V: 0.1% or less and Zr: 0.1% or less.
る鋼を常法により熱間圧延し、酸洗まま又はその後冷間
圧延して、連続焼鈍するに際して、Ac3点以上に均熱後
850〜650℃まで徐冷し、その温度から5℃/sec
以上で300℃以下まで冷却し、以後、300℃以下に
再加熱し若しくはそのまま300℃以下で1〜20min
の焼戻し処理を行うことにより、引張強さ980N/mm
2以上で、マルテンサイトが体積率で70%以上含み、
0.1μm以上のFe−C系の析出物が1mm2当たり3×1
05以下を得ることを特徴とする水素脆化の発生しない
超高強度薄鋼板の製造方法。4. A steel having the composition according to claim 1, 2 or 3 is hot-rolled by a conventional method, and as it is pickled or cold-rolled and continuously annealed, it is evened to an Ac 3 point or more. After heating, gradually cool to 850 to 650 ℃, and from that temperature 5 ℃ / sec
After cooling to below 300 ° C, reheat to below 300 ° C or 1300 min below 300 ° C
Tensile strength of 980 N / mm
2 or more, martensite contains 70% or more by volume ratio,
Fe-C based precipitates of 0.1 μm or more are 3 × 1 per 1 mm 2.
A method for producing an ultra-high-strength thin steel sheet in which hydrogen embrittlement does not occur, which is characterized by obtaining 0 5 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35210293A JP2826058B2 (en) | 1993-12-29 | 1993-12-29 | Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35210293A JP2826058B2 (en) | 1993-12-29 | 1993-12-29 | Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07197183A true JPH07197183A (en) | 1995-08-01 |
JP2826058B2 JP2826058B2 (en) | 1998-11-18 |
Family
ID=18421797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35210293A Expired - Fee Related JP2826058B2 (en) | 1993-12-29 | 1993-12-29 | Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2826058B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004231992A (en) * | 2003-01-28 | 2004-08-19 | Nippon Steel Corp | High strength steel sheet with excellent resistance to hydrogen embrittlement, and its manufacturing method |
JP2005163115A (en) * | 2003-12-03 | 2005-06-23 | Jfe Steel Kk | Method for manufacturing super high-strength steel sheet with adequate shape |
JP2005273002A (en) * | 2004-02-27 | 2005-10-06 | Jfe Steel Kk | Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor |
JP2007198895A (en) * | 2006-01-26 | 2007-08-09 | Kobe Steel Ltd | Evaluation method of delayed breaking resistance of high-strength steel sheet |
US7507307B2 (en) * | 2002-06-10 | 2009-03-24 | Jfe Steel Corporation | Method for producing cold rolled steel plate of super high strength |
EP2246456A1 (en) * | 2008-01-31 | 2010-11-03 | JFE Steel Corporation | High-strength steel sheet and process for production thereof |
EP2258887A1 (en) * | 2008-01-31 | 2010-12-08 | JFE Steel Corporation | High-strength steel sheet and process for production thereof |
WO2011065591A1 (en) * | 2009-11-30 | 2011-06-03 | 新日本製鐵株式会社 | HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF |
JP2014019926A (en) * | 2012-07-20 | 2014-02-03 | Kobe Steel Ltd | High strength steel sheet having excellent delayed fracture resistance and method for producing the same |
KR20160057373A (en) | 2011-08-10 | 2016-05-23 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet excellent in seam weldability |
KR20160074766A (en) * | 2014-12-18 | 2016-06-29 | 주식회사 포스코 | High strength cold rolled steel sheet having excellent stretch flange ability and method for manufacturing the same |
WO2017009936A1 (en) * | 2015-07-13 | 2017-01-19 | 新日鐵住金株式会社 | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor |
WO2017009938A1 (en) * | 2015-07-13 | 2017-01-19 | 新日鐵住金株式会社 | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor |
WO2018108653A1 (en) * | 2016-12-14 | 2018-06-21 | Thyssenkrupp Steel Europe Ag | Hot-rolled flat steel product and method for the production thereof |
JP2018518593A (en) * | 2015-05-06 | 2018-07-12 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Flat steel products and manufacturing method thereof |
CN109652625A (en) * | 2019-01-15 | 2019-04-19 | 象山华鹰塑料工程有限公司 | A kind of automotive window super high tensile cold-rolled steel plate manufacturing process |
WO2020079925A1 (en) | 2018-10-18 | 2020-04-23 | Jfeスチール株式会社 | High yield ratio, high strength electro-galvanized steel sheet, and manufacturing method thereof |
KR102403767B1 (en) * | 2020-11-25 | 2022-05-30 | 현대제철 주식회사 | Ultra high strength cold rolled steel sheet treated by softening heat process and method of manufacturing the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1325966B1 (en) | 2000-09-12 | 2009-04-01 | JFE Steel Corporation | Super-high strength cold-rolled steel sheet and method for production thereof |
JP5703608B2 (en) | 2009-07-30 | 2015-04-22 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
CN103572171B (en) * | 2012-07-18 | 2017-06-30 | 株式会社神户制钢所 | The manufacture method of the ultrahigh-strength thin steel sheet of hydrogen embrittlement is not produced |
CN103572156B (en) * | 2012-07-18 | 2017-03-01 | 株式会社神户制钢所 | The manufacture method of door reinforced pipe high-strength steel sheet |
-
1993
- 1993-12-29 JP JP35210293A patent/JP2826058B2/en not_active Expired - Fee Related
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7507307B2 (en) * | 2002-06-10 | 2009-03-24 | Jfe Steel Corporation | Method for producing cold rolled steel plate of super high strength |
JP4714404B2 (en) * | 2003-01-28 | 2011-06-29 | 新日本製鐵株式会社 | High strength thin steel sheet with excellent hydrogen embrittlement resistance and method for producing the same |
JP2004231992A (en) * | 2003-01-28 | 2004-08-19 | Nippon Steel Corp | High strength steel sheet with excellent resistance to hydrogen embrittlement, and its manufacturing method |
JP2005163115A (en) * | 2003-12-03 | 2005-06-23 | Jfe Steel Kk | Method for manufacturing super high-strength steel sheet with adequate shape |
JP4492111B2 (en) * | 2003-12-03 | 2010-06-30 | Jfeスチール株式会社 | Manufacturing method of super high strength steel plate with good shape |
JP2005273002A (en) * | 2004-02-27 | 2005-10-06 | Jfe Steel Kk | Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor |
JP4586449B2 (en) * | 2004-02-27 | 2010-11-24 | Jfeスチール株式会社 | Ultra-high-strength cold-rolled steel sheet excellent in bendability and stretch flangeability and manufacturing method thereof |
JP2007198895A (en) * | 2006-01-26 | 2007-08-09 | Kobe Steel Ltd | Evaluation method of delayed breaking resistance of high-strength steel sheet |
EP2258887A1 (en) * | 2008-01-31 | 2010-12-08 | JFE Steel Corporation | High-strength steel sheet and process for production thereof |
EP2258887A4 (en) * | 2008-01-31 | 2013-12-25 | Jfe Steel Corp | High-strength steel sheet and process for production thereof |
EP2246456A1 (en) * | 2008-01-31 | 2010-11-03 | JFE Steel Corporation | High-strength steel sheet and process for production thereof |
EP2246456A4 (en) * | 2008-01-31 | 2014-04-23 | Jfe Steel Corp | High-strength steel sheet and process for production thereof |
US8840834B2 (en) | 2008-01-31 | 2014-09-23 | JFE Steel Coporation | High-strength steel sheet and method for manufacturing the same |
WO2011065591A1 (en) * | 2009-11-30 | 2011-06-03 | 新日本製鐵株式会社 | HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF |
US10023947B2 (en) | 2009-11-30 | 2018-07-17 | Nippon Steel & Sumitomo Metal Corporation | High strength steel plate with ultimate tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and method of production of same |
CN102639739A (en) * | 2009-11-30 | 2012-08-15 | 新日本制铁株式会社 | High-strength steel sheet having excellent hydrogen embrittlement resistance and maximum tensile strength of 900 mpa or more, and process for production thereof |
KR101445813B1 (en) * | 2009-11-30 | 2014-10-01 | 신닛테츠스미킨 카부시키카이샤 | HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF |
KR20180125936A (en) | 2011-08-10 | 2018-11-26 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet excellent in seam weldability |
US10030291B2 (en) | 2011-08-10 | 2018-07-24 | Kobe Steel, Ltd. | High-strength steel sheet excellent in seam weldability |
KR20160057373A (en) | 2011-08-10 | 2016-05-23 | 가부시키가이샤 고베 세이코쇼 | High-strength steel sheet excellent in seam weldability |
JP2014019926A (en) * | 2012-07-20 | 2014-02-03 | Kobe Steel Ltd | High strength steel sheet having excellent delayed fracture resistance and method for producing the same |
KR20160074766A (en) * | 2014-12-18 | 2016-06-29 | 주식회사 포스코 | High strength cold rolled steel sheet having excellent stretch flange ability and method for manufacturing the same |
JP2018518593A (en) * | 2015-05-06 | 2018-07-12 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Flat steel products and manufacturing method thereof |
JPWO2017009936A1 (en) * | 2015-07-13 | 2018-04-19 | 新日鐵住金株式会社 | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them |
JPWO2017009938A1 (en) * | 2015-07-13 | 2018-03-29 | 新日鐵住金株式会社 | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them |
WO2017009938A1 (en) * | 2015-07-13 | 2017-01-19 | 新日鐵住金株式会社 | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor |
WO2017009936A1 (en) * | 2015-07-13 | 2017-01-19 | 新日鐵住金株式会社 | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor |
US10808291B2 (en) | 2015-07-13 | 2020-10-20 | Nippon Steel Corporation | Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor |
US10822672B2 (en) | 2015-07-13 | 2020-11-03 | Nippon Steel Corporation | Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor |
WO2018108653A1 (en) * | 2016-12-14 | 2018-06-21 | Thyssenkrupp Steel Europe Ag | Hot-rolled flat steel product and method for the production thereof |
US11371113B2 (en) | 2016-12-14 | 2022-06-28 | Evonik Operations Gmbh | Hot-rolled flat steel product and method for the production thereof |
WO2020079925A1 (en) | 2018-10-18 | 2020-04-23 | Jfeスチール株式会社 | High yield ratio, high strength electro-galvanized steel sheet, and manufacturing method thereof |
KR20210060550A (en) | 2018-10-18 | 2021-05-26 | 제이에프이 스틸 가부시키가이샤 | High-strength electro-galvanized steel sheet with high yield ratio and manufacturing method thereof |
US12043883B2 (en) | 2018-10-18 | 2024-07-23 | Jfe Steel Corporation | High-yield-ratio high-strength electrogalvanized steel sheet and method for manufacturing the same |
CN109652625A (en) * | 2019-01-15 | 2019-04-19 | 象山华鹰塑料工程有限公司 | A kind of automotive window super high tensile cold-rolled steel plate manufacturing process |
KR102403767B1 (en) * | 2020-11-25 | 2022-05-30 | 현대제철 주식회사 | Ultra high strength cold rolled steel sheet treated by softening heat process and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2826058B2 (en) | 1998-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8137487B2 (en) | Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability | |
EP2415893B1 (en) | Steel sheet excellent in workability and method for producing the same | |
JP2826058B2 (en) | Ultra-high strength thin steel sheet without hydrogen embrittlement and manufacturing method | |
JP4781836B2 (en) | Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet | |
JP6760520B1 (en) | High yield ratio High strength electrogalvanized steel sheet and its manufacturing method | |
JP2005528519A5 (en) | ||
CN111511945A (en) | High-strength cold-rolled steel sheet and method for producing same | |
JP3233743B2 (en) | High strength hot rolled steel sheet with excellent stretch flangeability | |
JP2003221623A (en) | Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet | |
JP4528184B2 (en) | Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability | |
JP5338257B2 (en) | High yield ratio ultra high strength steel sheet with excellent ductility and method for producing the same | |
KR20070011007A (en) | Hot dip galvanized steel sheets of trip steels which have good adhesion property and excellent formability and the method of developing those steels | |
WO2002022904A1 (en) | Super high tensile cold-rolled steel plate and method for production thereof | |
JP3569949B2 (en) | Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance | |
JP4265153B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP4265152B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP2000265244A (en) | Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture | |
JP2013216936A (en) | Hot-dip galvannealed hot-rolled steel sheet and production method thereof | |
JPH0790488A (en) | Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production | |
JP3247909B2 (en) | High-strength hot-dip galvanized steel sheet excellent in ductility and delayed fracture resistance and method for producing the same | |
JPH05271857A (en) | High tensile strength steel sheet and its production | |
JP2006009057A (en) | Method for producing high strength cold-rolled steel sheet excellent in bending and fatigue resistant characteristics | |
JP7291222B2 (en) | High-strength steel sheet with excellent ductility and workability, and method for producing the same | |
JP2005105399A (en) | Method for manufacturing low-yield-ratio high-strength galvannealed steel | |
JP3330207B2 (en) | Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980811 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070911 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080911 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080911 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090911 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090911 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100911 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100911 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110911 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110911 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |